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Abstract

The presence of computationally demanding problems and the current inability to auto-
matically transfer experience from the application of past experiments to new ones delays
the evolution of knowledge itself. In this paper we present the Automated Data Scientist 1,
a system that employs meta-learning for hyperparameter selection and builds a rich ensem-
ble of models through forward model selection in order to automate binary classification
tasks. Preliminary evaluation shows that the system is capable of coping with classification
problems of medium complexity.
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1. Introduction

Recent concerns (Caruana, 2015; Feurer et al., 2015; Rostislav, 2009) about the dependence
of applied machine learning (ML) on human experts and the lack of transferability (leverag-
ing knowledge from past experiments) in the current approach, have set the ML community
in a quest of automation. The latter refers to off-the-self methods that could automate
(previously) manually-performed tasks when experimenting. AutoML has emerged out of
this necessity, acknowledging the importance of the meta-learning concept (Rostislav, 2009)
that incorporates experience into the application phase of ML tasks.

According to the No Free Lunch Theorem (Wolpert, 1996), all ML algorithms exhibit
the same mean performance when modelling all possible data generation distributions.
Nevertheless, the datasets ML deals with, are not randomly generated, but usually exhibit
some common characteristics. In this context, we argue on the usefulness of an AutoML
tool that can explore, train and gain experience from a variety of classification tasks.

While other approaches use meta-learning for warm starting optimization algorithms
(Feurer et al., 2014) and ranking predetermined hyperparameter sets (Soares et al., 2004), we
propose the use of meta-learning to directly predict the optimal hyperparameters of various
ML algorithms for training models in binary classification tasks. In order to circumvent
any prediction weaknessess, we incorporate prediction intervals in our models. Following
the work of Feurer et al. (2014), we applied our approach on a large library of models

1. https://github.com/issel-ml-squad/ads
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through forward model selection ensembles (Caruana et al., 2004). Our research led to
the development of an end-to-end, automated tool that employs meta-learning and makes
opinionated choices, in order to close the gap between the input dataset and the end result.

2. Methodology

The architecture of the Automated Data Scientist (ADS) is depicted in Figure 1.

2.1. Overview
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Figure 1: ADS architecture diagram

An experiment begins when the user inserts a classification dataset to our system. The
preprocessor module is responsible for the tasks of data cleaning (inappropriate value re-
moval, data type recognition, compression), data preprocessing (normalization, compres-
sion, feature engineering) and data splitting. Decision making at this stage is based on
heuristic rules, as extracted from the relevant literature (Tukey, 1977) 2. The mfExtractor
module is assigned the task of extracting meta-features, while the optimizer is responsible
for selecting the optimal hyperparameters for a variety of ML algorithms. Hyperparameter
selection is performed using prediction models, henceforth called HPP (HyperParameter
Prediction) models. HPPs are trained on data consisting of meta-features and optimal
hyperparameters, which are produced by employing Bayesian optimization on a repository
of binary classification datasets (as described in Section 2.2). In order to benefit from the
generation of a large and versatile library of models, forward model selection ensembles
(Caruana et al., 2004) are employed. An overall description of our model creation process
is provided in Section 2.3. Finally, module evaluator provides the functionalities of evalu-
ating a model through metrics and performance visualization plots, as well as comparing
different techniques through statistical testing and performance profile plots. The output of
our system comprises a reusable ensemble of trained models and a human-readable report
of the performed experiment.

