

Distribution System Workshop

Distribution System Plan Workshop # 2 | 24 – May 8, 2024

Meeting Logistics

Microphone

Chat box

Video

Raise Hand

Closed Caption

Operating Agreements

Establishing norms with our communities is foundational to building trust

To create a **safe space**, we established **common agreements** such as **respect, honoring diversity of thought**, and **inclusivity**

Practice curiosity and seek to understand different perspectives

9:00 - Welcome & Meeting Logistics

9:05 - Distributed Energy Resources Forecast

9:50 - Distribution System Planning - Grid Needs Analysis

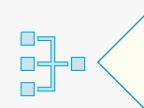
10:25 - Grid Needs Analysis: Supporting DER Integration & Operation

10:55 - Closing Remarks & Next Steps

11:00 - Adjourn

DSP Distributed Energy Resources Forecast Update

Andy Eiden, Senior Principal Analyst Distribution System Workshop # 2 | 24 – May 8, 2024


Outline

Recap PGE's distributed energy resources (DER) forecasting practices & tools (*link to past DSP partner workshop presentations:* <u>Distribution System Planning Resources & Materials | PGE (portlandgeneral.com)</u>)

Share updates initiated since DSP Part 2 was filed

Forecasting DERs for IRP & DSP

IRP looks at DER forecast in terms of these resource's contributions to bulk system resource needs (i.e., large-scale generation and transmission)

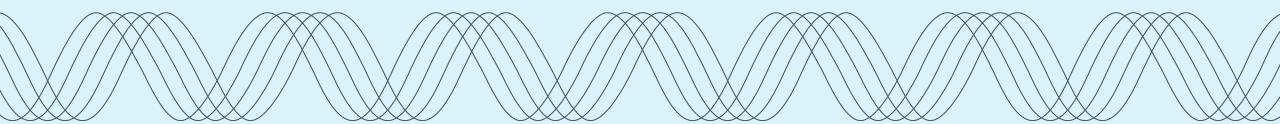
In current iteration, IRP does not factor in locational DER forecast but rather **potential systemwide resource impacts**

We include a low/reference/high DER forecast that contributes to the different resource **"need futures"** assessed by the IRP

For example:

low solar adoption, high EV adoption = "high need"

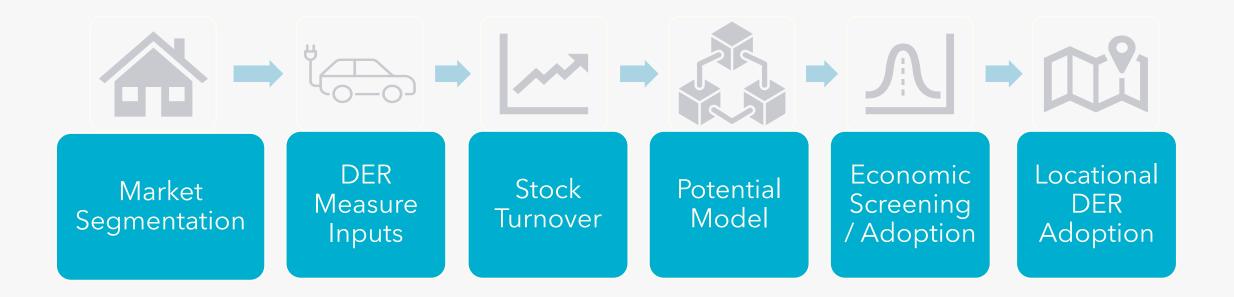
For DSP, we begun introducing DER forecasting into grid planning workflows


DSP Part 2 included DER forecast at **substation & feeder-level** & results were incorporated into capital portfolio planning

Evolution of DER forecasting for DSP will factor in sensitivities such as **"high EV growth"** & allow planners to assess potential implications

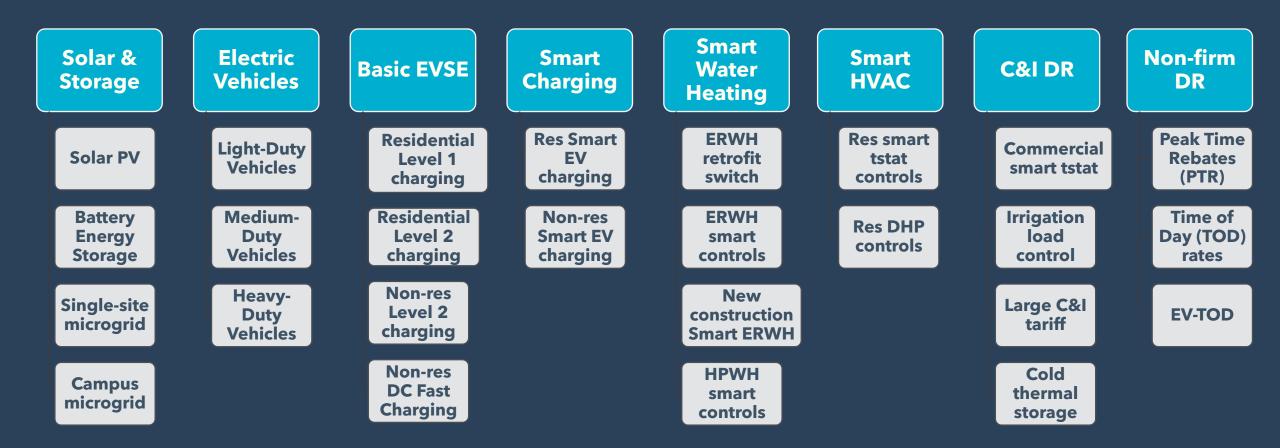
How does PGE forecast DER growth?

