
G E T T I N G S T A R T E D
W I T H A P P I U M
By Jonathan Lipps

Ruby Edition 2018.1

3 The Preface

4 Ch. 1: Introduction

4 The Appium Vision

5 The Appium Drivers

5 The Appium Clients

7 Ch. 2: Getting Set Up

7 Assumed Knowledge

7 iOS-specific System Setup

7 Android-specific System Setup

8 Appium Setup

8 Appium From the Command Line

8 Appium From Appium Desktop

10 Ruby Client Setup

10 Project Setup

11 Known Working Versions

12 Ch. 3: Exploring Your App

12 Using the Appium Ruby Console

17 Using the Appium Desktop Inspector

20 Ch. 4: Writing Your First Test

25 Ch. 5: Introduction to Page Objects

30 Ch. 6: Android Joins the Party

35 Ch. 7: Running Local Tests with Rake

36 Ch. 8: Running Tests in the Sauce Labs Cloud

40 Annotating Tests on Sauce

41 Ch. 9: Automating Test Runs with a CI Server

41 Setting up Jenkins

42 Creating an Android Build

44 Creating an iOS Build

44 Running on Sauce

44 Jenkins for Production

46 Heading Out on Your Own

46 Resources

47 Support

TABLE OF CONTENTS

PREFACE

This little e-book will help you get started with Appium using the Ruby

programming language. It is a complete revision from the ground up of an

earlier guide written by Dave Haeffner, who along with Matthew Edwards

deserves a lot of thanks for all the work put into the first edition.

Appium is an open source project that is always changing, and guides like

this one will never be accurate forever. When possible I will indicate which

versions of various software are being used, which might help in ensuring

reproducibility of the code samples used here.

As the Appium project lead, I benefit from the work of the entire community

in being able to write a guide like this. Appium would not be what it is today

without the maintainers and users who have decided to throw their lot in

with our take on mobile automation. The credit for this book as well as for

Appium as a whole go far and wide! Thanks especially to Sauce Labs who

commissioned the writing of this guide, and @KazuCocoa, the current

maintainer of the Appium Ruby libraries.

Jonathan Lipps

February 2018

Vancouver

3

https://saucelabs.com/
https://github.com/KazuCocoa

Chapter 1

INTRODUCTION

Appium is a tool for automating apps. It has two components: the Appium

server, which does the actual automating, and a set of Appium clients, one

for every popular programming language. You write tests in your favorite

language by importing the Appium client for that language and using its API

to define a set of test steps. When you run the script, those steps are sent

one-by-one to a running Appium server, which interprets them, performs

the automation, and sends back a result if appropriate.

Appium was initially developed to automate mobile applications, first iOS

and then Android. In recent years Appium has gone beyond mobile to

support Desktop or even TV apps. This guide focuses on mobile testing,

for iOS and Android.

There are several kinds of mobile apps, and Appium lets you automate

all of them:

1. Native apps — apps built using the native mobile SDKs and APIs

2. Web apps — websites accessed using a mobile browser

3. Hybrid apps — apps with a native container and one or more webviews

embedded in that container. The webviews are little frameless browser

windows which can show content from the web or from locally-stored

HTML files. Hybrid apps allow the use of web technologies within a

native-like user experience.

This guide focuses on automating native apps. Switching to web or hybrid

automation is a breeze once you’re familiar with the basic principles of

Appium automation, and plenty of information can be found online about

automating the other app modes.

THE APPIUM VISION

Appium is both more and less than an automation library. It is less than

an automation library because Appium itself relies on other, more basic

automation tools in order to run behaviors on mobile devices. The Appium

team decided long ago not to compete on the fundamentals of functional

automation. Apple or Google are well-positioned to release tools that

efficiently automate one of their mobile devices. What Appium does bring

is a standard interface on top of all of these disparate technologies.

4

http://appium.io/

Appium implements the WebDriver Protocol, a W3C standard defining

browser automation. It’s the same protocol that Selenium uses, meaning

your Selenium knowledge will translate completely to Appium skill.