2. Also courses like http://work.caltech.edu/telecourse.html and https://www.coursera.org/learn/

machine-learning offer useful heuristic rules
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2.2. Hyperparameters prediction system

Employing meta-learning for optimal hyperparameter prediction constitutes a novel ap-
proach to model tuning. Traditional methods, such as searching in predetermined spaces,
entail the drawbacks of slow execution and ad-hoc implementation. Furthermore, a re-
search on the a priori generally best optimization algorithm would contradict the intuition
of the No Free Lunch Theorem. In order to find the class for each HPP model, namely
the optimal hyperparameter value, tuning has to be performed for each training dataset in
a repository of gathered datasets. Our method of choice was Bayesian optimization, and
in particular the Tree Parzen Estimator (TPE). According to Bergstra and Bengio (2012)
TPE outperforms traditional methods. An important characteristic of our HPP models is
the embedding of prediction intervals. This trait was added to mitigate the already ob-
served weakness of such models to accurately predict the optimal hyperparameters (Feurer
et al., 2014). Hyperparameter optimization of all datasets was performed using HPOlib
(Eggensperger et al., 2013). Extensive research was conducted in order to select the appro-
priate meta-features that encompass all valuable information residing in a dataset; these
meta-features are displayed in Table 1. Linearly correlated meta-features were removed and
the remaining, uncorrelated meta-features are provided in Table 2 of the on-line Appendix 3.
In order to generate the prediction intervals for the HPP training process, bootstrapping
was employed, (Stine, 1985), since it ensures no bias in favor of any specific ML algorithm.

Table 1: List of meta-features used to train HPP models

Simple Statistical numeric Information-theoretic
Number of features Summation Class entropy
Logarithm of number of features Mean
Number of instances Standard deviation meta2-
Logarithm of number of instances Minimum Summation
Number of features with unknown values Maximum Mean
Percentage of number of features with unknown values Kurtosis Standard deviation
Number of instances with unknown values Skewness Minimum
Percentage of number of instances with unknown values Percentage of PCs for 95% pertained variance Maximum
Number of unknown values Kurtosis of first PC Kurtosis
Logarithm of number of unknown values Skewness of first PC Skewness
Number of numeric features
Number of categorical features Statistical categorical
Class probabilities Number of levels
Minimum class probability
Maximum class probability
Mean class probability
Standard deviation of class probabilities

Outliers dataset detection The ability of our system to optimize when a new dataset
is presented depends on its experience, which manifests itself in the form of the repository
of gathered datasets, used for training the HPP models. In order to provide the user with
a rating for the readiness of our tool to optimize a given problem, we have built a metric
that quantifies it.

To do so, we attempt to detect outliers in the instances of the new dataset against the
datasets of a repository by exploiting the meta-feature extraction mechanism. We adopt
the distance-based approach, which has been proven suitable for multidimensional data

3. The on-line Appendix can be found in https://github.com/issel-ml-squad/ads/blob/master/

ads-with-appendix.pdf
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and does not make assumptions about data distributions (Knorr et al., 2000). The on-line
Appendix offers more information upon the procedure.

2.3. Model creation system

The process of building an ensemble using forward model selection follows the approach
discussed in Caruana et al. (2004), where an ensemble formation technique is proposed, that
gradually picks the best-performing model to add from a heterogeneous library of trained
models. The attractiveness of this technique lies in its efficiency of adding a new model by
averaging the outputs, its ability to avoid overfitting and the importance it continusouly
lays on the performance of the final ensemble.

The following parameters allow the tuning of the building process: total number of
models included, initial sample size, number of bootstrap samples, probability of inclusion
in each bootstrap sample. Note that in our experiments a constant configuration was
preferred due to the induced computational complexity.

3. Results and Discussion

We have evaluated separately the hyperparameters prediction system and the overall per-
formance of ADS. Caruana et al. (2004) offer an evaluation framework for forward model
selection ensembles. We collected 125 datasets (on-line Appendix, Section D) and used 80%
to train the HPP models of ADS. The remaining datasets were used for evaluating ADS
for all compared techniques using 10-fold cross-validation for each dataset. The results are
presented in Section 3.2.

3.1. Hyperparameters prediction system results

Regression models were trained using the Root Mean Squared Error (RMSE) as a per-
formance metric and prediction intervals using bootstrapping were computed. We are in-
terested in both predictive accuracy of the regression models, as well as the improvement
caused by the adoption of prediction intervals, measured in Coverage, defined in the on-line
Appendix, Section C.