AdopDER is a

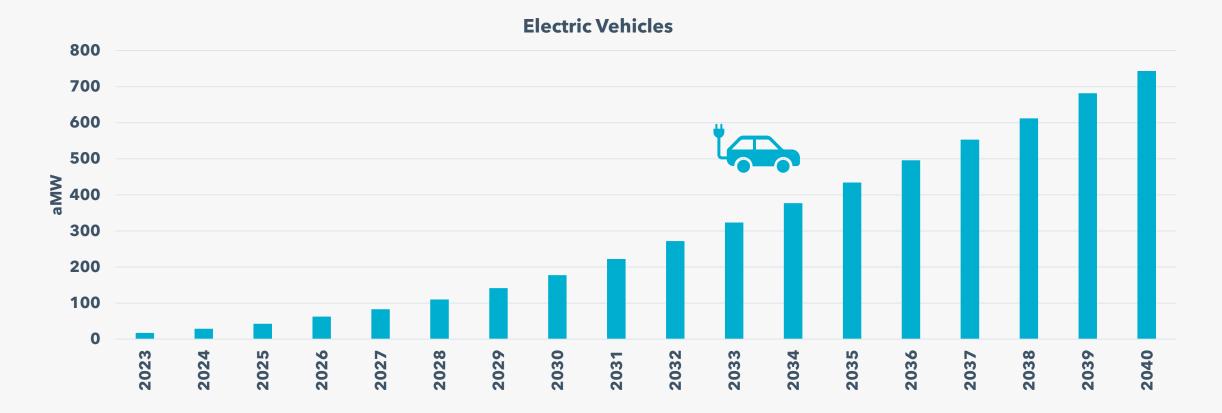

site-level simulation model that estimates

locational, hourly annual load impacts from the co-adoption of

40+ distributed energy resources



AdopDER Simplified Workflow



Example AdopDER Measure Inputs


Long-term Energy Impacts from Distributed Energy Resources (DERs)

Data source: AdopDER June 2023 vintage (included in PGE 2023 IRP)


Long-term Energy Impacts from Distributed Energy Resources (DERs)

Data source: AdopDER June 2023 vintage (included in PGE 2023 IRP)

Long-term Flexible Load / Capacity Potential from Dispatchable DERs

• **Solar PV:** calibrating previous forecasts to actual adoption, & improving MWh projections based on more granular system information (e.g., tilt & azimuth)

DER Forecast Update | **May** (2024)

 Transportation Electrification: utilize more real-world charging data (e.g., PGE's Residential Smart Charge program) & incorporate EPRI's EVs2Scale telematics data

- Evolve to site-level forecast curves for DER & Load Feeds into CYME's integrated distribution platform
- Include distribution-connected Qualified Facilities & more granular large customer load additions (1+ MW)
- Increase granularity for CBRE forecasts for IRP Update & CEP

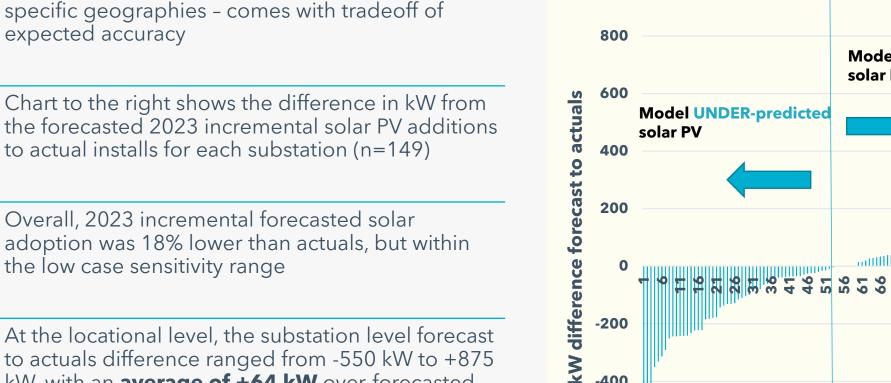
Evolution of the DER Forecast for this iteration of DSP

Methodology changes | **2024-25**

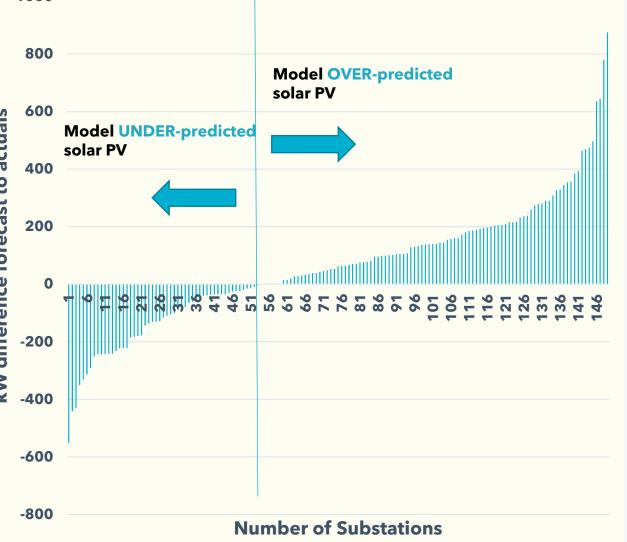
Locational DER Forecasting Examples

the forecasted 2023 incremental solar PV additions to actual installs for each substation (n=149)400

