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1Helsinki University of Technology, Laboratory of Acoustics and Audio Signal Processing,
P.O. Box 3000, FIN-02015 HUT, Finland

2Genelec Oy, Iisalmi, Finland, and 3Akukon Oy, Helsinki, Finland

ABSTRACT
Estimation of modal decay parameters from noisy measurements of reverberant and resonating systems is a common
problem in audio and acoustics, e.g., in room and concert hall measurements or musical instrument modeling. In this
paper, reliable methods to estimate the initial response level, decay rate, and noise floor level from noisy measurement
data are studied and compared. A new method, based on nonlinear optimization of a model for exponential decay
plus stationary noise floor, is presented. Comparison with traditional decay parameter estimation techniques using
simulated measurement data shows that the proposed method outperforms in accuracy and robustness, especially in
extreme SNR conditions. Three cases of practical applications of the method are demonstrated.

0 INTRODUCTION

Parametric analysis, modeling, and equalization (inverse
modeling) of reverberant and resonating systems find many
applications in audio and acoustics. These include room and
concert hall acoustics, resonators in musical instruments, and
resonant behavior in audio reproduction systems. Estima-
tion of reverberation time or modal decay rate are important
measurement problems in room and concert hall acoustics [1],
where S/N ratios of only 30-50 dB are common. The same
problems can be found for example in the estimation of pa-
rameters in model-based sound synthesis of musical instru-

ments, such as vibrating strings or body modes of string in-
struments [2]. Reliable methods to estimate parameters from
noisy measurements are thus needed.

In an ideal case of modal behavior, after a possible initial
transient, the decay is exponential until a steady state noise
floor is encountered. The parameters of primary interest to
be estimated are:

- Initial level of decay (LI)
- Decay rate/time or reverberation time (TD)
- Noise floor level (LN)

In a more complex case there can be two or more modal fre-
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quencies, whereby the decay is not simple anymore, but shows
additional fluctuation (beating) or a two-stage (or multiple-
stage) decay behavior. In a diffuse field (room acoustics) the
decay of a noise-like response is approximately exponential in
rooms with compact geometry. The noise floor may also be
non-stationary. In this article we primarily discuss a simple
mode (i.e., a complex conjugate pole pair in transfer function)
or a dense set of modes with exponential reverberant decay,
together with a stationary noise floor.

Methods presented in literature and common-sense or ad-hoc
methods will first be reviewed. Techniques based on energy-
time curve analysis of signal envelope are known as methods
where the noise floor can be found and estimated explicitly.
Backwards integration of energy, so called Schroeder integra-
tion [3]-[4], is often applied first to obtain a smoothed enve-
lope for decay rate estimation. AR modeling of modes by
estimating the transfer function poles and group delay anal-
ysis are examples of straightforward methods which are not
particularly robust against background noise.

The effect of background noise floor is known to be problem-
atic, and techniques have been developed to compensate the
effect of envelope flattening when the noise floor in a mea-
sured response is reached, including limiting the period of
integration [5], subtracting an estimated noise floor energy
level from a response [6], or using two separate measurements
to reduce the effect of noise [7]. The iterative method by Lun-
deby et al. [8] is of particular interest since it addresses with
care the case of noisy data. This technique, as most other
methods, analyzes the initial level LI, decay time TD, and
noise floor LN parameters separately, typically starting from
a noise floor estimate. Iterative procedures are common in
accurate estimation.

A different approach was taken by Xiang [9] where a
parametrized signal-plus-noise model is fitted to Schroeder-
integrated measurement data by searching for a least squares
(LS) optimal solution. In this study we have elaborated a
similar method of nonlinear LS optimization further to make
it applicable to a wide range of situations, showing good con-
vergence properties. A specific parameter and/or a weight-
ing function can be used to further fine-tune the method for
specific problems. The technique is compared with the Lun-
deby et al. method by applying them to simulated cases of
exponential decay plus stationary noise floor where the exact
parameters are known. The improved nonlinear optimization
technique is found to outperform traditional methods in accu-
racy and robustness, particularly in difficult conditions with
extreme signal-to-noise ratios.

Finally, the applicability of the improved method is demon-
strated by three examples of real measurement data: (a) re-
verberation time of a concert hall, (b) low-frequency mode
analysis of a room, and (c) parametric analysis of guitar string
behavior for model-based sound synthesis. Possibilities for
further generalization of the technique to more complex prob-
lems, such as two-stage decay, will be discussed briefly.

