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Preface

This book aims to provide a broad introduction to quantification issues of

risk management. The main function of the book is to present concepts

and techniques in the assessment of risk and the forms that the aggregate

risk may be distributed between business units. The book is the result of

our research projects and professional collaborations with the financial and

insurance sectors over last years. The textbook is intended to give a set of

technical tools to assist industry practitioners to take decisions in their pro-

fessional environments. We assume that the reader is familiarwith financial

and actuarial mathematics and statistics at graduate level.

This book is structured in twoparts to facilitate reading: (I) Risk assessment,

and (II) Capital allocation problems. Part (I) is dedicated to investigate risk

measures and the implicit risk attitude in the choice of a particular riskmea-

sure, from a quantitative point of view. Part (II) is devoted to provide an

overviewon capital allocation problems and to highlight quantitativemeth-

ods and techniques to deal with these problems. Illustrative examples of

quantitative analysis are developed in the programming language R. Exam-

ples are devised to reflect some real problems that practitioners must fre-

quently face in the financial or the insurance sectors. A collection of com-

plementarymaterial to the book is available in http://www.ub.edu/rfa/R/

Part (I) covers from Chapters 1 to 5. With respect to risk measures, it

seemed adequate to deepen in the advantages and pitfalls of most com-

monly used riskmeasures in the actuarial and financial sectors, because the

discussion could result attractive both to practitioners and supervisor au-

thorities. This perspective allows to list some of the additional proposals

that can be found in the academic literature and, even, to devise a family of

alternatives called GlueVaR. Chapters in this part are structured as follows:
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Chapter 1 - Preliminary concepts on quantitative risk measurement

This chapter contains some preliminary comments, notations and defini-

tions related toquantitative risk assessment tokeep thebookas self-contain-

ed as possible.

Chapter 2 - Data on losses for risk evaluation

A descriptive statistical analysis of the dataset used to illustrate risk mea-

surement and allocation in each chapter of the book is here presented.

Chapter 3 - A family of distortion risk measures

A new family of riskmeasures, called GlueVaR, is defined within the class of

distortion risk measures. The relationship between GlueVaR, Value-at-Risk

(VaR) and Tail Value-at-Risk (TVaR) is explained. The property of subad-

ditivity is investigated for GlueVaR risk measures, and the concavity in an

interval of their associated distortion functions is analyzed.

Chapter 4 - GlueVaR and other new risk measures

This chapter is devoted to the estimation of GlueVaR risk values. Analytical

closed-form expressions of GlueVaR risk measures are shown for the most

frequently used distribution functions in financial and insurance applica-

tions, as well as Cornish-Fisher approximations for general skewed distribu-

tion functions. In addition, relationships between GlueVaR, Tail Distortion

risk measures and RVaR risk measures are shown to close this chapter.

Chapter 5 - Risk measure choice

Understanding the risk attitude that is implicit in a risk assessment is crucial

for decisionmakers. This chapter is intended to characterize the underlying

risk attitude involved in the choice of a risk measure, when it belongs to the

family of distortion risk measures. The concepts aggregate risk attitude and

local risk attitude are defined and, once in hand, used to discuss the ratio-

nale behind choosing one risk measure or another among a set of different

available GlueVaR risk measures in a particular example.

Part (II) covers from Chapters 6 to 8. Capital allocation problems fall on

the disaggregation side of risk management. These problems are associated

to a wide variety of periodical management tasks inside the entities. In an
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insurance firm, for instance, risk capital allocation by business lines is a fun-

damental element for decision making from a risk management point of

view. A sound implementation of capital allocation techniques may help

insurance companies to improve their underwriting risk and to adjust the

pricing of their policies, so to increase the value of the firm. Chapters in this

part are structured as follows:

Chapter 6 - An overview on capital allocation problems

There is a strong relationship between risk measures and capital allocation

problems. Briefly speaking, most solutions to a capital allocation problem

are determined by selecting one allocation criterion and choosing a particu-

lar risk measure. This chapter is intended to detect additional key elements

involved in a solution to a capital allocation problem, in order to obtain a de-

tailed initial picture on risk capital allocation proposals that can be found

in the academic literature.

Personal notations and points of view are stated here and used from this

point forward. Additionally, some particular solutions of interest are com-

mented, trying to highlight both advantages and drawbacks of each one of

them.

Chapter 7 - Capital allocation based on GlueVaR

This chapter is devoted to show how GlueVaR risk measures can be used to

solve problems of proportional capital allocation through an example. Two

proportional capital allocation principles based on GlueVaR risk measures

are defined and an example is presented, in which allocation solutions with

particular GlueVaR risk measures are discussed and compared with the so-

lutions obtained when using the rest of alternatives.

Chapter 8 - Capital allocation principles as compositional data

In the last chapter, some connections between capital allocation problems

and aggregation functions are emphasized. The approach is based on func-

tions and operations defined in the standard simplex which, to the best of

our knowledge, remained an unexplored approach.
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PART I

RISK ASSESSMENT



1 Preliminary concepts on

quantitative risk measurement

This chapter is structured in two parts. The first one is intended to com-

pile a set of theoretical definitions that we consider useful and relevant for

quantitative riskmanagers. These definitions are related to the quantitative

risk assessment framework of unidimensional risk factors, so other key is-

sues like multivariate dependence are not covered herein. In our opinion,

the concepts addressed in this chapter are the building blocks of unidimen-

sional risk measurement which need to be helpful to practitioners. A care-

ful first reading of this part is not necessary if one is already familiar with

the fundamental ideas, because our aim is to leave it as a reference point

to which to go back whenever needed. The second part serves to introduce

ideas to bear in mind when moving from theory to practice. As before, this

selection is subjective and it relies on our judgment, and the reader could

consider the subjects in this selection too specific or too obvious. This is

also the reason why we close the chapter with some brief remarks, in which

we provide additional topics to be aware of and selected references in the

literature to become an expert on risk quantification.