Overall, 2023 incremental forecasted solar adoption was 18% lower than actuals, but within the low case sensitivity range


Increasing forecast granularity from system-level to

expected accuracy

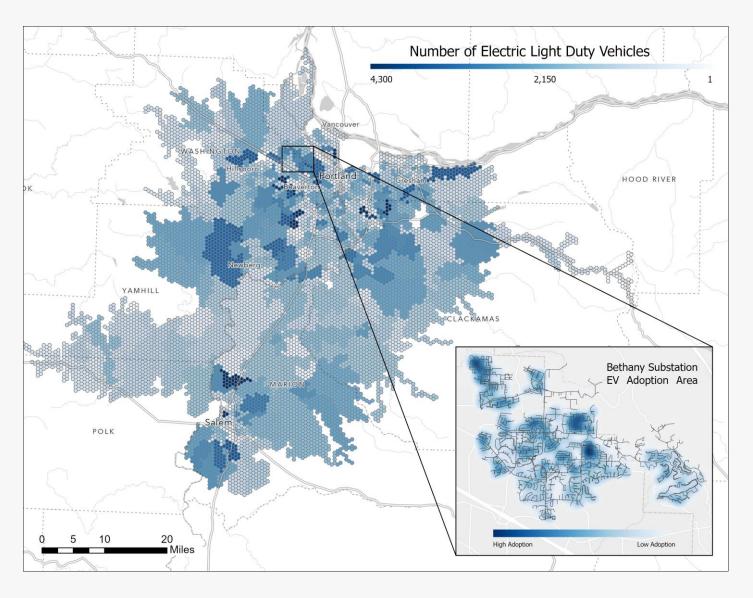

At the locational level, the substation level forecast to actuals difference ranged from -550 kW to +875 kW, with an average of +64 kW over-forecasted per substation

We are actively investigating potential sources for forecast improvement

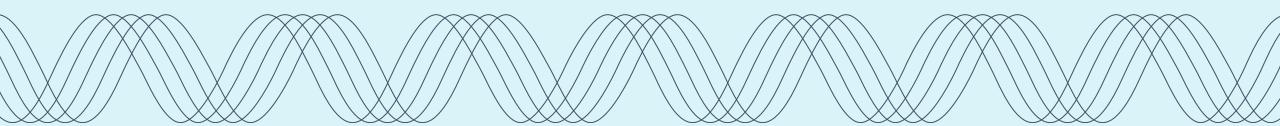
Assessing Forecast Accuracy & Precision

1000

Forecasted Electric Vehicle Adoption 2030



AdopDER assigns EV purchase decision based on several factors such as


Actual EV adoption tracked by matching DMV registration extracts to PGE customer database at SPID level

Results in address match rate of ~ 95% & remainder are allocated by zip code level apportionment process

In Process DER Forecasting Updates & Planned Work

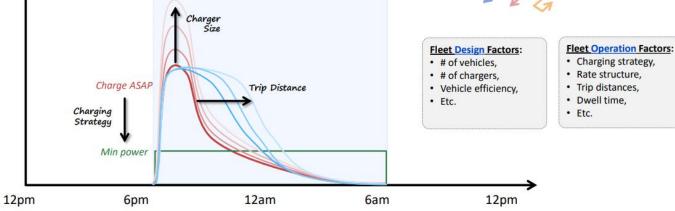
Customer Behavior for Co-adoption of EVs

PGE working with EPRI & NREL conducting
analysis of customer behavior related to co-
adoption of DERs, including combinations of the
following:

Solar PV

Battery-electric storage systems

Electric vehicles


Two-Part	 Conduct customer surveys to inform discrete choice analysis of customer types
Methodology	& propensities (i.e., "stated preferences" approach) Compare to actual adoption behavior (i.e., "revealed preferences")
	 Increase granularity "PGE agents" in dGen, maintained by NREL, allowing for better characterization of PGE customers compared to Oregon statewide aggregates

Incorporating EPRI's EVs2Scale & Other Learnings

PGE has been participating in EPRI's Fleet charging study & EVs2Scale Initiative Will incorporate medium-& heavy-duty fleet vehicle locational energy demand & load profile analysis into future updates

<u>Goal</u>: To better understand how different choices in fleet design and operation factors made by fleet operators and/or utilities at a depot can impact the load profile at the site.