Figure 2 depicts the performance of all HPP models trained during our experiment. One
may argue that, despite the fact that the HPP models fail to always accurately predict the
optimal value, the embedding of prediction intervals helps to circumvent this problem. We
assume that if the optimal value lies in the prediction interval, then the ensemble building
technique will incorporate the corresponding model in the final ensemble. Note that testing
datasets classified as outliers for a particular HPP model are omitted from Figure 2.

3.2. Model generation system results

Since hyperparameter optimization was the main focus of our work, we use grid search and
Bayesian optimization (TPE) as benchmark methods. We experimented with individual
models, as well as with forward model selection ensembles.

Comparisons were performed using performance profile plots (Dolan and Moré, 2002)
and statistical testing, in particular Friedman rank sum test for the rejection of the equiva-
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Figure 2: Evaluation of HPP models: for each dataset, the prediction, class, RMSE and confidence
intervals are provided. From left to right: cp-HPP predicts the cp parameter of rpart*, k-HPP
predicts the parameter k of knn*, Decay-HPP and size-HPP predict the decay and size of nnet*,
Sigma-HPP and C-HPP predict the sigma and C parameters of svmRadial*.
* Names refer to R methods, as provided by package caret.

lence hypothesis and post-hoc Nemenyi test to detect pairwise differences, as suggested by
Demšar (2006).

The left plot of Figure 3 suggests that ADS is by 77% the best-performing algorithm
for all datasets, with CART (Classification and Regression Trees) models being the second
method of choice. The right plot, places CART models at the first place with 67.5% con-
fidence. In this scenario, ADS exhibits a constantly good behavior deviating a factor of
τ = 1.33 from the best algorithm for all datasets. Statistical testing, presented in Figure 3,
outrules any important statistical difference between ADS and the single model benchmark
methods at a 95% confidence level. We thus conclude, that ADS offers performance equiva-
lence to both well-established and state-of-the-art hyperparameter optimization techniques,
while bringing the additional benefits of generation of meta-knowledge and speed, as the
time-consuming search was replaced by a simple prediction.

4. Related Work

Understanding that the well-established grid search is worse than random search (Bergstra
and Bengio, 2012) motivated the search for tuning algorithms and acknowledged Bayesian
optimization as a promising optimization approach. AutoWEKA addresses the CASH prob-
lem (Thornton et al., 2012) through Bayesian optimization, while Feurer et al. (2014) de-
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Figure 3: Evaluation of system’s performance: (Left) performance profile plot for grid-search,
(Right) performance profile plot for TPE, (Bottom) Statistical testing of performances. Pairwise-
comparisons were performed using the post-hoc Nemenyi test and statistically significant differences
are indicated with bold.

signed a system that embeds meta-learning in optimal hyperparameter selection. Other
attempts to incorporate meta-learning to the tuning process include the works of Feurer
et al. (2014); Kuba et al. (2002); Soares et al. (2004), who dealt with the weakness of their
meta-learning models in the task of predicting the optimal hyperparameters in different
ways: by using the predicted values for warm-starting Bayesian optimization, applying lo-
cal search around predicted values, or exploiting the top-N performing values respectively.
Rostislav (2009) enriched meta-learning by introducing the concept of meta2-features, lay-
ing the ground for more successful application of meta-learning in optimization tasks.

5. Conclusions and Future Work

Our contribution to the AutoML domain includes our experimental research on HPP models
with embedded prediction intervals and the developed ADS tool. By exploiting the robust
building mechanisms of forward model selection ensembles, we managed to tune our models
using solely meta-learning and achieved performance equivalent to Bayesian optimization.
ADS leverages the findings of our work and, additionally, places great importance into
expandability, re-usability and intuitiveness of the experiment, traits that, to our point of
view, are quintessential for an AutoML tool. We recognize the potential of improving our
HPP-models by further experimenting with meta-features, as well as the parameterization
of prediction intervals and ensemble model building.
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