1 DEFINITION OF PROBLEM DOMAIN

A typical property of resonant acoustic systems is that their
impulse response is a decaying function after a possible initial
delay and the onset. In the simplest case the response of a

single mode resonator system is

h(t) = Ae−τ(t−t0) sin[ω(t − t0) + φ]u(t − t0) (1)

where u(t − t0) is a step function with value 1 for t ≥ t0
and zero elsewhere, A is initial response level, t0 response
latency for example due to propagation delay of sound, τ
decay rate parameter, ω = 2πf angular frequency, and φ ini-
tial phase of sinusoidal response. In practical measurements,
when there are multiple modes in the system and noise (acous-
tic noise plus measurement system noise), a measured impulse
response is of the form1

h(t) =

NX
i=1

Aie
−τi(t−t0) sin[ωi(t − t0) + φi] + Ann(t) (2)

where An is the rms value of background noise and n(t) is
unity level noise signal. Figure 1 illustrates a single delayed
mode response corrupted by additive noise.
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Fig. 1: (a) Single mode impulse response (sinusoidal decay)
with initial delay and additive measurement noise. (b) Abso-
lute value of response on the dB scale to illustrate the decay
envelope. (c) Hilbert envelope, otherwise same as (b).

The problem of this study is defined as a task to find re-
liable estimates for the parameter set {Ai, τi, t0, ωi, φi,An},
given a noisy measured impulse response of the form (2). The
main interest here is focused on systems of (a) separable sin-
gle modes of type (1) including additive noise floor or (b)
dense (diffuse, noiselike) set of modes resulting also in expo-
nential decay similar to Fig. 1. In both cases the parameters
of primary interest are A, τ,An, and t0.

1In a more general case the initial delays may differ and there can be simple non-modal exponential terms, but these cases
are of less importance here.
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Often the decay time TD is of main interest, for example in
room acoustics where the reverberation time2 of 60 dB decay,
T60, is related to τ by

T60 = − 1

τ
ln(10−3) ≈ 6.908

τ
(3)

Modern measurement and analysis techniques of system re-
sponse are carried out by digital signal processing whereby
discrete-time formulation for modal decay (without initial de-
lay) with sampling rate fs and sample period Ts = 1/fs be-
comes

h(n) = Ae−τdn sin(Ωn + φ) (4)

where n is sample index, τd = Tsτ , and Ω = 2πTsf .

2 DECAY PARAMETER ESTIMATION

In this section an overview of known techniques for decay pa-
rameter estimation will be presented. Initial delay and level
estimation is discussed first briefly. The main problem, i.e.,
decay rate estimation, is the second topic. Methods to smooth
the decay envelope from a measured impulse response are pre-
sented shortly. Noise floor estimation, an important subprob-
lem, is discussed next. Finally, techniques for combined noise
floor and decay rate estimation are reviewed.

2.1 Initial delay and initial level estimation

In most cases these two parameters are relatively easy to es-
timate. The initial delay may be short, not needing any at-
tention, or the initial bulk delay can be cut off easily up to
the edge of response onset. Only when the onset is relatively
irregular or the S/N ratio is low, the detection of onset time
moment can be difficult.

A simple technique to eliminate initial delay is to compute
the minimum-phase component hmphase(t) of the measured
response [10]. An impulse response can be decomposed
as a sum of minimum-phase and excess-phase components:
h(t) = hmphase(t) + hephase(t). Since the excess-phase com-
ponent will have allpass properties manifested as delay, com-
putation of the minimum-phase part will remove the initial
delay.

The initial level in the beginning of the decay can be detected
directly from the peak value of the onset. For improved ro-
bustness, however, it may be better to estimate it from the
matched decay curve, particularly its value at the onset time
moment.

In the case of a room impulse response, the onset corresponds
to direct sound from the sound source. It may be of special
interest for the computation of source-to-receiver distance or
in estimating the impulse response of the sound source itself
by windowing the response before the first room reflection.

2.2 Decay rate estimation

Decay rate or time estimation is in practice based on fitting
a line to the decay envelope, such as the energy-time curve,
mapped on a logarithmic (dB) scale. Before computerized age
this was done graphically on paper. The advantage of man-
ual inspection is that an expert can avoid data interpretation
errors in pathological cases. However, automatic determina-
tion of the decay rate or time is, however, highly desirable in
practice.

Line fitting (linear regression to log envelope)

Fitting a line in a logarithmic decay curve is a conceptually
and computationally simple way of decay rate estimation.
The decay envelope y(t) can be computed simply as a dB-
scaled energy-time curve

y(t) = 10 lg{x2(t)} (5)

where x(t) is the measured impulse response or a band-pass
filtered part of it, such as an octave or 1/3-octave band. It
is common to apply techniques such as Schroeder integration
and Hilbert envelope computation (to be described below) in
order to smooth the decay curve before line fitting. Least
squares line fitting (linear regression) is done by finding the
optimal decay rate k as

min
k,a

Z t2

t1

{y(t) − [k(t) + a]}2dt (6)

for example using the Matlab function polyfit [11].

Practical problems with line fitting are related to the selection
of interval [t1, t2] and cases where the decay of the measured
response is inherently nonlinear. The first problem is avoided
by excluding onset transients in the beginning and noise floor
biasing at the end of interval [t1, t2]. The second problem is
related to such cases as a two-stage decay (initial decay rate
or early reverberation and late decay rate or reverberation)
or beating (fluctuation) of the envelope because of two modes
very close in frequency (see Fig. 9b).