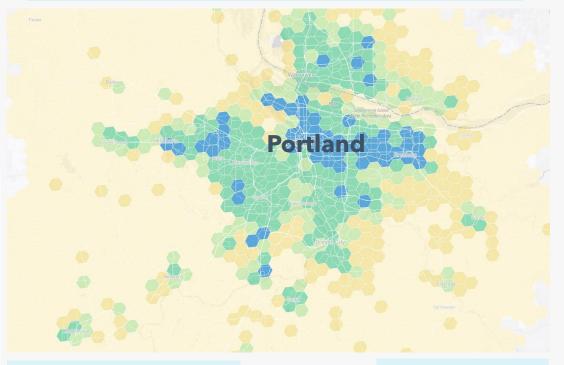


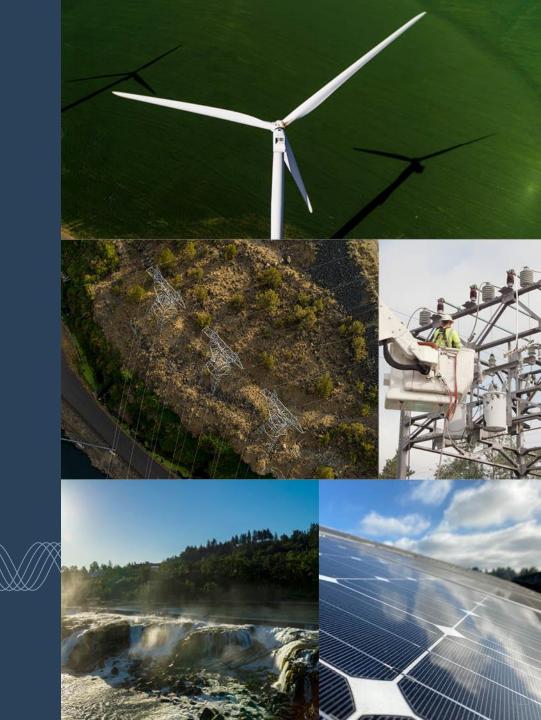
Image sources: https://eroadmap.epri.com/

Map Legend

MWh/Day Cumulative Energy Needs

) 1 3 9 18 2,795 Each hexagon covers about 2 square miles (Hex 7)

Questions/ Comments


555 D

Distribution System Plan Workshop - 05/08/2024

Distribution System Planning – Grid Needs Assessment

Fatima Colorado, Distribution System Planning Manager Distribution System Workshop # 2 | 24 - May 8, 2024

Outline

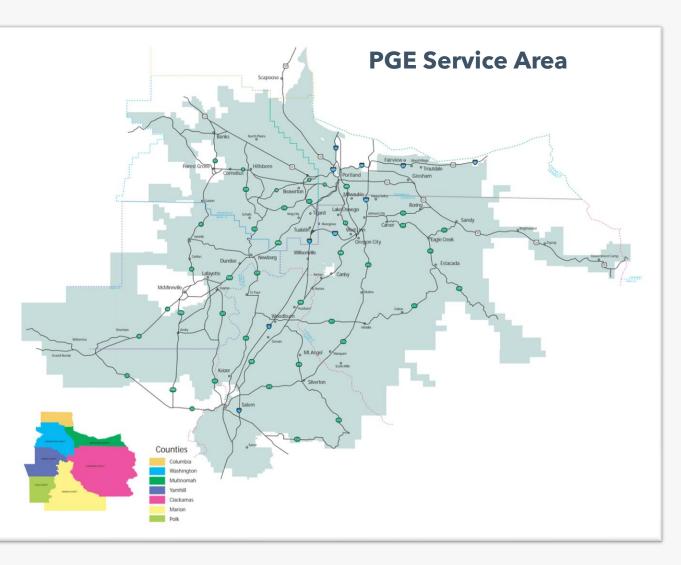
Distribution System		
Goals for Distribution System Planning		
Grid Assessment Criteria		
Types of DERs		
DERs Long Term Goal		
First Step: Constrained Feeders		
Current Issues		
DER constrained feeder's strategy		

Questions & Comments

Distribution Information

Service Territory

Big Equipment 152 Substations 280 Power Transformers


• 1.9 million population

• 4,000 square miles

• ~900,000 customers

• 707 Feeders

Net System Peak Load Summer: 4,498 MWWinter: 4,113 MW

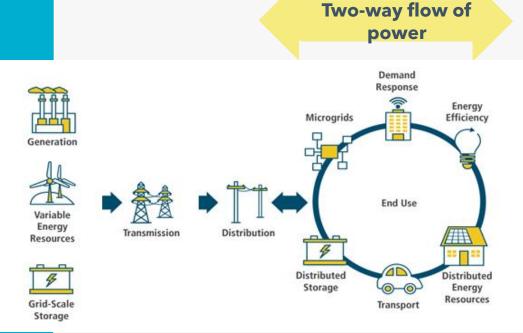
Distribution Planning Expected Results

- Enhance **safety**
- Increase reliability
- Meet customer needs
- Meet standards/requirements
- Recommend best solutions
- **Reduce risk** (likelihood x consequence)

Grid Assessment Criteria

Plan to peak	PGE plans the distribution system to serve customers even at extreme temperatures, at the largest power demand at a given point during a year
Planning criteria for equipment loading	target loading is less than 67% for feeders, less than 80% for transformers to have capacity to move load around on the system
Target system flexibility at both the transformer and feeder level	all load picked up by switching to other equipment for the loss of a single element
Customer-driven projects	take priority, e.g., large housing development, manufacturing facility, industrial park
Ensure new infrastructure is planned for the long-term forecasted load in the area	when PGE implements a project, we aim to not have to do another project on the affected equipment for at least 10 years

Distributed Energy Resources (DERs)



DERs Type

- Roof top solar
- Demand response
- Dispatchable standby generators
- Battery Storage

Bi-directional power flow

DER Long-Term Goal Ultimate Goal: To leverage all tools including DERs

What do we need to know?

- How many DERs are we adding to our grid
- What kinds of DERs are being added
- Where are these new DERs being installed

What are we currently doing to achieve our goal?

- Investing in our Test-Bed to be able to scale up
- Forecasting DERs as part of our planning studies
- Investing in feeders to support bi-directional flow ensuring safety & reliability of our system

What do we need to do?

- Help customers understand their role in our energy future
- Draw lessons from our Test-Bed regarding the reliability of DERs
- Operate DERs optimized in the grid of the future
 - ✓ Data & technology intensive effort (a new team of analysts is needed)
 - ✓ Real time DER operations

First Step: Constrained Feeders

What does it mean?