So Appium is fundamentally about providing you access to the best

automation technologies that are out there, within a standard WebDriver

interface accessible from any programming language or test client.

Importantly, Appium is totally open source. Owned by the JS Foundation,

Appium has open governance and contribution processes. The Appium team

believes that open is the way to go, and the meteoric rise of Appium as a

project is a testament to this approach.

THE APPIUM DRIVERS

How does Appium organize itself to meet its vision? Each automation

technology provided by Appium is wrapped up into a bit of code called an

Appium driver. Each driver knows how to translate the WebDriver protocol

to that particular technology. And they all do quite a bit more than that,

too—most of them take care of setting up and running the underlying

technology as well.

What this means for you is that you are not just using Appium. You’re using

Appium in conjunction with one or more drivers. Even one platform (like

Android), might have multiple supported Appium drivers, which target

different fundamental automation technologies. For example, you can pick

between the appium-uiautomator2-driver and the appium-espresso-

driver when it comes to writing your Android tests. It’s worth getting to

know the different drivers so that you’re sure you’re using the best one for

your tests. While Appium does its best to ensure automation commands do

the same thing across different drivers, sometimes underlying differences

make this impossible. For the Appium code samples in this guide, the iOS

driver we’ll be using is appium-xcuitest-driver, and the Android driver

will be appium-uiautomator2-driver.

THE APPIUM CLIENTS

One of the great things about Appium is that you can write Appium scripts in

any language. Because Appium is built around a client-server architecture,

clients can be written in any programming language. These clients are simply

fancy HTTP clients, which encapsulate HTTP calls to the Appium server inside

nice user-facing methods (usually in an object-oriented fashion). This guide

will be using the Appium Ruby client, which is a rubygem named appium_lib.

5

https://www.w3.org/TR/webdriver/
https://js.foundation/

The Appium Ruby client is not a standalone library: it is actually a wrapper

around the standard Selenium Ruby client. So if you’re already familiar with

the Selenium client, you’ll find it easy to understand the Appium version.

OK, time to get your system set up to run Appium tests!

6

Chapter 2

GET TING SET UP

Getting going with Appium itself is fairly straightforward. However, Appium

depends on the various mobile SDKs and system dependencies in order

to perform its magic. This means that even if you’re not an app developer

yourself, and don’t plan on writing iOS or Android code, you’ll need to get

your system set up as if you were. Don’t worry—this guide will walk you

through it. I should point out for our Windows and Linux friends that this

guide assumes a Mac environment, since iOS testing can only be done on

a Mac. If you’re only interested in Android testing and want to run Appium

on Windows or Linux, refer to the Appium documentation for setup

information specific to your host OS.

ASSUMED KNOWLEDGE

This guide is meant to be a reasonably in-depth introduction to Appium.

However we do assume certain kinds of knowledge. For example, we expect

that you know your way around the command line terminal on your Mac, and

already know the Ruby programming language well enough to follow along

with simple examples. If either of these assumptions are not true for you, stop

here and do some digging on the Internet until you’ve found a good tutorial

on those topics before you continue following this guide.

IOS-SPECIFIC SYSTEM SETUP

• Install Xcode

• Install Xcode’s CLI tools (you’ll be prompted the first time you open

a fresh version of Xcode)

• Install Homebrew

• Install Carthage via Homebrew: brew install carthage

ANDROID-SPECIFIC SYSTEM SETUP

• Install Android Studio and SDK Tools

• Using the Android Studio SDK Manager, download the latest Android SDK,

build tools, and emulator images

• Install the Java Development Kit (JDK)

7

https://developer.apple.com/xcode/
https://developer.apple.com/library/ios/technotes/tn2339/_index.html
https://brew.sh/
https://github.com/Carthage/Carthage
https://developer.android.com/studio/index.html
https://developer.android.com/studio/intro/update.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

• In your shell login file (~/.bashrc, etc…):

 — Export $ANDROID_HOME to the location of the Android SDK on disk.

 If you didn’t set this manually, it’s probably at the default location

 — Ensure that the appropriate directories are added to your $PATH

 so that the adb and emulator binaries are available from the

 command line

 — Export $JAVA_HOME to the Contents/Home directory inside of the

 newly-installed JDK (where does JDK get installed?)

