
.NET Core
Networking stack 

and 
Performance

DotNext in Moscow, RU (2017/11/12)

Karel Zikmund (      @ziki_cz)



Agenda

• Networking stack architecture evolution
• .NET Framework, UWP and .NET Core

• Networking stack in .NET Core
• Direction and plans

• Status & perf results

• General BCL performance thoughts & observations



.NET Framework UWP .NET Core

Networking – Architecture Evolution

HttpWebRequest
+ ServicePoint

Sockets
SslStream,

Dns, …

Windows

HttpClient
+ HttpClientHandler

4.5



.NET Framework UWP .NET Core

Windows Linux / Mac

Sockets,
SslStream, …

Sockets
SslStream,

Dns, …

Windows

Networking – Architecture Evolution

HttpWebRequest
+ ServicePoint

Sockets
SslStream,

Dns, …

Windows

HttpClient
+ HttpClientHandler

4.5 HttpWebRequest
+ ServicePoint

HttpClient
+ HttpClientHandler

WinRT APIs

win9net.dll

HttpClient

WinHttpHandler

WinHttp.dll

CurlHandler

libcurl

OpenSSL

HttpWebRequest
+ ServicePoint

2.0



Networking – Architecture Evolution

.NET Framework

HttpWebRequest
+ ServicePoint

Sockets
SslStream,

Dns, …

Windows

HttpClient
+ HttpClientHandler

4.5

.NET Core

Windows Linux / Mac

Sockets,
SslStream, …

HttpClient

WinHttpHandler

WinHttp.dll

CurlHandler

libcurl

OpenSSL

HttpWebRequest
+ ServicePoint

2.0



Networking – Architecture Evolution

.NET Framework

HttpWebRequest
+ ServicePoint

Sockets
SslStream,

Dns, …

Windows

HttpClient
+ HttpClientHandler

4.5

.NET Core

Windows Linux / Mac

Sockets,
SslStream, …

HttpClient

WinHttpHandler

WinHttp.dll

CurlHandler

libcurl

OpenSSL

HttpWebRequest
+ ServicePoint

2.0

.NET Core Future

HttpWebRequest
+ ServicePoint

HttpClient

ManagedHandler

Windows Linux / Mac

OpenSSL

Sockets
SslStream,

Dns, …



Networking – Technical Roadmap

https://github.com/dotnet/designs/issues/9

1. Foundation – rock solid
• Sockets, SSL, DNS

2. Web stack (client) – high perf & consistency
• HttpClient, ClientWebSocket

3. Emerging technologies
• HTTP/2, RIO, QUIC

4. Maintenance components
• (Http/Ftp/File)WebRequest + ServicePoint, Mail, HttpListener

https://github.com/dotnet/designs/issues/9


Networking – Focus on Perf

Scenarios / workloads:
• Micro-benchmarks vs. benchmarks vs. real-world scenarios (feedback)

Metrics:
• RPS (Response per second)
• Throughput
• Latency
• Connection density

Important properties:
• Percentiles (95% / 99%)
• Scale up
• Resources (CPU) utilization (90%-95% ideal)



Networking – Perf  Test Environment

• Repeatability – isolated environment (reduce noise)

• 2 machines:
• 4-core
• 16 GB RAM
• 2x NIC: 1x 1 Gbps + 1x 10 Gbps

• 8 servers:
• 12-core
• 64 GB RAM
• 2x NIC: 1x 1 Gbps + 1x 40 Gbps

A B

External network

10 Gbps

1 Gbps 1 Gbps

External network

S.1 S.8…

40 Gbps

1 Gbps 1 Gbps 1 Gbps



Networking – Sockets Perf  Results

• Micro-benchmark only (disclaimer: Netty/Go impl may be inefficient)

• Linux 2 CPUs:
• Gap for small payloads

(to be investigated)

• SSL:
• 22% gap (to be investigated)

GB/s 256 B 4 KB 64 KB 1 MB

.NET Core 0.09 0.77 1.09 1.10

Netty 0.11 0.48 0.66 0.67

Go 0.12 0.82 1.10 1.11

SSL - GB/s 256 B 4 KB 64 KB 1 MB

.NET Core 0.04 0.31 0.71 0.87

Netty 0.03 0.12 0.15 0.15

Go 0.06 0.56 0.98 1.12

https://github.com/geoffkizer/netperf/tree/master/SocketPerfTest
https://github.com/geoffkizer/netperf/tree/master/netty-socketperftest
https://github.com/geoffkizer/netperf/tree/master/gosrc/src/socketperftest


Networking – Sockets Perf  on Server

• Kestrel server uses libuv -> Sockets prototypes

• Early Sockets prototype (with hacks):
• 7% improvement over libuv + more potential

• Recent Sockets prototype (very preliminary data):
• 13% worse than libuv on Linux

• 8% worse than libuv on Windows

• Investigation in progress



Networking – ManagedHandler Perf

• ManagedHandler (functional early stage)
• Missing large features – authentication, proxy, http2

• Early measurements (simple http micro-benchmark):
• Windows: Parity with Go

• Linux: 15% gap (pending investigation)



Networking – SSL Perf

• Indicators:
• Sockets micro-benchmarks (22% overhead)
• TechEmpower benchmark
• Customer reports

• Attempt for rewrite by community (@drawaes)
• Some end-to-end wins, but no micro-benchmark wins

• Next steps:
• Measure & analyze micro-benchmarks & end-to-end scenarios
• Improve in .NET Core 2.1



Industry Benchmarks

• TechEmpower benchmark
• More end-to-end, with DB, etc.

• Useful for overall platform performance comparison

• Round 15 (preliminary data)
• ASP.NET Core at #5 entry (jump from #14 in Round 14)

https://www.techempower.com/benchmarks/previews/round15/#section=data-r15&hw=ph&test=plaintext&c=4


Industry Benchmarks

Platform performance shows how fast your app could be, one day

… but it is not everything:
• Productivity

• Tooling

• Developer availability (in-house/to hire)

• Documentation

• Community

• etc.



Performance – Lessons Learned

• Plan for performance during design
• Understand scenario, set goals

• Prototype and measure early

• Optimize what’s important – measure
• Avoid micro-optimizations

• Understand the big picture

• Don’t guess root cause – measure
• Minimize repro – it’s worth it!



BCL Performance

• Fine-tuned over 15 years
• Opportunities are often trade-offs (memory vs. speed, etc.)

• How to identify scenarios which matter
• Customer feedback
• OSS helps:

• More eyes on code
• More reports
• Motivated contributors

• Perf improvements in .NET Core (.NET blog post by Stephen Toub)
• Collections, Linq, Compression, Crypto, Math, Serialization, Networking

• Span<T> sprinkled in BCL

https://blogs.msdn.microsoft.com/dotnet/2017/06/07/performance-improvements-in-net-core/


BCL Performance – What to not take?

• Specialized collections
• BCL designed for usability and decent perf for 95% customers

• Code complexity (maintainability) vs. perf wins

• APIs for specialized operations (e.g. to save duplicate lookup)
• Creates complexity

• May leak implementation into API surface



Wrap Up

• Proactive investments into .NET Networking stack
• Consistency across platforms
• Great performance for all workloads

• Ongoing scenario/feedback-based improvements in BCL perf

• Performance in general is:
• Important
• But not the only important thing
• Tricky to get right in the right place