Example

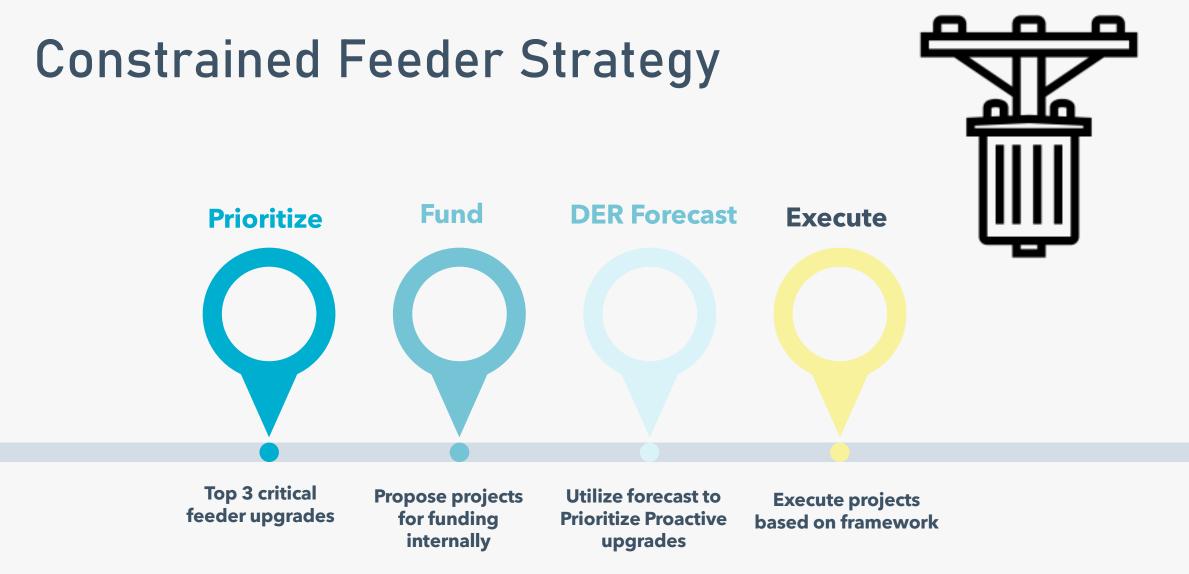
A feeder (or substation transformer) where we have or where we will be exceeding certain **generation** to load ratio thresholds where the system does not allow for bi-directional flow

A feeder where generation is > 90% of the daytime minimum load (DML)

A transformer with single feeder where generation is >80% of the daytime minimum load

Line or substation voltage regulator/LTC not able to function during reverse power flow

Why do we have constrained feeders?


- New feeders are built to accept bi-directional flow
- 27% of our distribution feeders are fully ready for bi-directional power flow
- Most of our existing feeders are built to accommodate load
- Our feeders are in flex, new customers/disconnects, new generation etc.
- Minimum loads (and Peaks) change and we review them twice a year
- High penetration rooftop solar
- Strategy in place to mitigate existing constrained feeders
- Monitoring DER/Load forecast to proactively address constraints

Current Issues: Constrained Feeder List

#	Feeder	Transformer	Installed kW	Largest	Gen/DML Ratio	Upgrades Needed	Back-feed Hours
1	Scoggins-Laurelwood	BR2	2525	2200	116%	Lack of Transformer 3V0 Protection	538
2	Yamhill - Yamhill-13	BR1	3825	2505	93%	Lack of Transformer 3V0 Protection	239
3	Scotts Mills-Scotts Mills-13	BR1	1091	313	94%	Lack of Feeder Hot Line Blocking and Transformer 3V0 Protection	186
4	Liberal - Liberal-13	BR1	4639	2200	123%	Lack of Transformer 3V0 Protection	181
5	Canby-Zimmerman	BR3	1705	498	91%	Lack of Feeder Hot Line Blocking and Transformer 3V0 Protection	82
6	Dayton-SouthWest		5070	2200	200 Lack of Feeder Hot Li	Lack of Feeder Hot Line	
7	Dayton-Lafayette	BR1	1050	37	88%	Blocking and Transformer 3V0 Protection	63
10	Colton-Dhooghe	_	2385	2200		Lack of Feeder Hot Line	6
11	Colton-GrayHill	BR2	161	18	83%	Blocking and Transformer 3V0 Protection	
12	Bethel-Geer	WR5	2673	1750	93%	Lack of Feeder Hot Line Blocking	4

Grid Needs

PGE

Identified grid needs in 2024 Prioritized grid needs **Emergent grid needs**

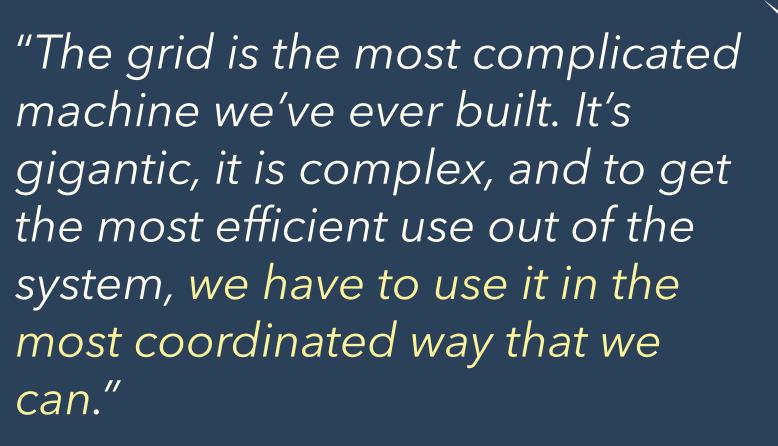
Distribution Planning Engineers conducting studies on the prioritized grid needs for 2025 capital cycle