 — Ensure that the appropriate directories are added to your $PATH so

 that the JDK’s binaries are accessible from the command line

• Configure an Android Virtual Device (AVD) in Android Studio.

The particular device doesn’t matter. This will be the emulated device

we use for Android testing in this guide.

APPIUM SETUP

There are two ways to install officially released versions of Appium: either

from the command line via NPM or by installing Appium Desktop.

Appium From the Command Line

Appium is shipped as a Node.js package, so if you have Node.js and NPM

installed on your system, you can simply run:

npm install -g appium

And the most recent version of Appium will be installed. You can then run

Appium simply by typing appium from the command line.

Appium From Appium Desktop

There is a very nice graphical front-end for Appium, maintained by the Appium

Developers, called Appium Desktop. It bundles Appium along with a useful app

inspector tool, so you can simply download Appium Desktop without worrying

about any other system dependencies. You’ll want Appium Desktop for this

guide anyway, so go ahead and grab it from the releases page.

8

https://stackoverflow.com/questions/26739114/android-studio-sdk-location
https://stackoverflow.com/questions/13918475/where-is-oracles-suns-jdk-jre-installed-on-mac-os-x-10-8-mountain-lion
https://developer.android.com/studio/run/managing-avds.html
https://github.com/appium/appium-desktop
https://github.com/appium/appium-desktop/releases

Once you’ve got it on your system and opened up, you should be greeted

with a screen like this:

Now you can simply hit the “Start Server” button, and you’ll see an Appium log

window open up:

When we eventually begin running tests, this is where you’ll see the output of

what Appium is doing. Reading the Appium server logs can be a very useful

way to understand what is happening under the hood! But for now, we just

9

10

want to make sure that everything is working. You can go ahead and stop the

server if you want, or leave it running for later.

RUBY CLIENT SETUP

There are two Ruby libraries we’ll be using in this guide. The first is appium_lib,

the Appium Ruby client. It’s what we’ll be using to speak the WebDriver protocol

with the Appium server. The second library is appium_console, which is a

command-line REPL we can use to experiment with the Ruby client in an easy

fashion, outside the context of running an actual test. To get everything going:

• Get some system dependencies set up:

 — brew install autoconf

 — brew install automake

 — brew install libtool

• Make sure rubygems are up to date:

 — gem update --system

 — gem update bundler

• Now install the latest version of appium_lib and appium_console:

 — gem uninstall -aIx appium_lib

 — gem uninstall -aIx appium_console

 — gem install --no-rdoc --no-ri appium_lib

 — gem install --no-rdoc --no-ri appium_console bond

To be sure everything was installed, run gem list | grep appium. You should

see output like the following:

appium_console (2.8.1)

appium_lib (9.10.0)

appium_lib_core (1.3.2)

PROJECT SETUP

For the rest of this guide we’re going to be working on a Ruby project, starting

from scratch. To get set up for the project, create a new directory somewhere

on your system. It doesn’t matter where it is. But in this guide, we’re going to

pretend it is /path/to/project, so anytime you see that path, just replace it

with the one you’re using.

First, create two subdirectories, one called ios and one called android.

Then, download a copy of the test app we will use for this project. The test

app is called The App and it’s a silly little thing that will help us get going with

automation. There’s a version for both iOS and Android Download each app

from the v1.2.1 release page on GitHub. Put the iOS app (the one ending with

.app.zip) in the ios dir, and the Android app (the one ending with .apk) in

the android dir. At this point your project directory should look like:

/path/to/project

 android

 TheApp-v1.2.1.apk

 ios

 TheApp-v1.2.1.app.zip

We’re now ready to begin! Head on over to the next chapter where we

discuss how to open up your app and look for UI elements inside.