1.1 Risk measurement - Theory

1.1.1 First definitions

Definition 1.1 (Probability space). A probability space is defined by three

elements (Ω,A ,P ). The sample space Ω is a set of all possible events of a

random experiment, A is a family of the set of all subsets of Ω (denoted

as A ∈ ℘(Ω)) with a σ-algebra structure, and the probability P is a map-

ping from A to [0,1] such that P (Ω) = 1, P (∅) = 0 and P satisfies the

σ-additivity property.
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Some remarks regarding the previous definition. A has a σ-algebra struc-

ture ifΩ ∈A , if A ∈A implies thatΩàA = Ac ∈A and if
⋃

nÊ1 An ∈A for

any numerable set {An}nÊ1. Additionally, the σ-additivity property afore-

mentioned states that if {An}nÊ1 is a succession of pairwise disjoint sets be-

longing to A then

P

(+∞⋃
n=1

An

)
=

+∞∑
n=1

P (An).

A probability space is finite, i.e. Ω = {$1,$2, . . . ,$n}, if the sample space

is finite. Then ℘(Ω) is the σ-algebra, which is denoted as 2Ω. In the rest

of this book, N instead of Ω and m instead of $ are used when referring

to finite probability spaces. Hence, the notation is
(
N ,2N ,P

)
, where N =

{m1,m2, . . . ,mn}.

Definition 1.2 (Random variable). Let (Ω,A ,P ) be a probability space. A
random variable X is a mapping from Ω to R such that X −1((−∞, x]) :=
{$ ∈Ω : X ($) É x} ∈A , ∀x ∈R.

A random variable X is discrete if X (Ω) is a finite set or a numerable set

without cumulative points.

Definition 1.3 (Distribution function of a random variable). Let X bea ran-

dom variable. The distribution function of X , denoted by FX , is defined by

FX (x) := P
(
X −1((−∞, x])

)
. The notation P (X É x) = P

(
X −1 ((−∞, x])

)
is commonly used, so expression FX (x) = P (X É x) is habitual. The distri-
bution function of a random variable is also known as the cumulative dis-

tribution function (cdf) of that random variable.

The distribution function FX is non-decreasing, right-continuous and satis-

fies that lim
x→−∞FX (x) = 0 and lim

x→+∞FX (x) = 1.

Definition 1.4 (Survival function of a random variable). Let X be a ran-

dom variable. The survival function of X , denoted by SX , is defined by

SX (x) := P
(
X −1

(
(x,+∞)

))
. The followingnotation is commonlyused,P (X

> x) = P
(
X −1

(
(x,+∞)

))
, so expression SX (x) = P (X > x) is habitual. So,

the survival functionSX canbe expressed asSX (x) = 1−FX (x), for all x ∈R.

The survival functionSX is non-increasing, left-continuous and satisfies that

lim
x→−∞SX (x) = 1 and lim

x→+∞SX (x) = 0. Note that the domain of the distri-

bution function and the survival function is R even if X is a discrete ran-

domvariable. In otherwords, FX and SX are defined for X (Ω) = {x1, x2, . . . ,
xn , . . .} but also for any x ∈R.
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Definition 1.5 (Density function). A function f defined from R to R is a

density function if f Ê 0, if it is Riemann integrable in R and if the follow-

ing equality holds: ∫ +∞

−∞
f (t )d t = 1.

A random variable X is absolutely continuous with density fX if its distri-

bution function FX can be written as FX (x) = ∫ x
−∞ fX (t )d t for all x ∈ R.

Let us remark that, in such a case, the derivative function of FX is fX , so

dFX (x) = fX (x).
If X is a discrete random variable such that X (Ω) = {x1, x2, . . . , xn , . . .} then
for if x ∈ {x1, x2, . . . , xn , . . .}, the density functionmay be defined by fX (x) =
P (X = xi ) and fX (x) = 0 if x ∉ {x1, x2, . . . , xn , . . .}.
Apart from discrete and absolutely continuous random variables there are

random variables that are not discrete neither absolutely continuous but

belong to a more general class. These random variables are such that their

distribution function satisfies that

FX (x) = (1−p) ·F c
X (x)+p ·F d

X (x) (1.1)

for a certain p ∈ (0,1), and where F c
X is a distribution function linked to an

absolutely continuous randomvariable andF d
X is a distribution function as-

sociated to a discrete randomvariable X d with X d (Ω) = {x1, x2, . . . , xn , . . .}.

Definition 1.6 (Mathematical expectation). Three different cases are con-

sidered in this definition.

Discrete case

Let X be a discrete random variable with X (Ω) = {x1, x2, . . . , xn , . . .}. X has

finite expectation if
∑+∞

i=1 |xi |·P (X = xi ) <+∞. If this condition is satisfied

then the mathematical expectation of X is E(X ) ∈R, where E(X ) is defined
by

E(X ) =
+∞∑
i=1

xi ·P (X = xi ) =
+∞∑
i=1

xi · fX (xi ).

Absolutely continuous case

Let X be an absolutely continuous random variable with density function

fX . X has finite expectation if
∫ +∞
−∞ |x| · fX (x)d x <+∞. If this condition is
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Table 1.1 Examples of random variables

Type of r.v. Name of r.v. Distribution function

Discrete
Binomial,

X ∼ B(m, q)
FX (x) = ∑

kÉx

(
m

k

)
·qk · (1−q)m−k

Absolutely

continuous

Normal,

X ∼ N (µ,σ2)

FX (x) =∫ x

−∞
1

σ
p

2π
·exp

{
− 1

2σ2 · (t −µ)2
}

d t

Mixed
Mixed

exponential

FX (x) =
0 if x < 0

1− (1−p) ·exp{−λ · x} if x Ê 0

The probability of {X = 0} is equal to p ∈ (0,1), the
probability of {X < 0} is zero and strictly positive values
have assigned a probability of and exponential r.v. of

parameter λ> 0, additionally multiplied by 1−p .

satisfied then the mathematical expectation of X is E(X ) ∈ R, where E(X )
is defined by

E(X ) =
∫ +∞

−∞
|x| · fX (x)d x <+∞.

General case

Let X be a random variable with distribution function of the form (1.1), and

such that
p ·F d

X (x) = ∑
xiÉx

(
FX (xi )− lim

t→xi , t<xi
FX (t )

)
= ∑

xiÉx
P (X = xi ),

(1−p) ·F c
X (x) = FX (x)−p ·F d

X (x) =
∫ x

−∞
f c

X (t )d t ,

where {x1, x2, . . . , xn , . . .} is the set of discontinuity points ofFX . In this case,

if the random variables linked to F d
X and F c

X respectively have finite expec-
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Figure 1.1 Graphs of distribution and survival functions of random variables from
Table 1.1, with parametersm = 100, q = 5%,µ= 0,σ= 1, p = 70% andλ= 0.02.

tation then

E(X ) =
+∞∑
i=1

xi ·P (X = xi )+
∫ +∞

−∞
x · f c

X (x)d x.