Prioritized List of Grid Needs – Submitted for Internal Funding

Ranking	Grid Need	Type of Need/Constraint	Size of Need/Constraint	Timing/Duration of Need/Constraint	Total
1	New manufacturing load growth in Hillsboro	Overload, Load Growth	300 MVA of Industrial load starting 2027	24/7 due to the nature of customer operations	149
2	Commercial load growth in Woodburn area and 57 kV system constraints	Overload (Distribution and Sub-Transmission), Voltage Issues (Sub-Transmission), DER Readiness, Load Growth	7 MVA on the distribution system	Approximately 5-11 PM, summer for distribution. Summer and Winter seasons for Sub- Transmission.	102
3	Existing loading issues and industrial load growth in Silverton	Overload, Load Growth	8 MVA on the distribution system	Afternoon through late evening, summer	96
4	Aging infrastructure, heavily loaded transformer and feeders, lack of telemetry east of Oregon City	Overload, Aging Infrastructure, Lack of SCADA Telemetry	10 MVA	Summer and Winter seasons, evenings for overload; 24/7 for aging infrastructure, lack of telemetry	84
5	Capacity load growth in SW Beaverton, western Tigard, and western King	Aging Infrastructure, Safety, Lack of Facilities to serve new load	20 MVA	Summer and Winter seasons	83
6	DER Constrained Feeders	DER constrain feeders	Transformer Protection	Based on hours of backfeed	81

Questions/ Comments

555 D


Grid Needs Analysis: Supporting DER Integration & Operation

Joe Boyles, Resource Planning Project Manager Distribution System Workshop # 2 | 24 - May 8, 2024

- **Carl Zichella**, environmental consultant focusing on climate change and the clean energy transition

Distribution System Plan Workshop - 05/08/2024

Key Takeaways

Pressure on the grid is increasing

DERs contribute to that pressure

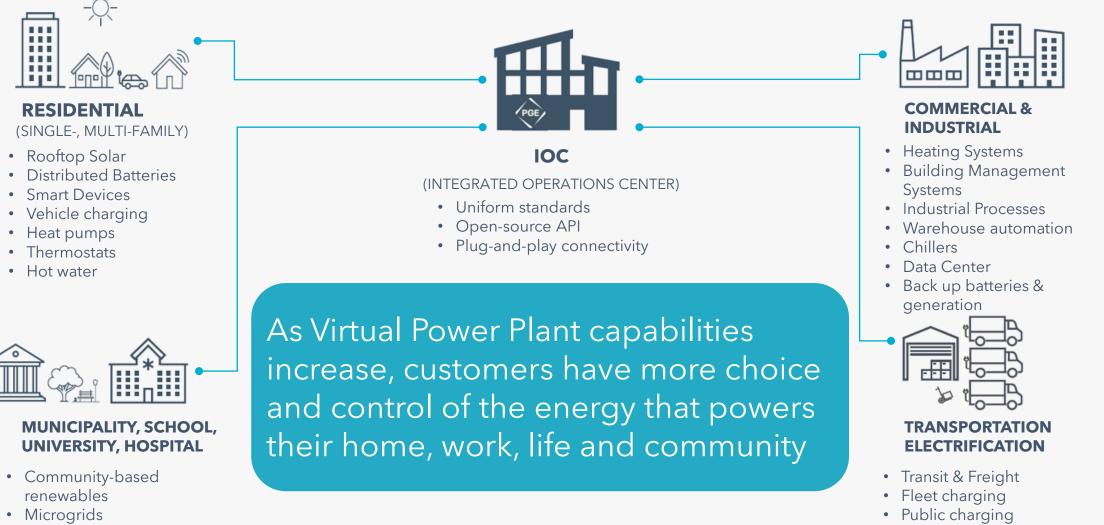
Orchestration of DERs through a Virtual Power Plant (VPP) can relieve some pressure

Overview

Building capabilities to enable Non-wires Solutions and Virtual Power Plants

Background

- DSP guidelines requested submission of two NWS concept proposals. We submitted:
 - Eastport substation: > 3 MW load relief
 - Dayton substation: >1.5 MW load relief
- Conceptualized how different combinations of DERs could cost-effectively provide load relief and defer capital investment
- Determined that there was not a pathway to execution due lack of:
 - project management,
 - regulatory approval,
 - capability to deploy, and
 - capability to call on/control DERs


Proposed direction for next iteration of DSP - develop a plan to do the following in 2025