Nonlinear regression (Xiang’s method)

Xiang [9] formulated a method where a measured and
Schroeder-integrated energy-time curve is fitted to a para-
metric model of a linear decay plus a constant noise floor.
Since the model is not linear in parameters, nonlinear curve
fitting (nonlinear regression) is needed. Mathematically this
is done by iterative means such as starting from a set of ini-
tial values for the model parameters and applying gradient
descent to search for a least squares optimum

min
x1 ,x2 ,x3

Z t2

t1

n
ysch(t) − [x1e−x2t + x3(L − t)]

o2
dt (7)

where ysch(t) is the Schroeder-integrated energy envelope, x1

is the initial level, x2 the decay rate parameter, x3 a noise
floor related parameter, L the length of response, and (t1, t2)
the time interval of nonlinear regression. Notice that the last
term of noise floor effect is a descending line instead of a con-
stant due to backward integration of the noise energy [9].

Nonlinear optimization is mathematically more complex than
linear fitting and care should be taken to guarantee conver-
gence. Even with convergence, the result may be only a local
optimum, and generally the only way to know that a global
optimum is found is to apply exhaustive search over possible
value combinations of model parameters which, in a multi-
parameter case, is often computationally too expensive.

Nonlinear optimization techniques will be studied in more de-
tail later in this paper by introducing generalizations to the
method of Xiang and by comparing the performance of dif-
ferent techniques in decay parameter estimation.

Autoregressive modeling (linear prediction)

For a single mode of Eq. (1) the response can be modeled as an
impulse response of a resonating second-order all-pole filter.

2See reverberation time definition notes on page 10.
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More generally, a combination of N modes can be modeled
as a 2N -order all-pole filter. Auto-regressive (AR) model-
ing [12] is a way to derive parameters for such a model. In
many technical applications this method is called linear pre-
diction [13]. For example the function lpc in Matlab [14]
processes a signal frame through autocorrelation coefficient
computation and solving the normal equations by Levinson
recursion, resulting in a N th order z-domain transfer func-

tion 1/(1 +
PN

i=1 αiz
−i). Poles are obtained by solving the

roots of the denominator polynomial. Each modal resonance
appears as a complex-conjugate pole pair (zi, z∗i ) in the com-
plex z-plane with angle φ = arg(zi) = 2πf/fs and radius

r = |zi| = e−τ/fs , where f is modal frequency, fs is sampling
rate, and τ is the decay parameter of the mode in Eq. (1).

Decay parameter analysis by AR modeling is not robust with
long decay times (poles close to the unit circle) and back-
ground noise. Additive noise flattens the power spectrum
of a modal resonance and moves the poles from unit circle
towards the origin, thus resulting in shortened decay time es-
timates, which is contrary to the result in linear curve fitting.
AR modeling works for decay parameter estimation only if it
can spectrally resolve each mode. Thus it is not applicable
to high modal densities, such as typical reverberation time
measurements.

Group delay analysis

A complementary method to AR modeling is to use the group
delay, i.e., phase derivative Tg(ω) = −dϕ(ω)/dω, as an esti-
mate of the decay time for separable modes of an impulse
response. While AR modeling is sensitive to power spectrum
only, the group delay is based on phase properties only. For a
minimum-phase single mode response the group delay at the
modal frequency is inversely proportional to the decay param-
eter, i.e., Tg = 1/τ . Group delay computation is somewhat
critical due to phase unwrapping needed, and the method is
sensitive to measurement noise.

2.3 Decay envelope smoothing techniques

In the methods of linear or nonlinear curve fitting it is de-
sirable to obtain a smooth decay envelope before the fitting
operation. The following techniques are often used to improve
the regularity of the decay ramp.

Hilbert envelope computation

In this method, signal x(t) is first converted to an analytic sig-
nal xa(t) so that x(t) is the real part of xa(t) and the complex
part of xa(t) is the Hilbert transform (90o phase shift) [10] of
x(t). For a single sinusoid this results in an entirely smooth
energy-time envelope. An example of Hilbert envelope for a
noisy modal response is shown in Fig. 1c.

Schroeder integration

A monotonic and smoothed decay curve can be produced by
‘backward integration’ of the impulse response h(t) over mea-
surement interval [0,T ] and converting it to a logarithmic scale

L(t) = 10 lg

 R T
t h2(τ )dτR T
0

h2(τ )dτ

!
[dB] (8)

This process is commonly known as the Schroeder integra-
tion [3, 4]. Based on its superior smoothing properties it is
used routinely in modern reverberation time measurements.

A known problem with it is that if the background noise floor
is included within the integration interval, the process pro-
duces a raised ramp that biases upwards the late part of de-
cay. This is shown in Fig. 2 for the case of noisy single-mode
decay of (a) for full response integration shown as curve (d).
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Fig. 2: Results of Schroeder integration applied to noisy de-
cay of a mode: (a) measured noisy response including ini-
tial delay, (b) true decay of noiseless mode (dashed straight
line), (c) noise floor (-26 dB), (d) Schroeder integration of
total measured interval, (e) integration over a short interval
(0,900), (f) integration over interval (0,1100), (g) integration
after subtracting noise floor from energy-time curve, and (h)
a few decay curves integrated by the Hirata’s method.