Note that the differential function of a distribution function FX , which will

be denoted dFX and is usually known as probability density function (pdf),

may be defined by

dFx (x) =
{

P (X = xi ) if x ∈ {x1, x2, . . . , xn , . . .},

f c
X (x) if x ∉ {x1, x2, . . . , xn , . . .},

(1.2)

Taking advantage of this notation, if the random variables involved have fi-

nite expectation then the mathematical expectation in the discrete, the ab-
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solutely continuous or the general cases can always be written as

E(X ) =
∫ +∞

−∞
x ·dFX (x).

This expression unifies the ones used in Definition 1.6 and makes further

reading easier than more complicated notation.

The following result will be really helpful in several parts of this book, al-

though comments on its usefulness cannot be provided at this stage. The

result shows how to interpret the mathematical expectation of a random

variable in terms of its survival function.

Proposition 1.1. Let X be a random variable with finite expectation. The fol-

lowing equality holds:

E(X ) =
∫ 0

−∞
(SX (t )−1)d t +

∫ +∞

0
SX (t )d t . (1.3)

Proof. Each summand in (1.3) is treated separately, despite the idea behind

the proof is basically the same. First of all, consider

a =
∫ 0

−∞
(SX (t )−1)d t and b =

∫ +∞

0
SX (t )d t .

With this notation, E(X ) = a+b has to be proved. In order to prove that, let

us recall that E(X ) = ∫ +∞
−∞ x ·dFX (x) and rewrite this last expression as

E(X ) =
∫ 0

−∞
x ·dFX (x)+

∫ +∞

0
x ·dFX (x) = a′+b′.

Using Fubini’s theorem in (∗):

b′ =
∫ +∞

0
x ·dFX (x) =

∫ +∞

0

(∫ x

t=0
d t

)
dFX (x)

(∗)=
∫ +∞

t=0

(∫ +∞

x=t
dFX (x)

)
d t =

∫ +∞

t=0
(FX (+∞)−FX (t ))d t

=
∫ +∞

t=0
(1−FX (t ))d t =

∫ +∞

0
SX (t )d t

= b.
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a′ =
∫ 0

−∞
x ·dFX (x) =

∫ 0

x=−∞

(∫ x

t=0
d t

)
dFX (x)

(∗)=
∫ 0

t=−∞

(∫ t

x=−∞
(−dFX (x))

)
d t =

∫ 0

t=−∞

(∫ t

x=−∞
(dSX (x))

)
d t

=
∫ 0

t=−∞
(SX (t )−SX (−∞))d t

=
∫ 0

t=−∞
(SX (t )−1)d t

= a. ä
The proposition has been proved, using that FX (+∞) = lim

x→+∞FX (x) = 1,

SX (−∞) = lim
x→−∞SX (x) = lim

x→−∞(1− FX (x)) = 1− lim
x→−∞FX (x) = 1 and

dSX (x) = d [1−FX (x)] =−dFX (x).

Definition 1.7 (Risk measure). Let Γ be the set of all random variables de-

fined for a given probability space (Ω,A ,P ). A riskmeasure is a mapping ρ

from Γ to R, so ρ(X ) is a real value for each X ∈ Γ.
Frequently, the set Γ is considered to be the set of p-measurable functions

defined on the probability space, p Ê 0. In other words, frequently Γ =
L p {(Ω,A ,P )}. For more details see, for instance, Rüschendorf [2013] and

the references therein.

The most frequently used, or well known, risk measures in the insurance

and financial industry are listed in next paragraph. It has to be noted that

insurance and financial perspectives may differ in some aspects. Detailed

comments on these differences are provided in Section 1.2. Our perspective

is the actuarial one and, hence, the following definitions are aligned with

this point of view. In fact, these definitions are basically taken from Denuit

et al. [2005]. The reason of including these definitions is to avoid possible

misunderstandings due to differences in names given to certain risk mea-

sures.

Definition 1.8 (Value at Risk). Let us consider α ∈ (0,1). The function

VaRα : Γ−→ R

X 7−→ VaRα(X ) = inf{x | FX (x) Êα}

is a riskmeasure calledValueatRiskat confidence levelα. IfFX is continuous

and strictly increasing thenVaRα(X ) = F−1
X (X ), where F−1

X is the inverse of

the distribution function of random variable X .
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Definition 1.9 (Tail Value at Risk). Let us consider α ∈ (0,1). The function

TVaRα : Γ−→ R

X 7−→ TVaRα(X ) = 1

1−α
∫ 1

α
VaRλ(X )dλ

is a risk measure called Tail Value at Risk at confidence level α.

Definition 1.10 (Conditional Tail Expectation). Let us consider α ∈ (0,1).
The function

CTEα : Γ −→R

X 7−→ CTEα(X ) = E [X | X > VaRα(X )]

is a risk measure called Conditional Tail Expectation at confidence level α.

Definition 1.11 (Conditional Value at Risk). Let us consider α ∈ (0,1). The
function

CVaRα : Γ−→ R

X 7−→ CVaRα(X ) = E [X −VaRα(X ) | X > VaRα(X )]

= CTEα(X )−VaRα(X )

is a risk measure called Conditional Value at Risk at confidence level α.

Definition 1.12 (Expected Shortfall). Let be α ∈ (0,1). The function

ESα : Γ−→ R

X 7−→ ESα(X ) = E[
(X −VaRα(X ))+

]
is a risk measure called Expected Shortfall at confidence level α. Notation

(t )+ is used to refer to the function that returns 0 if t É 0 and t otherwise.