KNOWN WORKING VERSIONS

As an aside, it’s worth mentioning what combination of software this book

was written and tested with. If you want to guarantee that all the code

samples will run without any modification, make sure to use this combination

of tools and libraries:

Library Version

Android 8.1, 7.1

Appium 1.7.2

Appium Ruby Client 9.10.0

iOS 11.1

Java JDK 1.8.0

Jenkins 2.89.4

macOS 10.13.3

Ruby 2.4.1

The App 1.2.1

Of course, I’ll try to write code that won’t go out of style too quickly.

But Appium is a fast-moving project, so some Appium code might become

outdated before too long, if you’re keeping up with Appium server and

driver releases. Always make sure you’re reading the most recently

published version of this guide.

11

https://github.com/cloudgrey-io/the-app/releases/tag/v1.2.1

Chapter 3

EXPLORING YOUR APP

Before you can test your app, you have to know how it’s put together! You

don’t need to know the nitty-gritty of the app code, but you do need to

know what the UI elements are that your test will operate on. In this chapter

we’re going to look at two ways of exploring the element hierarchy of our

app, and figuring out how to find specific elements for use in testing. The

first way is via the command-line Appium console, and the second is via the

visual inspector bundled with Appium Desktop. (Be sure to read through both

sections even if you only care about one, since I explain more about how

Appium works along the way).

USING THE APPIUM RUBY CONSOLE

In the last chapter you installed a Rubygem called appium_console, which is

a command-line REPL for using the Appium Ruby client to run sessions and

explore apps. Let’s get it going. The first thing to do is spin up the Appium

server, so go ahead and click the “Start Server” button in Appium Desktop

(with the default host and port), or run appium from the command line

(depending on how you installed Appium in the previous chapter).

You should now see Appium’s welcome message, something like:

[Appium] Welcome to Appium v1.7.2

[Appium] Appium REST http interface listener started on 0.0.0.0:4723

This means Appium is alive and waiting for a new automation session to be

requested. We’re going to do that with the appium_console gem, which has

installed an executable on your system called arc (appium ruby console). In

order to start a session using arc, we have to create a configuration file to

encapsulate the parameters we will use to start the session. In WebDriver-

land, these parameters are known as desired capabilities, often abbreviated

“caps”. We’re going to start by using 5 desired capabilities:

• platformName: which mobile platform we’re running on (iOS or Android)

• platformVersion: which mobile OS version (e.g., “11.1” for iOS)

• deviceName: the kind of device we wish to automate (e.g., “iPhone 8”

or “Android Emulator”)

• app: the path on your filesystem to the app you want to automate

12

https://en.wikipedia.org/wiki/Read–eval–print_loop

• automationName: which Appium driver to use (if different than the default

for the platform specified)

In order to get arc to use these caps to start an Appium session, we create

a file for it to read, called appium.txt. We’re going to need two of these files:

one for our iOS app and one for our Android app. So fill out an appium.txt

file with the following contents, in the appropriate project directory.

In /path/to/project/ios/appium.txt:

[caps]

platformName = “iOS”

platformVersion = “11.2”

deviceName = “iPhone 7”

app = “/path/to/project/ios/TheApp-v1.2.1.app.zip”

[appium_lib]

sauce_username = false

In /path/to/project/android/appium.txt:

[caps]

platformName = “Android”

deviceName = “Android Emulator”

app = “/path/to/project/android/TheApp-v1.2.1.apk”

automationName = “UiAutomator2”

[appium_lib]

sauce_username = false

The only non-obvious differences between these two sets of caps are (1) in

Android, we don’t need to specify the platformVersion, since Appium will

just use the running AVD we have created, and (2) in Android, we make sure

to use the newer Android driver (namely appium-uiautomator2-driver).

Notice also that we have an [appium_lib] section with sauce_username =

false in it. This just ensures that we are running tests using our local Appium

server and not on Sauce. If you’re already a Sauce user reading this guide,

you might have certain environment variables set on your system that would

otherwise trigger the Ruby client to try to run the test on Sauce. Not so fast,

Ruby client!