The tail problem of Schroeder integration has been addressed
by many authors, for example in [15, 8, 5, 6], and techniques
to reduce slope biasing have been proposed. In order to apply
these improvements, a good estimate of the noise floor level
is needed first.

2.4 Noise floor level estimation

The limited signal-to-noise ratio inherent in practically all
acoustical measurements, and especially measurements per-
formed under field conditions, call for attention concerning
the upper time limit of decay curve fitting or Schroeder in-
tegration. Theoretically this limit is set to infinity, but in
practical measurements it is naturally limited to the length
of the measured impulse response data. In practice, measured
impulse responses must be long enough to accommodate for
large enough dynamic range or the whole system decay down
to the background noise level3.

Thus the measured impulse response typically contains not
only the decay curve under analysis, but also a steady level of
background noise, which dominates for some time at the end
of the response. Fitting the decay line over this part of en-
velope or Schroeder integrating this steady energy level along

3This is needed to avoid time aliasing with MLS and other cyclic impulse response measurement methods.
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with the exponential decay curve causes an error both in the
resulting decay rate (see Fig. 2) and in the time-windowed
energies (i.e., energy parameters).

To avoid bias by noise, analysis must be performed on the im-
pulse response data to find the level of background noise and
the point where the room decay meets the noise level. This
way it is possible to effectively truncate the impulse response
at the noise level, minimizing the noise energy mixed with the
actual decay.

The determination of noise floor level is difficult without using
iterative techniques. The method by Lundeby et al. that will
be outlined below is a good example of iterative techniques,
integrated with decay rate estimation.

A simple way to have a reasonable estimate of background
noise floor is to average a selected part of the measured re-
sponse tail or to fit a regression line to it [16]. The level is
certainly overestimated if the noise floor is not reached, but
this is not necessarily problematic contrary to underestimat-
ing it. Another technique is to look at the background level
before the onset of main response. This works if there is
enough initial latency in the system response under study.

2.5 Decay estimation with noise floor reduction

In addition to determining the response starting point, it is
thus essential to find an end point where the decay curve
meets background noise, and to truncate the noise from the
end of the response. Figure 2 illustrates the effect of limiting
the Schroeder integration interval. If the interval is too short
as in (e), the curve is biased downwards. Curve (f) shows a
case where the bias due to noise is minimized by considering
the decay only downto 10 dB above the noise floor.

There are no standardized exact methods for determining the
limits for Schroeder integration and decay fitting or noise
compensation techniques. Such methods are discussed below.

Limited integration or decay matching interval

There are several recommendations about dealing with noise
floor and the point where the decay meets noise. For example,
according to the ISO 3382 standard [1] for room reverberation
determination, the noise floor must be 10 dB below the lowest
decay level used for calculation of the decay slope. Morgan
[5] recommends to truncate at the knee point and then to
measure the decay slope of the backward integrated response
down to a level about 5 dB above the noise floor.

Faiget et al. [16] propose a simple but systematic method for
post-processing noisy impulse responses. The latter part of a
response is used for the estimation of the background noise
level by means of a regression line. Another regression line is
used for the decay, and the end of the useful response is de-
termined at the crossing point of the decay and background
noise regression lines. The decay parameter fitting interval
ends at 5dB above the noise floor.

Lundeby’s method

Lundeby et al. [8] presented an algorithm for automatically
determining the background noise level, the decay-noise trun-
cation point, and the late decay slope of an impulse response.
The steps of the algorithm are:

1. The squared impulse response is averaged into local
time intervals in the range of 10–50 ms, to yield a
smooth curve without losing short decays.

2. A first estimate for the background noise level is deter-
mined from a time segment containing the last 10 %
of the impulse response. This gives a reasonable statis-
tical selection without a large systematic error, if the
decay continues to the end of the response.

3. The decay slope is estimated using linear regression be-
tween the time interval containing the response 0 dB
peak, and the first interval 5–10 dB above the back-
ground noise level.

4. A preliminary crosspoint is determined at the intersec-
tion of the decay slope and the background noise level.

5. A new time interval length is calculated according to
the calculated slope, so that there are 3–10 intervals
per 10 dB of decay.

6. The squared impulse is averaged into the new local time
intervals.

7. The background noise level is determined again. The
evaluated noise segment should start from a point cor-
responding to 5–10 dB of decay after the crosspoint, or
a minimum of 10 % of the total response length.

8. The late decay slope is estimated for a dynamic range
of 10–20 dB, starting from a point 5–10 dB above the
noise level.

9. A new crosspoint is found.

Steps 7–9 are iterated until the crosspoint is found to converge
(max. 5 iterations).

Response analysis may be further enhanced by estimating the
amount of energy under the decay curve after the truncation
point. The measured decay curve is artificially extended be-
yond the point of truncation by extrapolating the regression
line on the late decay curve to infinity. The total compensa-
tion energy is formed as an ideal exponential decay process,
the parameters of which are calculated from the late decay
slope.

