.NET Core
Networking stack
and
Performance

DotNext in Moscow, RU (2017/11/12)

Karel Zikmund (% @ziki_cz)

Agenda

* Networking stack architecture evolution
 .NET Framework, UWP and .NET Core

* Networking stack in .NET Core
* Direction and plans
» Status & perf results

* General BCL performance thoughts & observations

Networking — Architecture Evolution

/ NET Framework\ / UWP \ / .NET Core \

HttpClient
+ HttpClientHandler

HttpWebRequest
+ ServicePoint

SsIStream,
Dns, ...

v R AN o

Networking — Architecture Evolution

/. NET Framework\

HttpClient
+ HttpClientHandler

HttpWebRequest
+ ServicePoint

SsIStream,
Dns, ...

S uwe

HttpWebRequest
+ ServicePoint

HttpClient
+ HttpClientHandler

SsIStream,
Sockets Dns, ...

Windows

—

win9net.dll Windows

WinRT APIs

/ .NET Core \

HttpWebRequest
+ ServicePoint

HttpClient

WinHttpHandler CurlHandler

Sockets,
SsIStream, ...

WinHttp.dll libcurl
OpenSSL

Windows , Linux/Mac

Networking — Architecture Evolution

/. NET Framework\

HttpClient
+ HttpClientHandler

HttpWebRequest
+ ServicePoint

SsIStream,
Dns, ...

/ .NET Core \

HttpWebRequest
+ ServicePoint

HttpClient

WinHttpHandler CurlHandler

Sockets,
SsIStream, ...

Windows

WinHttp.dll libcurl
OpenSSL

Windows , Linux/Mac

Networking — Architecture Evolution

/.NET Framework\ / .NET Core \ KNET Core Future\

HttpWebRequest
+ ServicePoint

HttpClient HttpWebRequest

+ HttpClientHandler + ServicePoint

HttpClient

HttpClient

HttpWebRequest

+ ServicePoint

WinHttpHandler CurlHandler ManagedHandler

Sockets,
SsIStream, SsiStream, ...

Dns, ... 4

WinHttp.dll libeurl
OpenSSL

Windows , Linux/Mac

SsIStream,
Dns, ...

[—><]

Sockets

OpenSSL
Windows

Windows Linux / Mac

Networking — Technical Roadmap

https://github.com/dotnet/designs/issues/9

1. Foundation — rock solid
* Sockets, SSL, DNS

2. Web stack (client) — high perf & consistency
* HttpClient, ClientWebSocket

3. Emerging technologies
« HTTP/2, RIO, QUIC

4. Maintenance components
* (Http/Ftp/File)WebRequest + ServicePoint, Mail, HttpListener

https://github.com/dotnet/designs/issues/9

Networking — Focus on Perf

Scenarios / workloads:
* Micro-benchmarks vs. benchmarks vs. real-world scenarios (feedback)

Metrics:
* RPS (Response per second)
* Throughput
* Latency
* Connection density

Important properties:
* Percentiles (95% / 99%)
e Scale up
e Resources (CPU) utilization (90%-95% ideal)

Networking — Perf Test Environment

* Repeatability — isolated environment (reduce noise)

* 2 machines: 10 Gbps
* 4-core
* 16 GB RAM 1 Gbps 1 Gbps

e 2x NIC: 1x 1 Gbps + 1x 10 Gbps

External network

* 8 servers:
* 12-core
* 64 GB RAM
e 2x NIC: 1x 1 Gbps + 1x 40 Gbps

40 Gbps

1 Gbps 1Gbps

External network

Networking — Sockets Perf Results

* Micro-benchmark only (disclaimer: Netty/Go impl may be inefficient)

* Linux 2 CPUs: GB/s 2568 _|4KB__64KB_|1MB __

* Gap for small payloads NETCore 0.09 077 1.09 1.10
(to be investigated)

Netty 011 048 066 0.67

Go 012 082 110 111

- ssl. 55.-GB/s 2568 |4K8 |64KB |1MB

* 22% gap (to be investigated) NET Core 0.04 0.31 0.71 0.87
Netty 003 012 0.15 0.15
Go 006 056 0098 1.12

https://github.com/geoffkizer/netperf/tree/master/SocketPerfTest
https://github.com/geoffkizer/netperf/tree/master/netty-socketperftest
https://github.com/geoffkizer/netperf/tree/master/gosrc/src/socketperftest