13

Anyway, at this point, your project structure should look like:

/path/to/project

 android

 appium.txt

 TheApp-v1.2.1.apk

 ios

 appium.txt

 TheApp-v1.2.1.app.zip

To learn about arc, it doesn’t matter which platform we begin with,

so let’s start with iOS. Navigate to the project’s ios folder in your terminal,

and then fire up arc:

cd /path/to/project/ios

arc

At this point, arc will attempt to start an iOS automation session on the

running Appium server, using the caps you provided in the appium.txt file.

If all goes you well, you will see a bunch of debug text filling the Appium

server log window, letting you know that Appium is working on starting

your session. If that process is successful, eventually an iOS simulator will

pop up and load our test app, and wait for further instruction from you. If

this does not happen, there will be error output from arc. Read it carefully,

as it will likely contain a clue as to what went wrong (maybe the path to

the application was not correct, for example). If it doesn’t, move over to

the Appium logs and read up from the bottom; likely there will be an error

message that could contain more information. (If you end up stuck, head to

the Appium forums and ask for help. You won’t be able to continue this guide

until you’ve got a working session!)

Once the session has started, arc will show you a prompt that allows

you to start typing:

[1] pry(main)>

At this prompt you can use API methods from the Ruby client in order to

find elements or examine the source tree of your application. What sorts

of elements are there? Let’s run the page_class command to find out:

14

15

pry(main)> page_class

17x XCUIElementTypeOther

2x XCUIElementTypeWindow

1x XCUIElementTypeStatusBar

1x XCUIElementTypeStaticText

1x XCUIElementTypeNavigationBar

1x XCUIElementTypeApplication

According to iOS, we’ve got an Application, a NavigationBar, a few other

single-class elements, and a whole load of XCUIElementTypeOther. These are

the elements that Apple’s XCUITest library (which Appium is running under the

hood) knows about. We can drill down into some details of these elements

with the page command:

pry(main)> page :XCUIElementTypeOther

XCUIElementTypeOther

 visible: true

XCUIElementTypeOther

 name, label: The App

 visible: true

XCUIElementTypeOther

 visible: true

XCUIElementTypeOther

 isible: true

XCUIElementTypeOther

 visible: true

XCUIElementTypeOther

 name, label: Choose An Awesome View Echo Box Login Screen

 visible: true

(Note that we put a : in front of XCUIElementTypeOther, because we want

it to be a Ruby symbol). Basically, this command walks through all of the

Other elements and gives us some extra information about them, including

a name. This name is important, because we can use it to find the element

in our test, assuming it’s unique. How do you find elements? By using the

find_element() command! find_element() is an API method that takes two

parameters: a “locator strategy” and a “selector”. The strategy is the method

by which we are instructing Appium to find the element. We have to be

specific here because there are a variety of strategies, and not all of them will

find the elements we want. The selector is a string that describes the element

in light of the chosen strategy.

16

There are a number of locator strategies:

Strategy Description

:accessibility_id Accessibility label

:id Internal id

:class_name UI class name

:xpath XPath query based on source XML

Let’s try out the first strategy, :accessiblity_id, which is always the

recommended strategy since accessibility IDs can be added to elements

by the app developer across platforms, so they’re a good choice for a cross-

platform locator. From the output of the page command earlier, we know

that there is an element with the name Echo Box. On iOS, the accessibility

ID is shown as the name attribute, so that’s what we use:

pry(main)> find_element(:accessibility_id, “Echo Box”)

#<Selenium::WebDriver...>

The #<Selenium::WebDriver...> response is the representation of an object

element. This means we found what we were looking for! Well, we found

something. How can we be sure it’s the element we want? We could query

the element itself to see what text it’s showing in the app:

pry(main)> find_element(:accessibility_id, “Echo Box”).text

“Echo Box”

Good. The fact that the .text command came back with “Echo Box” meant

we found the element we were looking for. If we wanted, we could also

perform an action on this list item, maybe tapping on it:

pry(main)> find_element(:accessibility_id, “Echo Box”).click

“”

If you watch the simulator while running this command, you’ll see the view

change as a result of the list item being tapped. We get an empty response

from arc because the click action doesn’t return any value; it simply does

its thing and gives back control. Let’s finish out this section by closing the

session (don’t want to leave it hanging around blocking future sessions or

hogging resources). We can simply type x at the arc prompt to achieve this.

pry(main)> x

Closing appium session...