Subtraction of noise floor level

Chu [15] proposed a subtraction method in which the mean
square value of the background noise is subtracted from the
original squared impulse response before the backward inte-
gration. Curve (g) in Fig. 2 illustrates this case. If the noise
floor estimate is good and the noise is stationary, the resulting
backward integrated curve is close to the ideal decay curve.

Hirata’s method

Hirata [7] has proposed a simple method for improving the
signal-to-noise ratio by replacing the squared single impulse
response h2(t) with the product of two impulse responses
measured separately at the same position:Z ∞

t
h2(t)dt ⇐

Z ∞

t
[h1(t) + n1(t)][h2(t) + n2(t)]dt

=

Z ∞

t
[h1(t)h2(t) + h1(t)n2(t) +

+ h2(t)n1(t) + n1(t)n2(t)]dt

=

Z ∞

t

n
h1(t)h2(t) +

+ n1(t)n2(t)[1 +
h1(t)

n1(t)
+

h2(t)

n2(t)
]
o

dt

≈
Z ∞

t
h2(t)dt + K(t)

(9)
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The measured impulse responses consist of the decay terms
h1(t), h2(t) and the noise terms n1(t), n2(t). The highly
correlated decay terms h1(t) and h2(t) yield positive values
corresponding to squared response h2(t), whereas the mutu-
ally uncorrelated noise terms n1(t) and n2(t) are seen as a
random fluctuation K(t) superposed on the first term.

Curves (h) in Fig. 2 illustrate a few decay curves obtained
by backward integration with Hirata’s method. In this simu-
lated case they correspond to the case of (g), the noise floor
subtraction technique.

Other methods

Under adverse noise conditions, a direct determination of the
T30 decay curve from the squared and time-averaged impulse
response has been noted to be more robust than the backward
integration method (Satoh et al. [17]).

3 NONLINEAR OPTIMIZATION OF A DECAY-
PLUS-NOISE MODEL

The nonlinear regression (optimization) method proposed by
Xiang [9] was shortly described above. In the present study
we have worked along similar ideas, using nonlinear optimiza-
tion for improved robustness and accuracy. Below we intro-
duce the nonlinear decay-plus-noise model and its application
in several cases.

Let us assume that in noiseless conditions the system under
study results in simple exponential decay of response enve-
lope, corrupted by additive stationary background noise. We
will study two cases that fit into the same model category.
In the first case there is a single mode (i.e., a complex conju-
gate pole pair in transfer function) that in the time domain
corresponds to an exponential decay function

hm(t) = Ame−τmt sin(ωmt + φm) (10)

Here Am is the initial envelope amplitude of the decaying si-
nusoidal, τm is a coefficient that defines the decay rate, ωm

is the angular frequency of the mode, and φm is the initial
phase of modal oscillation.

The second case that leads to a similar formulation is where
we have a high density of modes (diffuse sound field) with ex-
ponential decay, resulting in an exponentially decaying noise

hd(t) = Ade−τdtn(t) (11)

where Ad is the initial rms level of response, τd is a decay
rate parameter, and n(t) is stationary Gaussian noise with
rms level of 1 (= 0 dB).

In both Eqs. (10) and (11) we assume that a practical mea-
surement of the system impulse response is corrupted with
additive stationary noise

nb(t) = Ann(t) (12)

where An is the rms level of Gaussian measurement noise on
the analysis bandwidth of interest, and it is assumed to be
uncorrelated with the decaying system response. Statistically
the rms envelope of the measured response is then

a(t) =
q

h2(t) + n2
b(t) =

q
A2e−2τt + A2

n (13)

This is a simple decay model that can be used for parametric
analysis of noise-corrupted measurements. If the amplitude

envelope of a specific measurement is y(t), then optimized
least squares (LS) error estimate for parameters {A, τ,An}
can be achieved by minimizing the following expression over
a time span [t0, t1] of interest

min
A,τ,An

Z t1

t0

[a(t)− y(t)]2dt (14)

Since the model of Eq. (13) is nonlinear in parameters
{A, τ,An}, nonlinear LS optimization is needed to search for
the minimum LS error.

By numerical experimentation with real measurement data it
is easy to observe that LS fitting of the model of Eq. (14)
places emphasis on large magnitude values, whereby noise
floors well below the signal starting level are estimated poorly.
In order to improve the optimization, a generalized form of
model fitting can be formulated by minimization

min
A,τ,An

Z t1

t0

n
f(a(t), t) − f(y(t), t)

o2
dt (15)

where f(y, t) is a mapping to balance weight for different en-
velope level values and time moments.

The choice of f(y, t) = 20 log(y(t)) results in fitting on the
decibel scale. It turns out that low-level noise easily has
a dominating role in this formulation. A better result in
model fitting can be achieved by using a power law scaling
f(y, t) = ys(t) with factor s < 1, which is a compromise be-
tween amplitude vs. logarithmic scaling. A value of s ≈ 0.5
has been found a useful default value4.