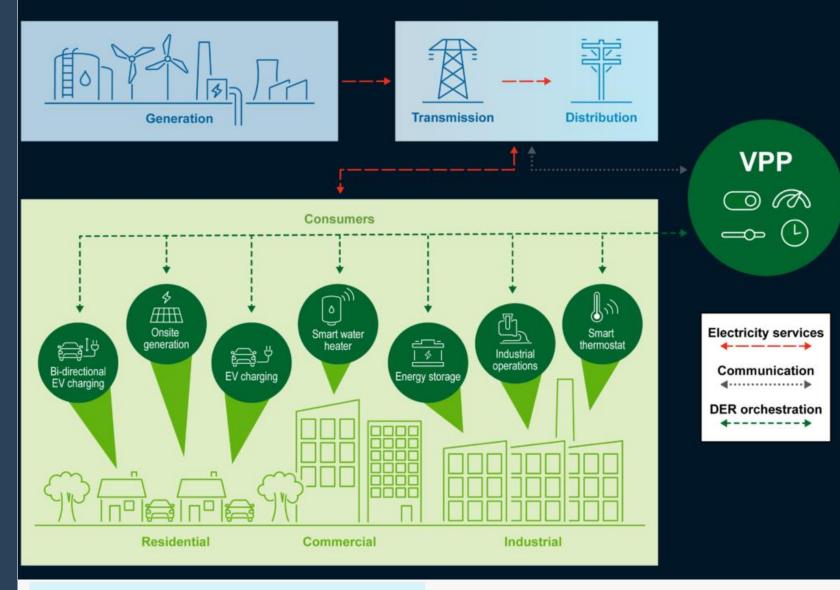
- Demonstrate capabilities necessary to deliver an NWS and a VPP that involves customer-sited DERs
- Demonstrate delivery and measurement of community benefits
- Investigate how CBREs can deliver an NWS or otherwise address grid needs

What is driving the need for grid modernization?

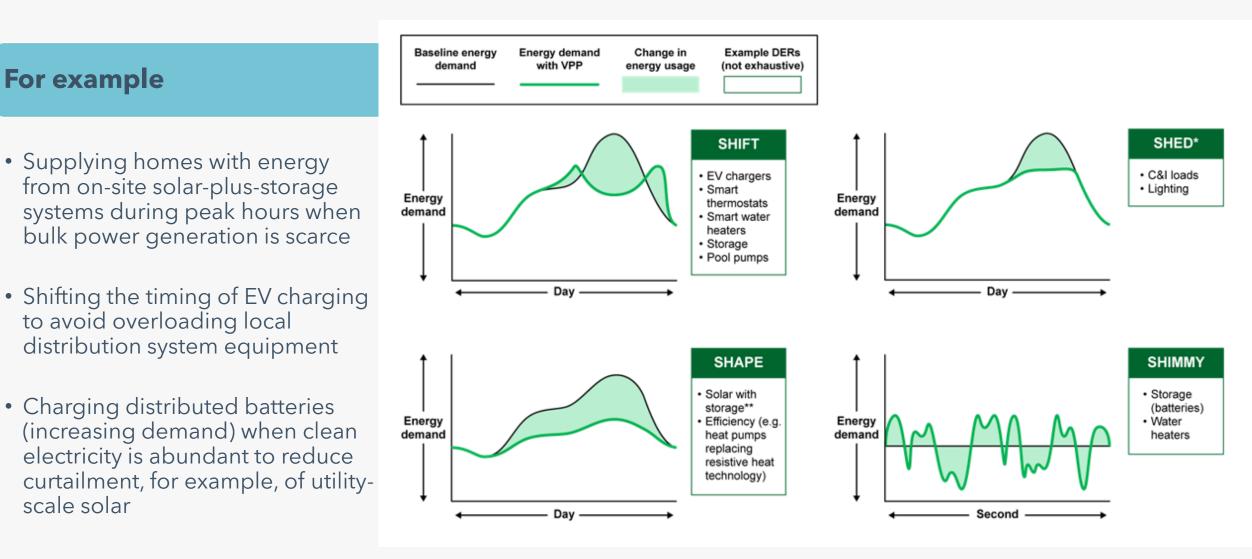
Customer expectations for increasingly clean energy, without compromising reliability and keeping costs as low as possible, require increased integration of Distributed Energy Resources and Flexible Loads

- School bus V2G
- Advanced Heating/Cooling

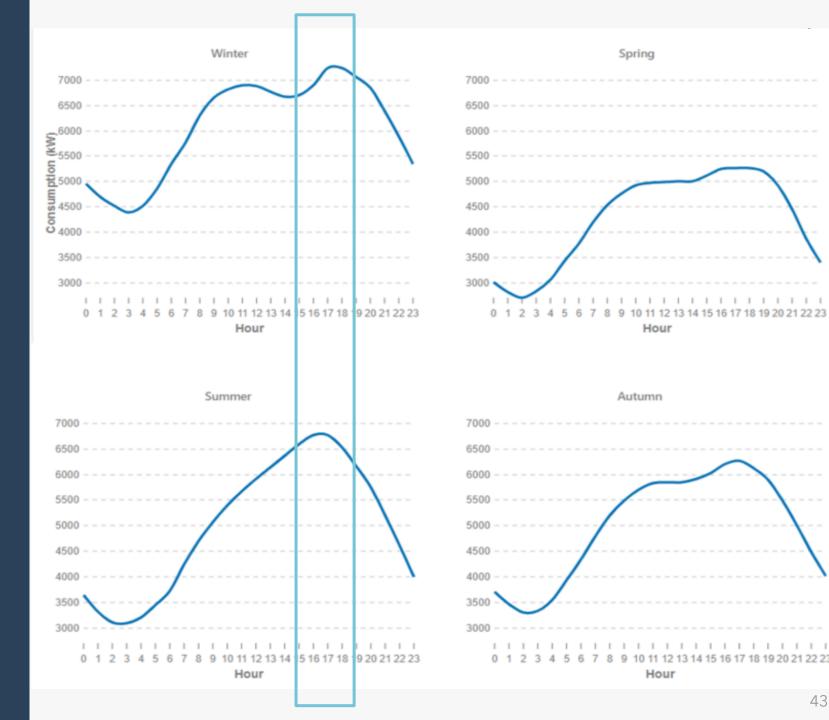
Distribution System Plan Workshop - 05/08/2024