17

Believe it or not, this is basically everything you need to know about how to

write an Appium test. Every Appium test consists of the following components:

1. Starting a session using desired capabilities

2. Finding elements

3. Performing actions on elements (including querying their state)

4. Ending the session

Steps 2 and 3 simply repeat as many times as necessary to walk through your

app and generate the desired user behavior, making verifications in your test

code along the way. Of course, there’s a lot more to learn in terms of library

methods available to you. But this is the basic pattern. The rest is details!

Now, it’s up to you to go explore the Android version of The App. All you need

to do is fire up your AVD from Android Studio, and then run arc from the

android subdirectory in your project. If all goes well, you’ll be able to explore

the Android version of this app in exactly the same way as we did for iOS.

USING THE APPIUM DESKTOP INSPECTOR

arc is pretty cool, and essential for playing with the Ruby-specific client

commands to see how they work, or try something out without having to

write a whole test. But for inspecting your app, finding elements, and a host

of other reasons, Appium Desktop is the tool of choice.

If you’ve already got Appium Desktop’s server running, simply tap the

magnifying glass icon (“Start Inspector Session”), and a new window will

pop up that will give you the ability to enter desired capabilities for a new

Appium session:

18

Using this UI, port over the desired capabilities from the iOS appium.txt. As

you build the caps, you’ll see a nice JSON representation so you can double-

check your work. If you want, you can even save this set of caps so you can

load it next time you launch Appium Desktop. When you’re done, ensure that

the server selection panel has the correct server set (probably the “Automatic

Server” if you’re running from Appium Desktop). Then, click “Start Session”.

At this point Appium Desktop is starting a new session for you using the

provided capabilities. If all goes well, the window will morph into the Inspector:

The Inspector consists of four sections:

1. A command bar with buttons that give access to different

actions and features

2. A screenshot of the state of your app after the last command

3. The XML tree of your application hierarchy

4. A properties viewer that shows the details of a selected element,

and lets you interact with a selected element

In the screenshot section, you can move your mouse over different

elements and see them highlighted. If you click on one, it will open up in

the property viewer. Go ahead and click on the “Echo Box” list item. You’ll

see it focused in the source tree, and you’ll also see a bunch of information

retrieved for the element in the property viewer. In the upper portion of

the property viewer, there’s even a small table with recommended locator

strategies and selectors for this element. In this case, Appium Desktop is

recommending that we find this element by ‘accessibility id’, using the same

selector we used within arc. Just like in ‘arc’, we can also run commands

19

on this element. By hitting ‘Tap’, we see the same action as before: the list

item is tapped and we get to a new view. After this new view loads, the

screenshot and source refresh so we can explore the current state. (If the

app is slow and the refresh happens before new elements load, you can

always hit the ‘Refresh’ button to update the Inspector).

Appium Desktop’s Inspector is a powerful tool with many more features than

we can go into in this guide, including the ability to record test actions and

generate usable code. Please play with it and check out the Appium Desktop

README for more information. What we’ve learned to do with it so far is still

absolutely essential: how to navigate our app’s hierarchy and figure out which

selectors we should be using in our test code.

Speaking of test code, it’s high time we wrote some. Now that we’re armed

with the ability to figure out which elements are in our app and how to find

them, we can move to our favorite editor and write some Ruby scripts that

actually perform a useful verification.

https://github.com/appium/appium-desktop
https://github.com/appium/appium-desktop

20

Chapter 4

WRITING YOUR F IRST TEST

The test we’re going to write in this chapter will exercise the admittedly fake

“login” functionality of The App. It’s worth thinking first about how we would

test this manually before we begin to write code. Here’s what we’d do to

verify a successful login flow:

1. Open up the app

2. Tap the “Login Screen” item

3. Enter a valid username and password in the box

4. Tap the “Login” button

5. Verify that we can see something only logged-in users should see.

(Of course, to fully exercise the feature we’d also want a negative test:

entering an invalid username or password and ensuring that we cannot

see the logged-in area.)