A time-dependent part of mapping f(y, t), if needed, can be
separated as a temporal weighting function w(t). A general-
ized form of the entire optimization is now to find

min
A,τ,An

Z t1

t0

n
w(t)as(t) − w(t)ys(t)

o2
dt (16)

There is no clear physical motivation for the magnitude com-
pression factor s. Specific temporal weighting functions w(t)
can be applied case by case, based on extra knowledge on the
behavior of the system under study and goals of the analysis,
such as focusing on the early decay time (early reverberation)
of a room response.

The strengths of the nonlinear optimization method are ap-
parent especially under extreme SNR conditions where all
three parameters, {A, τ,An}, are needed with the best ac-
curacy. This occurs both at very low SNR conditions where
the signal is practically buried in background noise and at the
other extreme where the noise floor is not reached within the
measured impulse response but still an estimate of the noise
level is desired. The necessary assumption for the method to
work in such cases is that the decay model is valid, implying
an exponential decay and stationary noise floor. Experiments
show the method to work both for single mode decay and
reverberant acoustic field decay models.

Figure 3 depicts three illustrative examples of decay model
fitting of a single mode at an initial level of 0 dB and differ-
ent noise floor levels. Because of simulated noisy responses it
is easy to evaluate the estimation accuracy of each parameter.
White curves show the estimated behavior of the decay-plus-
noise model. In Fig. 3a the SN-ratio is only 6 dB. Errors in
parameters in this case are a 0.5 dB underestimation of A,

4Interestingly enough, this is close to the loudness scaling in auditory perception known from psychoacoustics [18].
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3.5 % underestimate in decay time related to parameter τ ,
and 1.8 dB overestimate of noise floor An . In Fig. 3b a simi-
lar case is shown with a moderate 30 dB SN-ratio. Estimation
errors of parameters are +0.2 dB for A, -2.8 % for decay time,
and +1.2 dB for An. In the third case of Fig. 3c the SN-
ratio is -60 dB so that the noise floor is hardly reached within
the analysis window. In this case the estimation errors are
+0.002 dB for A, -0.07 % for decay time, and -1.0 dB for
An. This shows that the noise floor is estimated with high
accuracy also in this extreme case.
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Fig. 3: Nonlinear optimization of decay-plus-noise model for
three synthetic noisy responses with initial level of 0 dB and
noise levels of (a) -6 dB, (b) -30 dB), and (c) -60 dB. Black
curves show the Hilbert envelopes of the simulated responses
and white curves depict the estimated decay behavior.

The nonlinear optimization used in this study is based on us-
ing the Matlab function curvefit5 and the functions which
implement the weighting by parameter s and weighting func-
tion w(t) can be found at:
http://www.acoustics.hut.fi/software/decay

The optimization routines are found robustly converging in
most cases, including such extreme cases as Fig. 3a and 3c,
and the initial values of parameters for iteration are not criti-
cal. However, it is possible that in rare cases the optimization
diverges and no (even a local) optimum is found6. It would
be worth working out a dedicated optimization routine guar-
anteeing a result in minimal computation time.

Our experience in the nonlinear decay parameter fitting de-
scribed here is that it still needs some extra information or
top-level iteration for best results. It is advantageous to se-
lect the analysis frame so that the noise floor is reached not
too early or late. If the noise floor is reached in the very be-
ginning of the frame, the decay may be missed. Not reaching
the noise floor in the frame is a problem only if the estimate

of this level is important. A rule for an optimal value of the
scaling parameter s is to use s ≈ 1.0 for very low SN-ratios,
such as in Fig. 3a, and let it approach a value of 0.4–0.5 when
the noise floor is low as in 3c (see also Fig. 4 below).

4 COMPARISON OF DECAY PARAMETER ES-
TIMATION METHODS

The accuracy and robustness of methods for decay param-
eter estimation can be evaluated by using synthetic decay
signals or envelope curves, computed for sets of parameters
{A, τ,An}. By repeating the same for different methods, their
relative performances can be compared. In this section we
present results from the comparison of the proposed nonlin-
ear optimization and the method of Lundeby et al.

The accuracy of the two methods was analyzed in the follow-
ing setting. A decaying sinusoid of 1 kHz with a 60 dB decay
time (‘reverberation time’) of 1 second was contaminated with
white noise of Gaussian distribution and zero mean. Initial
sinusoidal level to background noise ratio was varied from 0
dB to 80 dB by steps of 10 dB. Each method under study was
applied to analyze the decay parameters and the error to the
‘true’ value was computed in decibels for the initial and the
noise floor levels and as a percentage for decay time.

Figure 4 depicts the results of evaluation for the nonlinear
optimization proposed in this paper. The accuracy of decay
time estimation in Fig. 4a is excellent for SN-ratios above 30
dB and useful (below 10 % typically) even for SN-ratios of 0–
10 dB. Initial level is accurate within 0.1 dB for SNR above
20 dB and about 1 dB for SNR of 0 dB. Noise floor estimate
is within approximately 1–2 dB up to SNR of 60 dB and gives
better than a guess up to 70–80 dB of SNR (notice that SNR
alone is not important here but rather if the noise floor is
reached in the analysis window or not).
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Fig. 4: Sine-plus-noise decay parameter estimation errors
(average of 20 trials) for the nonlinear optimization method
proposed in this paper as a function of SN-ratio: (a) decay
time estimation error in percentage, (b) initial level estima-
tion error in dB, (c) noise floor estimation error in dB. Solid
line: s = 0.5, dotted line: s = 1.0.