Networking — Sockets Perf on Server

» Kestrel server uses libuv -> Sockets prototypes

 Early Sockets prototype (with hacks):
* 7% improvement over libuv + more potential

* Recent Sockets prototype (very preliminary data):
* 13% worse than libuv on Linux
* 8% worse than libuv on Windows
* |[nvestigation in progress

Networking — ManagedHandler Perf

 ManagedHandler (functional early stage)
* Missing large features — authentication, proxy, http2

e Early measurements (simple http micro-benchmark):
* Windows: Parity with Go
* Linux: 15% gap (pending investigation)

Networking — SSL Perf

* Indicators:
e Sockets micro-benchmarks (22% overhead)
* TechEmpower benchmark
* Customer reports

e Attempt for rewrite by community (@drawaes)
 Some end-to-end wins, but no micro-benchmark wins

* Next steps:
* Measure & analyze micro-benchmarks & end-to-end scenarios
* Improve in .NET Core 2.1

Industry Benchmarks

e TechEmpower benchmark
* More end-to-end, with DB, etc.
» Useful for overall platform performance comparison

* Round 15 (preliminary data)
* ASP.NET Core at #5 entry (jump from #14 in Round 14)

Framewaork

W hyper
W aspnetcore-linux

M cutelyst-thread-epol

B vertx-web

Best plaintext responses per second, Dell servers at ServerCentral (192 tests)

1,623

4,840

Best performance (higher is better) Cls Lng Plt FE Aos IA Errors
3,749,624 | © N 100.09% (941%) Mcr Rus Rus tok Lin Rea
3,343,010 [59.7 % (83.9%) Mcr Sca Akk Non Lin Rea
2,852,628 | © T 7 6.1% (71.6%) Ful Jav. Utw Non Lin Rea
2,539,984 [, 7.7 % (63.7%) Mcr Rus Rus hyp Lin Rea
2,059,995 (N 54.9% (51.7%) Mcr C# Net Non Lin Rea
1,626,255 (N 4 3.4% (40.8%) FuL C++ Qt Non Lin Rea
1,412,892 | I 5/.7 % (35.5%) Mcr Jav Utw Non Lin Rea
1,277,953 [54.1% (32.1%) Mcr Sca bla Non Lin Rea
1,147,664 [N 50.6% (28.8%) Mecr Rby Non ngx Lin Rea
1,137,844 | 50.5% (28.6%) Mer Jav wvix Nen Lin Rea

https://www.techempower.com/benchmarks/previews/round15/#section=data-r15&hw=ph&test=plaintext&c=4

Industry Benchmarks

Platform performance shows how fast your app could be, one day

... but it is not everything:
* Productivity
* Tooling
* Developer availability (in-house/to hire)
* Documentation
* Community
* etc.

Performance - Lessons Learned

* Plan for performance during design
* Understand scenario, set goals
* Prototype and measure early

* Optimize what’s important — measure
e Avoid micro-optimizations
* Understand the big picture

* Don’t guess root cause — measure
* Minimize repro —it’s worth it!

BCL Performance

* Fine-tuned over 15 years
e Opportunities are often trade-offs (memory vs. speed, etc.)

* How to identify scenarios which matter

e Customer feedback
* OSS helps:

* More eyes on code
* More reports
* Motivated contributors

e Perf improvements in .NET Core (.NET blog post by Stephen Toub)

e Collections, Ling, Compression, Crypto, Math, Serialization, Networking

* Span<T> sprinkled in BCL

https://blogs.msdn.microsoft.com/dotnet/2017/06/07/performance-improvements-in-net-core/

BCL Performance —- What to not take?

 Specialized collections
* BCL designed for usability and decent perf for 95% customers

* Code complexity (maintainability) vs. perf wins

» APIs for specialized operations (e.g. to save duplicate lookup)
* Creates complexity
* May leak implementation into API surface

Wrap Up

* Proactive investments into .NET Networking stack

e Consistency across platforms
* Great performance for all workloads

* Ongoing scenario/feedback-based improvements in BCL perf

* Performance in general is:
* Important
* But not the only important thing
* Tricky to get right in the right place