The following relationships between previous risk measures hold, as stated

in Section 2.4 of Denuit et al. [2005]:

TVaRα(X ) = VaRα(X )+ 1

1−α ·ESα(X ), (1.4)

CTEα(X ) = VaRα(X )+ 1

SX (VaRα(X ))
·ESα(X ), (1.5)

CVaRα(X ) = ESα(X )

SX (VaRα(X ))
. (1.6)
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Note that relationships (1.4) and (1.5) imply that, if the distribution func-

tion of random variable X is continuous and strictly increasing thenTVaRα
(X ) = CTEα(X ) because

SX (VaRα(X )) = 1−FX (VaRα(X )) = 1−FX
(
F−1

X (α)
)= 1−α.

This is the reason of finding expressions like: ‘roughly speaking, the TVaR is

understood as the mathematical expectation beyond VaR’ in this book.

Example 1.1 (Illustrative exercise). Let us consider the following random

variable X , that measures a loss, i.e. an economic value that can be lost

with a certain probability,

xi −100 0 50 200 500

pi = P (X = xi ) 0.2 0.5 0.25 0.04 0.01

a) Calculate VaRα(X ), TVaRα(X ) and CTEα(X ) for α = 90% and for α =
99%.

b) Explain if a loss X which is distributed like in the table presented here

can produce a TVaR at the 90% level that is equal to 180.

c) Find the value that must substitute 200 so that the results exactly corre-

spond to ES90%(X ) = 13, for a confidence level equal to 90%. Verify also

that if we replace value 200 by 250 and value 500 by 550, thenwe obtain
again the same results for a confidence level equal to 90%.

d) Based on the ideas in step c), explain why the value of the risk measures

do not determine in a unique way the distribution of a random loss.

Solution a) In order to make calculations easier, we complete the initial

table with two additional rows. One corresponds to the distribution func-

tion (cdf) of random variable X and the other is the corresponding survival

function.

xi −100 0 50 200 500

pi = P (X = xi ) 0.2 0.5 0.25 0.04 0.01

FX (xi ) 0.2 0.7 0.95 0.99 1

SX (xi ) 0.8 0.3 0.05 0.01 0
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We calculate the values of VaR90%(X ) and VaR99%(X ) using Definition 1.8

VaRα(X )and the information displayed on the table. So,

VaR90%(X ) = inf{x | FX (x) Ê 90%} = 50,

VaR99%(X ) = inf{x | FX (x) Ê 99%} = 200.

Both for the calculation of TVaR and CTE, we need to obtain the value of

ES beforehand. Let us remind the definition of the latter for a loss random

variable X and a confidence level α ∈ (0,1):

ESα(X ) = E [(X −VaRα(X ))+] .

Note that we need to consider ZX ,α = (X −VaRα(X ))+, which is equal to

zero when xi −VaRα(X ) É 0 and which is equal to xi −VaRα(X ) when the
difference is positive. Let us add two more lines to the table that has been

used in this exercise, corresponding to values ZX ,90% and ZX ,99%:

xi −100 0 50 200 500

pi = P (X = xi ) 0.2 0.5 0.25 0.04 0.01

FX (xi ) 0.2 0.7 0.95 0.99 1

SX (xi ) 0.8 0.3 0.05 0.01 0

(xi −50)+ 0 0 0 150 450

(xi −200)+ 0 0 0 0 300

Therefore,

ES90%(X ) =
5∑

i=1
(xi −50)+ ·pi = 150 ·0.04+450 ·0.01 = 6+4.5 = 10.5,

ES99%(X ) =
5∑

i=1
(xi −200)+ ·pi = 300 ·0.01 = 3.

Once the values for ES are obtained, then we can calculate TVaR and CTE
using the following expressions:

TVaRα(X ) = VaRα(X )+ 1

1−α ·ESα(X )

and

CTEα(X ) = VaRα(X )+ 1

SX (VaRα(X ))
·ESα(X ).
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TVaR90%(X ) = 50+ (1/0.1)10.5 = 155,

TVaR99%(X ) = 200+ (1/0.01)3 = 500; and

CTE90%(X ) = 50+ (1/0.05)10.5 = 260,

CTE99%(X ) = 200+ (1/0.01)3 = 500.

b) The random loss X that is considered in this exercise cannot correspond

to another loss if some values of the risk measures at the confidence level of

90% are different to the risk measures obtained for the loss. For example, if

the TVaR at the 90% level is 180 while we just saw that TVaR at the confi-

dence level of 90% is 155 for the loss in this exercise, then the two random

variables differ in their distribution.

c) Let us fix the level of confidence to 90%. Let us note in that case that

the source of the difference between the risk measures TVaR and CTE in

two cases is in the value of ES90%(X ). For instance if the value is 13, while
it is 10.5 in section a) of the current exercise. Then, when looking at the

calculation of ES90%(X ), what needs to be done is to look at the following
equation:

(x4 −50) ·0.04+450 ·0.01 = 13, with x4 Ê 50.

Then, solving the previous equation, we obtain

x4 = 25 · [13−4.5+2] = 25 · [10.5] = 262.5.

Furthermore, if we change x4 = 200by x4 = 262.5weobtain the results that
we were aiming at, namely,

VaR90%(X ) = 50, ES90%(X ) = 13, CVaR90%(X ) = 260,

TVaR90%(X ) = 180, and CTE90%(X ) = 310.

The variant proposed here is to consider now that x4 equals 250 and x5

equals 550, and leaving all other xi as they were initially set. So, the value of

ES90%(X ) is calculated as

(250−50)+ ·0.04+ (550−50)+ ·0.01 = 200 ·0.04+500 ·0.01

= 8+5 = 13.
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Therefore, with this change, we obtain

VaR90%(X ) = 50, ES90%(X ) = 13, CVaR90%(X ) = 260,

TVaR90%(X ) = 180 and CTE90%(X ) = 310.

d) In the previous paragraph, we deduce that at least, there are two random

losses that have the same values for

VaR90%(X ), ES90%(X ), CVaR90%(X ),

TVaR90%(X ) and CTE90%(X ).

As a consequence, we have just seen that the values of the risk measures do

not determine in a unique fashion the cumulative probability function for a

random variable.

1.1.2 Properties for risk measures

A list of properties that a risk measure may or may not satisfy is presented

herein. Most of these properties have an economic interpretation or, at

least, a relationship with some features that practitioners (the ones who

want to quantify risk) demand to the risk measure (the instrument to quan-

tify risk). In order to summarize the properties and their interpretation, Ta-

ble 1.2 is provided.