5In new versions of Matlab, function curvefit is recommended to be replaced by function lsqcurvefit.
6Function curvefit also prints warnings of computational precision problems even when optimization results are excellent.
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Figure 5 plots the same information for decay parameter es-
timation using the method of Lundeby et al. without noise
compensation, implemented by us in Matlab. Since this iter-
ative technique is not developed for extreme SN-ratios, such
as 0 dB, it cannot deal with these cases without extra tricks,
and even then it may have severe problems. We have used
safety settings whereby it did not try to yield decay time val-
ues for SNR below 20 dB, and low SNR parts of the decay
parameter estimate curves are omitted.
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Fig. 5: Decay parameter estimation errors for the Lundeby
et al. method as a function of SN-ratio: (a) decay time esti-
mation error percentage with truncated Schroeder integration
but without noise compensation, (b) initial level estimation
error in dB, and (c) noise floor estimation error in dB.

For moderate SN-ratios the results of the method are fairly
good and robust. Decay time shows a positive bias of few per
cent except. The noise floor estimate is reliable in this case
only up to about 50 dB SNR. Notice that the method is de-
signed for practical reverberation time measurements rather
than this test case where it could be tuned to perform better.

5 EXAMPLES OF DECAY PARAMETER ESTI-
MATION BY NONLINEAR OPTIMIZATION

In this section we present examples of applying the nonlin-
ear estimation of a decay-plus-noise model to typical acoustic
and audio applications including reverberation time estima-
tion, analysis and modeling of low-frequency modes of a room
response, and decay rate analysis of plucked string vibration
for model-based synthesis applications.

5.1 Reverberation time estimation

Estimation of the reverberation time of a room or a hall is
relatively easy if the decay curve behaves regularly and noise
floor is low enough. Often in practice the case is quite dif-
ferent. Here we demonstrate the behavior of the nonlinear
optimization method inan example where the measured im-
pulse response includes an initial delay, irregular initial part,
and a relatively high measurement noise floor.

Figure 6 depicts three different cases of fitting the decay-plus-
noise to this case of control room with a short reverberation
time. in Fig. 6a the fitting is applied to the entire decay curve
including the initial delay, and the resulting model is clearly
biased towards too long reverberation time. In Fig. 6b the
initiall delay is excluded from model fitting and the result is
better. However, after the direct sound there is a period of
only little energy due to the first reflections before the range
of dnese reflections and diffuse response. If the reverbera-
tion time estimate should describe the decay of this diffuse
part, the case of Fig. 6c with fitting, starting from about 30
ms, yields the best match to reverberation decay, and the
approaching noise floor is also estimated well7.
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Fig. 6: Decay-plus-noise model fitting by nonlinear optimiza-
tion to a room impulse response: (a) fitting range includes
initial delay, transient phase, and decay, (b) fitting includes
transient phase and decay, and (c) fitting includes only the
decay phase.

5.2 Modeling of low-frequency room modes

The next case deals with the modeling of low-frequency modes
of a room. Below a critical frequency (so-called Schroeder
frequency) the mode density is low and individual modes can
be decomposed from the measured room impulse response.
The task here was to find most prominent modes and to
analyze their modal parameters fm and τm, frequency and
decay parameter, respectively. The case studied was a hard-
walled, partially damped room with moderate reverberation
time (≈ 1 sec) at mid and high frequencies, but much longer
decay times at lowest modal frequencies. The following pro-
cedure was applied:

• A short-time Fourier analysis of the measured impulse
response was computed to yield a time-frequency rep-
resentation, shown in Fig. 7 as a waterfall plot.

• At each frequency bin (1.3 Hz spacing is used), the dB-
scaled energy-time decay trajectory was fitted to the
decay-plus-noise model with the nonlinear optimization
technique to obtain the optimal decay parameter τ .

7In this example, decay parameter analysis is applied to the entire impulse response for demonstration purposes. In reality
it should be done as a function of frequency, i.e., to octave or 1/3-octave band decay curves.

AES 110TH CONVENTION, AMSTERDAM, THE NETHERLANDS, 2001 MAY 12–15 8



KARJALAINEN ET AL. ESTIMATION OF MODAL DECAY PARAMETERS

• Based on decay parameter values and spectral levels, a
rule was written to pick up the most prominent modal
frequencies and the related decay parameter values.

Fig. 7: Time-frequency plot of room response at low frequen-
cies. Lowest modes (especially 40 Hz) show long decay times.