Let’s dive into the Ruby code that will test this flow. First of all, because

we want to assume we may be working on this test code as a team at

some point in the future, we want to ensure that all the versions of our

dependencies are set. We wouldn’t want a teammate to try to run the test

with a different set of gems, since it could lead to hard-to-debug errors.

The way to achieve consistency here is to use the bundler gem. Install it

if you don’t have it already:

gem install bundler

Then, create a file called Gemfile in the root of our project directory.

The Gemfile will hold the description of the gems and their versions:

source ‘https://rubygems.org’

gem ‘rspec’, ‘~> 3.7.0’

gem ‘appium_lib’, ‘~> 9.10.0’

gem ‘appium_console’, ‘~> 2.8.1’

With this file in place we can run the bundle command in the project

root directory:

bundle install

21

This will ensure we have all the gems installed at the appropriate versions,

including the new rspec gem. RSpec is the test framework we will be using

to develop our test suite. Now let’s compose our first test file, for iOS.

Create a file called login_spec.rb and add it to the ios directory:

require ‘appium_lib’

describe ‘Login’ do

 before(:each) do

 appium_txt = File.join(Dir.pwd, ‘appium.txt’)

 caps = Appium.load_appium_txt(file: appium_txt)

 @driver = Appium::Driver.new(caps)

 @driver.start_driver

 end

 after(:each) do

 @driver.driver_quit

 end

 it ‘Login with valid credentials’ do

 @driver.wait {

 @driver.find_element(:accessibility_id, “Login Screen”)

 }.click

 username = @driver.wait {

 @driver.find_element(:xpath,

 “//XCUIElementTypeTextField[@name=\”username\”]”)

 }

 password = @driver.find_element(:xpath,

 “//XCUIElementTypeSecureTextField[@name=\”password\”]”)

 username.send_keys(“alice”)

 password.send_keys(“mypassword”)

 @driver.find_element(:accessibility_id, “loginBtn”).click

 @driver.wait {

 @driver.find_element(:accessibility_id,

 “You are logged in as alice”)

 }

 end

end

http://rspec.info/

22

At this point, your directory tree should look like:

/path/to/project

 android

 appium.txt

 TheApp-v1.2.1.apk

 Gemfile

 Gemfile.lock

 ios

 appium.txt

 login_spec.rb

 TheApp-v1.2.1.app.zip

You can run the test by navigating to the ios directory in your terminal

(if you’re not still there), and running:

rspec login_spec.rb

Assuming all has been set up correctly, you’ll see Appium navigating the

views, filling in the username and password details, and ending the session.

Now let’s pick apart the code to see how it all worked! First, we make sure

to require our Appium library, and set up the skeleton for our test using the

RSpec structure:

require ‘appium_lib’

describe ‘Login’ do

 before(:each) do

 ...

 end

 after(:each) do

 ...

 end

 it ... do

 ...

 end

end

What this structure indicates is that we have one or more tests belonging to

a ‘Login’ category. We want RSpec to run some code before and after every

single test, which we put into the before(:each) and after(:each) blocks.

Finally, we specify the test itself using the it block. The way we’re using this

structure is to set up our Appium session in the before block, use the session

for the test, and then tear it down in the after block. When we have multiple

tests, we are going to be doing this for each test, so that every test has its own

completely fresh Appium session.

23

How do we start an Appium session? Let’s take a look:

appium_txt = File.join(Dir.pwd, ‘appium.txt’)

caps = Appium.load_appium_txt file: appium_txt

@driver = Appium::Driver.new(caps)

@driver.start_driver

We’re taking advantage of the fact that we already have our desired

capabilities set in the appium.txt file, and simply loading the caps from the

file using the Appium.load_appium_txt helper utility. Then, we’re storing a

new Appium::Driver based on these caps into a Ruby instance variable, and

starting the session with it. We’re making an instance variable here because

we want the driver to be accessible from other parts of our script (the test

block itself, most importantly).

The way we end an Appium session is dead simple: just call driver_quit

on our stored @driver object.