Table 1.2 Properties for risk measures

Property Idea behind the property

Translation

invariance

ρ(X + c) = ρ(X )+ c ,
∀c ∈R

If a positive non random quantity c is added to

random loss X then it is required to the riskmea-

sure that the risk value of the new loss should be

increased by the same quantity. Otherwise, if the

quantity c is negative (so a protection buffer has

been added to the original random loss X ) then

the riskmeasure should reflect this buffer as a net

effect on the original risk value.

Subadditivity

ρ(X1 +X2) É
ρ(X1)+ρ(X2)

If a risk measure satisfies this property then it is

able to quantitatively reflect the idea that diver-

sification is a strategy that does not increase risk.

Continued on next page
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Table 1.2: continued from previous page

Property Idea behind the property

Monotonicity

P (X1 É X2) = 1 ⇒
ρ(X1) É ρ(X2)

If losses of a position are almost surelyworse than

losses of another position, then the risk value of

the former should be greater than the risk value

of the latter.

Positive

homogeneity

ρ(c ·X ) = c ·ρ(X ),
∀c > 0

If losses to which the risk manager is exposed are

multiples of a particular loss, then it is required

that the riskmeasure of the overall risk should be

the samemultiple of the risk value of that partic-

ular loss.

Comonotonic

additivity

X1 and X2

comonotonic⇒
ρ(X1 +X2) =
ρ(X1)+ρ(X2)

Informally, two random variables are comono-

tonic if they are linked to another random vari-

able that drives their behavior. This property

is intended to identify those risk measures that

take into account this underlying relationship be-

tween comonotonic random variables and, as a

consequence, they do not assign quantitative di-

versification benefits when considering the sum

of those random variables.

Convexity

ρ(λ ·X1+(1−λ) ·X2)

Éλ ·ρ(X1)+
(1−λ) ·ρ(X2),

∀λ ∈ (0,1)

This is a sort of generalization of the subaddi-

tivity property. If the risk figure of any linear

combination of two random variables is smaller

than the associated linear combination of risk fig-

ures, then the risk measure captures diversifica-

tion benefits in a continuous way. Note that if

the risk measure is convex and positively homo-

geneous and considering X ′
i = 2·Xi andλ= 1/2,

then the subadditivity property for X ′
i , i = 1, 2 is

obtained.

Continued on next page
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Table 1.2: continued from previous page

Property Idea behind the property

Law invariance

(objectivity)

If P (X1 É x) =
P (X2 É x), ∀x ∈R
then ρ(X1) = ρ(X2)

If two random variables have identical distribu-

tion functions then it is required to the risk mea-

sure that their risk values should be identical too.

Relevance

If X Ê 0 and X 6= 0
then ρ(X ) > 0

If a random loss is not zero then its risk value

should be strictly positive.

Strictness

ρ(X ) Ê E(X )

This property is intended to detect those risk

measures that are conservative enough tobeused

as amanagement tool, in other words, risk values

based in risk measures that satisfy this property

are always greater that the expected loss.

For any random variables X1, X2, X ∈ Γ.

Financial and actuarial literature are plenty of interesting proposals of risk

measures. Details on some of these proposals are provided in Chapters 3

and 4 and, in addition, several other references are pointed out therein.

1.2 Risk measurement - Practice

Let us start this section with Table 1.3, in which closed-form expressions are

provided for VaR and TVaRwhere randomvariable X is distributed as aNor-

mal (N ), a Lognormal (L N ) and aGeneralized Pareto (GP ) distribution.

Notation conventions are used. Namely,φ andΦ stand for the standardNor-

mal pdf and cdf, respectively. The standard Normal distribution α-quantile

is denoted as qα = Φ−1(α). For the GP distribution, the definition pro-

vided in Hosking andWallis [1987] is considered, where the scale parameter

is denoted by σ and k is the shape parameter. The GP distribution con-

tains the Uniform (k = 1), the Exponential (k = 0), the Pareto (k < 0) and
the type II Pareto (k > 0) distributions as special cases. Table 1.3 is basically
taken from Sandström [2011].
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Table 1.3 Analytical closed-form expressions of VaR and TVaR for selected random
variables

Random variable
Risk

measure
Expression

Normal distribution

N (µ,σ2)

VaRα µ+σ ·qα

TVaRα µ+σ · φ(qα)

1−α
Lognormal

distribution

L N (µ,σ2)

VaRα exp(µ+σ ·qα)

TVaRα exp

(
µ+ σ2

2

)
· Φ(σ−qα)

1−α
Generalized Pareto

distribution

GP D(0,σ)

VaRα −σ · ln(1−α)

TVaRα σ · [1− ln(1−α)]

(Exponential distribution)

Generalized Pareto

distribution

GP D(k,σ) with
k < 0

VaRα
σ

k

[
1− (1−α)k

]

TVaRα


+∞ if k É−1

σ

k

[
1− (1−α)k

]+σ
k

[
k · (1−α)k

k +1

]
if k ∈ (−1,0)

1.2.1 ‘Liability side’ versus ‘asset side’ perspectives

No matter if you come from the insurance or from the financial industry:

in both cases you agree on thinking on risk in terms of random losses. Dif-

ferences arise when quantifying risk in practice, because usually an actuary

works with random variables in which positive values identify losses and,

therefore, she is worried about what happens in the right tail of the dis-

tributions. Nonetheless, a practitioner from the financial industry usually

works with random variables where positive values identify gains or profits,

so she is mainly worried about the behavior of the left tail of the distribu-

tions. Therefore, depending onwhere you come from, youwould be used to

look at risk quantification from different perspectives. More precisely, we

should talk about ‘liability side’ practitioners and ‘asset side’ practitioners
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instead of ‘insurance’ and ‘financial’ practitioners. For instance, an example

of financial practitioners that take (whatwehave called) a ‘liability side’ per-

spective when quantifying risk are those in charge of assessing credit risk.

On the other side, as we will discuss later, the perspective used in European

insurance regulation to quantify solvency capital requirements is an ‘asset

side’ perspective andnot a ‘liability side’ perspective (as it could be expected

because of the nature of this industry’s business).