In this context we are interested in how well the decay pa-
rameter estimation works with noisy measurements. Appli-
cation of the nonlinear optimization resulted in decay param-
eter estimates, some of which are illustrated in Fig. 8 by a
comparison of the original decay and decay-plus-noise model
behavior. For all frequencies in the vicinity of a mode the
model fits robustly and accurately.
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Fig. 8: Fitting of decay-plus-noise model to low-frequency
modal data of a room (see Fig. 7): (a) at 40 Hz mode, (b) at
104 Hz, and (c) at 117 Hz (off-mode fast decay). Dotted line:
measured, dashed line: modeled.

5.3 Analysis of decay rate of plucked string tones

Model-based synthesis of string tones can produce realistic
guitar-like tones if the parameter values of the synthesis model
are calibrated based on recordings [2]. The main properties

of tones that need to be analyzed are their fundamental fre-
quency and the decay time of all harmonic partials that are
audible. While the estimation of fundamental frequency is
quite easy, the measurement of decay times of harmonics (=
modes of the string) is complicated by the fact that they all
have a different rate of decay and also the initial level can
vary within a range of 20-30 dB. There may also not be in-
formation about the noise floor level for all harmonics.

One method used for measuring the decay times is based on
the short-time Fourier analysis. A recorded single guitar tone
is sliced into frames with a window function in the time do-
main. Each window function is then Fourier transformed
with the FFT using zero-padding to increase the spectral
resolution, and harmonic peaks are hunted from the mag-
nitude spectrum using a peak-picking algorithm. The peak
values from the consecutive frames are organized as tracks,
which correspond to the temporal envelopes of the harmon-
ics. Then it becomes possible to estimate the decay rate of
each harmonic mode. In the following, we show how this
works with the proposed algorithm. Finally, the decay rate
of each harmonic is converted into a corresponding target re-
sponse, which is used for designing the magnitude response
of a digital filter that controls the decay of harmonics in the
synthesis model.

Figure 9 plots three examples of modal decay analysis of gui-
tar string harmonics (string 5, open string plucking). Har-
monic envelope trajectories were analyzed as described above.
The decay-plus-noise model was fitted in a time window that
started from the maximum value position of the envelope
curve. In case (a), the second harmonic shows a highly reg-
ular decay after initial transient of plucking whereby decay
fitting is almost perfect. Case (b), harmonic number 24, de-
picts a strongly beating decay where probably the horizontal
and vertical polarizations have a frequency difference that af-
ter summation results in beating. Case (c), harmonic 54,
shows a harmonic trajectory where the noise floor is reached
within the analysis window. In all shown cases, the nonlinear
optimization works as perfectly as a simple decay model can
do.
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Fig. 9: Examples of modal decay matching for harmonic com-
ponents of a guitar string: (a) regular decay after initial tran-
sient, (b) strongly beating decay (double mode), and (c) fast
decay that reaches the noise floor. Dotted line: measured
envelope, solid line: optimized fit.
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As can be concluded from case (b) of Fig. 9, a string can
exhibit more complicated behavior than a simple exponen-
tial decay. Even more complex is the case of piano tones
because there are 2–3 strings slightly off-tuned, and the en-
velope fluctuation can be more irregular. Two-stage decay is
also common where the initial decay is faster than later decay.

In all such cases a more complex decay model is needed to
achieve a good match with the measured data. It remains a
future problem to investigate fitting such models using linear
optimization techniques.

6 SUMMARY AND CONCLUSIONS

In this paper, an overview of modal decay analysis meth-
ods for noisy impulse response measurements of reverberant
acoustic systems is presented, and further improvements are
introduced. The problem of decay time determination is im-
portant for example in room acoustics for characterizing the
reverberation time. Another application where a similar prob-
lem is encountered is when estimating string model parame-
ters for model-based synthesis of plucked string instruments.

It is shown in this article that the further developments of the
decay-plus-noise model yield highly accurate decay parame-
ter estimates, outperforming traditional methods especially
under extreme SN-ratio conditions. Challenges for further
studies remain to make the method (with increased number
of parameters) able to analyze complex decay characteristics,
such as double decay behavior and strongly fluctuating re-
sponses due to two or more modes very close in frequency.

The Matlab code for nonlinear optimization of decay parame-
tres, including data examples, can be found at:
http://www.acoustics.hut.fi/software/decay
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Notes on reverberation time definitions
Reverberation time T60 or just T is defined as the time in sec-
onds it takes for the energy in the steady-state sound field in
a room to decay 60 dB after the source of sound excitation is
suddenly turned off [19]. According to definition by Beranek
[20], the reverberation time might be defined in any of the
following ways:

1. the interval between turning off the sound source and
the time when the instantaneous value of the pressure
level first falls to 60 dB below its steady state value

2. the time interval until the average value of the fluctu-
ating pressure first falls to this value

3. the time until the average value of the fluctuating log
p decay curve first falls to 60 dB below its steady state
value, or

4. the time required for the evaluated decay slope to drop
off 60 dB.

In practice, the reverberation time is often determined from
the slope of a decay curve using only the first 25 or 35 dB
of decay and extrapolating the result to 60 dB. For the rec-
ommended practice of reverberation time determination, see
standard [1].
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