Rental Properties

• OEM V2G and V2X

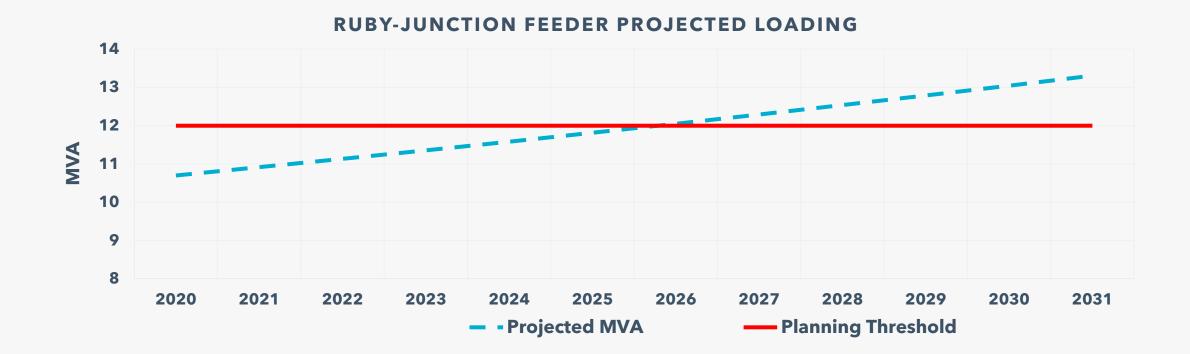

What is a Virtual Power Plant (VPP?

Aggregations of distributed energy resources (DERs) such as smart appliances, rooftop solar with batteries, EVs and chargers, and commercial and industrial loads that can balance electricity demand and supply and provide grid services like a traditional power plant.



Source: <u>https://liftoff.energy.gov/vpp/</u>

VPPs function in different ways to meet needs

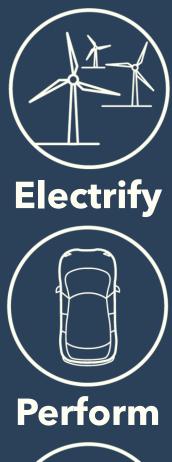


Ruby **Substation** average seasonal load profiles

Load Growth vs Planning Threshold

Collectively, VPPs Can Deliver a Range of Benefits

Cost Control	Reliability & Resilience	Decarbonization	T&D Infrastructure Relief	Community Benefit
 Defer grid capex (generation, T & D) 	 Integrate back-up power 	 Add distributed renewable generation 	 Increase efficiency by smoothing peaks 	 Enable consumers to optimize energy cost,
 Avoid fuel costs Compensate consumers and businesses 	• Eliminate single-point- of-failure	 Reduce curtailment of renewables Reduce reliance on fossil fuels 	 Alleviate congestion with local dispatch 	 Retain and create good jobs


Source: https://liftoff.energy.gov/vpp/

Capabilities Required for NWS/VPP

Capability	Description	
Grid Modeling & Analysis	Digital twin/network model development, including analysis of SCADA and field sensor data, typology models and control settings, and DER performance data.	
DER Control & Dispatch	Design and implement DER controls, including DERMS alignment, lab simulation, hardware-interoperability and testing, OEM communication and coordination.	
Product Design & Marketing	Analyze customer composition of chosen locations, assess customer preferences/needs, customize product offerings to maximize participation/adoption, incorporate considerations for disadvantaged populations, design and implement measurement and evaluation framework.	
Contractor Training & Management	Identify installers who are willing to add NWS requirements to the install process, work with installers to design efficient installation processes, prepare installers to configure DERs to integrate with PGE systems/controls.	
ADMS/DERMS Controls Integration	Configure ADMS/DERMS to recognize and operate NWS DERs, develop operations procedures to cover NWS use cases.	
Equity Lens	Apply environmental justice principles in the deployment of DER-based solutions	

Decarbonize

Virtual Power Plant

PGE will enable customers to shift their power usage from peak times while providing reliable and affordable energy

Virtual Power Plant

The orchestration of Distributed Energy Resources and Flexible Load, through technology platforms, to provide grid and power operations services.

Customer Distributed Programs Solar

d Distributed Thermal

outed Distributed mal Storage

Utility Storage

Technology Platforms

Policy and Regulation

To achieve a 25% peak usage offset while serving 100% of customer energy needs PGE is targeting 2,000 VPP-enabled megawatts by 2030

Key Takeaways

Pressure on the grid is increasing

DERs contribute to that pressure

Orchestration of DERs through a VPP can relieve some pressure

Questions/ Comments

555 D

Next Steps and Closing Remarks

Distribution System Plan Workshop - 05/08/2024

Next Steps & Closing Remarks

0—0 ■■■

- Wednesday May 22 | 10a-12p | Zoom | CBIAG Meeting
- Wednesday June 5 | 9-1a | <u>Zoom</u> | CEP/IRP Roundtable
- Wednesday June 19 | 9-11a | Zoom | Distribution System Workshop

Meeting materials and recording will be posted to our Plan's Engagement webpage at <u>Plan's Engagement | Portland</u> <u>General Electric</u>

For more information or if you have questions, please email us at <u>dsp@pgn.com</u>

Thank You for your participation in our plans

Distribution System Plan Workshop - 05/08/2024

Oraann Nraan Oraann **Nraann** Iraann Oregon

kind of energy