Although moving from one perspective to the other is not a big issue, few

guidelines to reach this goal are outlined. It is our opinion that these are the

kind of helpful indications that bridge the gap between theory and prac-

tice, and between insurance (‘liability side’) and financial (‘asset side’) prac-

titioners. The following guidelines are summarized in Table 1.4, in order to

provide a fast and visual reference when needed.

Table 1.4 Risk quantification: ‘liability side’ versus ‘asset side’ perspectives

Concept
Liability side

perspective

Asset side

perspective

Notation for risk

measures used in

this Table

ρ r

Target random

variable
X a random loss X a random profit

Monotonicity
P (X1 É X2) = 1 ⇒
ρ(X1) É ρ(X2)

P (X1 É X2) = 1 ⇒
r(X1) Ê r(X2)

From the liability side perspective, smaller losses should

have associated smaller risk measurements. On the as-

set side perspective, the higher the gain the lesser its risk

value.

Translation

invariance

ρ(X + c) = ρ(X )+ c ,
∀c ∈R

r(X + c) = r(X )− c ,
∀c ∈R

Continued on next page
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Table 1.4: continued from previous page

Concept
Liability side

perspective

Asset side

perspective

A positive amount of money from the liability side per-

spective may be considered as a loss, while from the as-

set side perspective it is exactly the opposite. Therefore,

if the risk measure satisfies the translation invariance

property, a positive amount of money must increase risk

from the liability side perspectivewhile the samepositive

amount of money must decrease risk from the asset side

perspective.

Relevance
X Ê 0 and X 6= 0 ⇒

ρ(X ) > 0
X É 0 and X 6= 0 ⇒

r(X ) > 0

Strictness ρ(X ) Ê E(X ) r(X ) Ê−E(X )

Recalling that X represents a random loss from the

liability side perspective and a gain from the asset

side perspective.

Subadditivity,

Positive

homogeneity,

Comonotonic

additivity,

Convexity, Law

invariance

Formal expressions from both perspectives remain

as they aredisplayed inTable 1.2, except for replacing

ρ by r.

For any random variables X1, X2, X ∈ Γ.

Additional comments with respect to differences among the ‘liability side’

and the ‘asset side’ perspective for risk quantification may be found, for in-

stance, in Rüschendorf [2013]. As an example, Definition 1.8 has been intro-

duced from a ‘liability side’ perspective, so positive values of random vari-

able X are considered losses. Considering expressions in Definition 1.8 and
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adopting an ‘asset side’ perspective, if one is interested in obtaining the VaR

atα confidence level for a continuous random variable Z with positive val-

ues representing profits, then the correct risk figure would be obtained as

‘VaR of Z at confidence level α ∈ (0,1)’
=−VaR1−α(Z ) following Definition 1.8.

(1.7)

The perspective taken in the following chapters of this book is the one that

we have called ‘liability side’ perspective.

1.2.2 Somemisunderstandings to be avoided in practice

Risk measures versus their estimates

It is quite frequent to confuse a risk measure with the procedures used to

estimate it. These two concepts are different and their identification can

lead tomisunderstandings. Fortunately, the spread of knowledge about risk

measurement makes these kind of doubts less frequent than they were be-

fore. But when having first contact with risk measurement (for instance, if

you are an undergraduate student interested in this topic or a recently hired

practitioner without previous experience in the insurance industry or the

financial sector) this is one of the most common mistakes. Diagram in Fig-

ure 1.2 may help to clarify concepts.

Figure 1.2 Basic mindmap for risk quantification.

Theory
Assumptions−−−−−−−−→ Practice

Risk measure (ρ)
ρ To ρ̂−−−−→ Risk figure est. ρ̂(X̂ )x

Random variable (X )
X To X̂−−−−→ R.v. estimation (X̂ )

(1.8)

Figure 1.2 is intended to depict a schematic situation faced when trying to

quantify risk. On the one hand, theoretical aspects related to the risk mea-

sure (the instrument to summarize risk) and the target randomvariable (the

source of risk) must be taken into account. These theoretical aspects are

represented on the left hand side of the diagram, and should correspond

to answers to questions such as the following: Is the selected risk measure

adequate? Is the target random variable observable?…On the other hand,

figures are basic in practice. As long as the final objective is to obtain an
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estimate of the incurred risk (framed box in Figure 1.2) assumptions have to

be in place to move from theory to practice. So, the assumptions made to

estimate both the riskmeasure and the target random variable become cru-

cial. They are so relevant that, from our point of view, they can lead to the

confusion that we are highlighting here. This is because, in daily practice,

one could deliver risk figures estimations (right hand side of the diagram)

without worrying about theoretical aspects (left hand side). As mentioned

before, let us put some examples.

Example 1.2 (Historical VaR). Measuring risk in practice using the histor-

ical VaR methodology has been relatively common because it has an easy

implementation. Properly speaking, it is not a unique methodology as we

try to justify hereinafter. From the point of view provided by the diagram in

Figure 1.2, on the theoretical side thismethodology takes into account as risk

measure ρ theVaRwith some confidence levelα ∈ (0,1) and considers that
the target randomvariable X is observable. Moreover, it is assumed that ob-

servations of that random variable from past periods can be obtained. The

assumptions for moving from theory to practice are as follows: with respect

to the estimation of the target random variable X̂ , it is assumed that future

realizations will be exactly the same as past realizations, so past observa-

tions that have been obtained are going to be considered future observa-

tions too. Andwith respect to the estimation ρ̂ of VaR, there is not a unique
feasible assumption (and this is why we consider the ‘historical VaR’ a set

of methodologies and not just one). For instance, a feasible assumption is

to consider the data set of observations of X̂ as it represents the discrete

random variable X which only takes those particular values and no more.

Consequently, VaR should be estimated as the empirical α-quantile of that

set. But, if the data set of observations of X̂ is considered just a sample of X ,

then any α-quantile approximation1 of data set X̂ could be used to obtain

the final risk figure estimation ρ̂(X̂ ) of ρ(X ).

Example 1.3 (Normal VaR). Bearing inmind diagram in Figure 1.2, this me-

thodology takes as theoretical risk measure ρ the VaR at some confidence

level α ∈ (0,1), and considers as target random variable X one which is as-

sumed to be normally distributed. Assumptions to move from the theoreti-

cal side to the practical one are as follows: with respect to X , it is assumed

1 For instance, quantile function in software R hasmore than 10 different ways to approxi-

mate theα-quantile, where the one coded by 0 is whatwe have called the empirical quan-

tile. Even MS Excel has implemented functions INC.PERCENTILE and EXC.PERCENTILE

which return different approximations of the α-quantile.
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that X ∼ N (µ,σ2) for someµ ∈R andσ> 0, and that thepractitioner is able
to estimateµ andσ in someway (maybe fromdata or fromexpert judgment,

for instance), so it is feasible to obtain µ̂ and σ̂ estimates ofµ andσ, respec-

tively. With respect to the risk measure, the assumption made on the ran-

dom variable implicitly provides a closed-form expression for VaR, because
if X ∼ N (µ,σ2) then VaRα(X ) =µ+σ ·qα, where qα is theα-quantile of a

standard normal distribution (as it has been shown in Table 1.3). As it hap-

pened with the historical VaR methodology, the Normal VaR methodology

may be understood as a set of methodologies depending on the particular

chosen way for estimating the parameters of the distribution. In the end,

ρ(X ) is estimated by µ̂+ σ̂ ·qα.
Note that the Normal VaR methodology is frequently used for sums of nor-

mally distributed randomvariables. On the theoretical side, ifn > 1 random
variables Xi ∼ N (µi ,σ2

i ), i = 1, . . . ,n, are consideredandΛ= (ρi j )i , j∈{1,...,n}

is the correlationmatrix for pairs of those randomvariables, then it is known

that

X =
n∑

i=1
Xi ∼ N

(
n∑

i=1
µi ,σ2

)
,

where σ2 =~µ′ ·Λ ·~µ and~µ is an n-dimensional vector whose components

areµi , i = 1, . . . ,n. So, the situation is just the one described in the previous
paragraph, taking as µ = ∑n

i=1µi and as σ = √
~µ′ ·Λ ·~µ. In this case, the

process to obtain parameter estimates µ̂ and σ̂must take into account that

correlation coefficients ρi j should also be estimated. In other words,

σ̂=
√
~̂µ
′ · Λ̂ ·~̂µ.

Example 1.4 (Cornish-Fisher VaR). As in the previous examples, different

methodologies are embracedunder this name. They share the following ele-

ments: on the onehand, the theoretical riskmeasureρ is theVaRwith some

confidence level α ∈ (0,1) and no hypothesis about the distribution func-

tion of the target random variable is made. Nonetheless, it is assumed that

some higher ordermoments of X exist and are finite. On the other hand, as-

sumptions formoving from the theoretical side to the practical side are that,

in order to obtain an estimation ρ̂(X̂ ), a closed-form approximation simi-

lar to the one valid for normally distributed random variables is achievable.

For that purpose, modifiedα-quantiles are devised taking into account esti-

mations of finite order moments of X . Differences between Cornish-Fisher

VaRmethodologies come from themaximumorder ofmoments considered

in the quantile estimations. For instance, in Chapter 4 we have used third
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order Cornish-Fisher VaR approximations, but is is usual to find fourth order

Cornish-Fisher VaR approximations in financial applications.

VaR versus Mean-VaR

Anapparently harmless sentence like ‘most financial credit riskmodels used

inpractice toquantify risk arebasedonVaRat someconfidence level’, which

most practitioners and researchers in this field may subscribe, can have un-

desired consequences if it is misunderstood. The main concern with the

previous sentence is that nothing is said about the randomvariable towhich

the VaR is applied to: even considering the same confidence level and the

same input data, different figures can be obtained depending on the under-

lying random variable under inspection. For instance, a large number of

banks use internal models to simulate losses generated by credit events af-

fecting their loans. Let us focus on one bank and let us denote its aggregate

simulated losses by X . Therefore, the amount of money needed to cover

unexpected losses (its economic capital) is probably computed as

EC = VaR99.9%(X −E(X ))

in order to take into account its simulated values andalso regulatory require-

ments (Basel II/III). Note that in this case, although the random variable

simulated is X , the one used to quantify risk (i.e., to obtain the economic

capital) isU = X −E(X ), in fact. The VaR is a risk measure that satisfies the

translation invariance property shown in Table 1.2 and, therefore,

EC = VaR99.9%(U ) = VaR99.9%(X )−E(X ). (1.9)

This last expression for the EC is certainly more familiar to financial practi-

tioners. Moreover, sometimesρ(X ) = VaR99.9%(X )−E(X ) is considered the
value that another risk measure ρ named ‘Mean Value at Risk’(Mean-VaR)

returns when applied to random loss X . Expression (1.9) has been inten-

tionally displayed in second place in order to stress the following idea. Let

us imagine now an European insurance company calculating its Solvency

Capital Requirement (SCR) under the Solvency II regulatory framework and

by using an internal model. Let us suppose that within the model a set of

stochastic basic own funds of the company for the next year is simulated.

In such a case, if Y denotes the ‘basic own funds for the next year’ random

variable, then taking into account expression (1.7) it seems reasonable that

the following expression

SCR = VaR99.5%(−Y ) =−VaR0.5%(Y ) (1.10)
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would be used to compute the SCR, because it perfectly fits the regulatory

requirements2. But what it is relevant here is that it makes no sense to re-

quire the company to set aside, as a cushion against insolvency, the follow-

ing amount of money

SCR = VaR99.5%(−Y )−E(−Y ) = VaR99.5%(−Y )+E(Y ). (1.11)

Due to misunderstanding of expression (1.9) for the EC, and transposing it

for the SCR expression simply replacing X by −Y , figures with non eco-

nomic sense are attained. Why? Basically because X and−Y are essentially

different. Random variable X is a pure loss while −Y contains both losses

and gains. In fact, hopefully E(−Y ) ¿ 0 (the insurance company expects

substantial gains) and reasonablyE(X ) > 0 (the expectation of a set of losses
is also a loss). In words, when computing the EC the focus is set on random

variable U = X −E(X ) because it is assumed that the quantity E(X ) is al-
ready accounted for on the liability side of the balance sheet (which is not

entirely simulated by the credit risk model) tomitigate credit losses. On the

other hand, the model for the SCR of the insurance company is simulating

the whole balance sheet. Therefore −Y is not comparable with X because

losses associated to−Y are those that have exceeded all themitigation tools

and strategies that the company has in place, while X losses are computed

gross of any mitigation effect.

Example 1.5. A toy example can help us to illustrate the impact of such a

misunderstanding. Imagine two insurance companies c1 and c2, one with

Y1,t = 100 monetary units (m.u.) of present basic own funds and the other

with Y2,t = 1 m.u. Both use the same model to project next year basic own

funds (let us say Y1,t+1 and Y2,t+1) and the same methodology to compute

VaR at the 99.5% confidence level. To simplify things, let us assume that

E(Yi ,t+1) = Yi ,t for i = 1, 2, so the expectationof projectedbasic owns funds
for the next year is nothing but the value of the actual basic own funds of

each company. Imagine that the risk figures that these companies obtain

are VaR99.5%(−Y1,t+1) = 5 and VaR99.5%(−Y2,t+1) = 0.5. They may be in-

terpreted in the following way: c1 is going to suffer a minimum loss of a 5%
of its present basic own funds in a 0.5% of the future scenarios considered,

while c2 is going to suffer a minimum loss of a 50% of its present basic own

funds in a 0.5% of the future scenarios considered. Interpreted in that way,

2 As it is shown with this expression, the core of the European insurance regulation uses

what we have called an ‘asset side’ perspective when talking about risk quantification.
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c2 seems highly riskier than c1. And this would properly be reflected us-

ing expression (1.10), because their respective solvency capital requirements

will be SCR(c1) = 5 m.u. and SCR(c2) = 0.5 m.u. which, in terms of their

present basic own funds, represent reasonable risk proportions. But note

that if misunderstandings are in place and expression (1.11) is used instead

of expression (1.10) to compute their SCR, then SCR(c1) = 5+ 100 = 105
m.u. and SCR(c2) = 0.5+1 = 1.5 m.u. are obtained. These figures are far

from representing neither the risk faced by the companies nor their relative

riskiness.

Somebody could think that the previous examples overweight the impor-

tance of items on the right hand side of Figure 1.2. These examples have

been chosen because they correspond to common risk quantification issues

found in practice and researchers must bear them in mind. Nevertheless, it

is also our intention to aware that practitioners should spend some time on

thinking of questions related to the left hand side of that Figure, this is, on

theoretical aspects related to apractical risk quantification in a regular basis.

Some of these questions are listed below, although it is neither an extensive

list nor a prioritized one:

• Have several risk measures been considered before the final selection is

made?

• Do these risk measures satisfy properties that we consider necessary?

• Are these risk measures or their confidence levels regulatory driven?

• Have we an idea about the implicit risk attitude behind using those par-

ticular risk measures?

• What are we looking for as the final result of this risk quantification pro-

cess?

• Arewe aware about our capability (in terms of time, resources and knowl-

edge) to transform ideas into numbers? In other words, for every consid-

ered risk measure and every target random variable, do we know how to

move from the theoretical side to the practical side?

• Have we properly defined our target random variable?

• Does the target randomvariable dependonother randomvariables easier

to measure or identify?

• How precise do we need to be in our estimations?
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Hopefully, useful ideas about how to answer some of these questionmay be

found in this book or in the references therein. We would like to close this

chapterwith some last remarks. As it has already been said,main references

used to build this chapter are books Denuit et al. [2005] and Rüschendorf

[2013]. Note that the CTE riskmeasure introduced inDefinition 1.10 is called

Expected Shortfall (ES) in McNeil et al. [2005] and, therefore, there is also

a difference with the Definition 1.12 of ES provided in this book. Moreover,

names for several riskmeasures in Section 1.1 do notmatch the ones used for

equivalent riskmeasures in Rüschendorf [2013]. This remarkmakes evident

that there is yet no common consensus in risk measures naming.

For an interestingway to study basic riskmeasures butwithout a parametric

model assumption, the work by Alemany et al. [2013] shows how to imple-

ment kernel estimation of the probability density function and how to de-

rive the risk measure from there. Kernel estimation is specially useful when

the number of observations is large. Bolancé et al. [2003]; Buch-Larsen et al.

[2005]; Bolancé et al. [2008] explain how to address heavy-tailed or skewed

distributions. The interested reader can find several contributions using

othermodels andnon-parametric approaches inBolance etal. [2008];Guillen

et al. [2011, 2013]. Bolancé et al. [2012, 2013] provide data-driven examples

with R and SAS code in the context of operational risk problems. Multivari-

ate risk quantification is addressed by Bolancé et al. [2014]; Bahraoui et al.

[2014].

With respect to a deeper analysis of issues of Solvency II for practitioners

and regarding theoretical aspects behindCornish-Fisher expansions, the in-

terested reader is referred to Sandström [2011]. Last but not least, one topic

not covered by this book that has to be taken into account in risk quantifi-

cation is the model risk. Aggarwal et al. [2016] provides a wide variety of

approaches to deal with this real challenge and may be an interesting de-

parture point to anyone interested in this topic.

1.3 Exercises

1. Consider the following empirical distribution

13, 15, 26, 26, 26, 37, 37, 100

Determine the VaR85%(X ) and TVaR85%(X ).

2. Consider the following distribution function F (x) = x2

9
for 0 < x É 3.

Find the VaR85%(X ) and TVaR85%(X ).
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3. Given that

VaR90%(X ) = 50, ES90%(X ) = 13 and CVaR90%(X ) = 260.

a) Calculate TVaR90%(X ), SX (VaR90%(X )) and CTE90%(X ).

b) Discuss if it is possible that loss X would be an absolutely continuous

random variable.

4. Show that the TVaR of a random variable X distributed by the Normal

distribution N (µ,σ2) is equal to TVaRα = µ+σ · φ
(
Φ−1(α)

)
1−α , where

φ andΦ−1 stand for the standard Normal pdf and quantile function, re-

spectively.

a) Demonstrate that theproperties ofTranslation invariance, Positiveho-

mogeneity and Strictness are satisfied in this case.

b) Repeat the exercise for the CVaRα.

5. Analyze if the properties of Translation invariance, Positive homogeneity

and Strictness are satisfied by the VaR and TVaR when:

a) the random variable X is distributed by the Lognormal distribution

L N (µ,σ2).

b) the random variable X is distributed by the Generalized Pareto dis-

tribution GP D(0,σ).