The test itself is where we see some complexity:

@driver.wait {

 @driver.find_element(:accessibility_id, “Login Screen”)

}.click

username = @driver.wait {

 @driver.find_element(:xpath,

 “//XCUIElementTypeTextField[@name=\”username\”]”)

}

password = @driver.find_element(:xpath,

 “//XCUIElementTypeSecureTextField[@name=\”password\”]”)

username.send_keys(“alice”)

password.send_keys(“mypassword”)

@driver.find_element(:accessibility_id, “loginBtn”).click

@driver.wait {

 @driver.find_element(:accessibility_id,

 “You are logged in as alice”)

}

I’m making heavy use of a driver method called wait, which takes a block

and returns (in this case) an element. What is the purpose of wait? When

you ask Appium to find an element, it will do so immediately, exactly when

you ask it to. That’s all well and good, except for the fact that sometimes

your app is not quite in a state where the element you are trying to find

is ready. This can happen during view transitions, or while waiting on a

network request, or for many other reasons. As humans, we’re pretty good

at watching the view until we notice it’s in a good state for interaction.

24

As a robot, Appium is less sophisticated, and we have to be explicit about

telling Appium to wait until conditions are right. We wouldn’t want this test

to fail just because Appium was too eager to try and find an element, and

then declared it to be non-existent, when it just needed to wait a few more

milliseconds! This is exactly what wait does: continually retries whatever is

in the block for up to 30 seconds by default.

What the rest of the code does should be pretty self-explanatory given what

we learned in the previous chapter. We’re finding elements using a variety

of locator strategies, and performing actions on them. The new action we

encounter in this code is send_keys, which sends keystrokes to an input field.

The only thing apparently missing from this test is a verification. How are we

proving that we have navigated to a logged-in area? Actually, a verification

is hidden in the last chunk of the method. Telling Appium to wait until

an element exists with the string “You are logged in as alice” is a

verification, because if the element is present, we know we have reached the

logged-in area. If the element is not present, the wait will eventually throw

an error, and the test will be considered to have failed as a result.

This is a great start, but we can certainly do better with the code. We’ll see

how in the next chapter.

25

Chapter 5

INTRODUCTION TO PAGE OBJECTS

One issue with the test code we’ve written as it stands is that we are mixing

information about our app (namely which elements can be found with which

locators) and information about our test (which test steps constitute the flow

we are trying to test). Another issue is that, as soon as we add a second login-

related test, we’ll begin duplicating our selector strings. Imagine if the app

were to change its accessibility IDs—we’d have to go make a change in many

different tests!

The common solution to these problems is to use something called the Page

Object Model. A Page Object represents a view, and exposes only high-level

actions so that test code can deal in user-level behaviors rather mixing in

low-level element finding logic. What do I mean by this? Imagine if the test

block from login_spec.rb were instead to read something like this:

@home_view.nav_to_login

@login_view.login(“alice”, “mypassword”)

name = @user_view.get_logged_in_user

assert_equal(user, “alice”)

This is a much more concise, readable, and maintainable bit of test code. It

specifies everything we need to do, and nothing more than that. It puts the

responsibility of finding elements or getting data from them on these new

objects we’re referencing: @home_view, @login_view, and @user_view. These

represent the Page Objects that I have been talking about. Let’s take a look at

what a Page Object might look like for the home view:

class HomeView

 @@login = [

 :accessibility_id,

 “Login Screen”

]

 def initialize(driver)

 @d = driver

 end

 def nav_to_login()

 @d.wait { @d.find_element(*@@login) }.click

 end

end

Basically, we maintain the information about selectors in class variables, and

expose user-level behaviors in methods on the object. We encapsulate both

26

strategy and selector information with each element we care about, leading

to super clean code. But this is very sparse and empty; all we care about

doing with this view is getting to another view! So let’s look at the Page

Object Model for the login view now:

class LoginView

 @@username = [

 :accessibility_id,

 “username”

]

 @@password = [

 :accessibility_id,

 “password”

]

 @@login_btn = [

 :accessibility_id,

 “loginBtn”

]

 def initialize(driver)

 @d = driver

 end

 def login(username, password)

 @d.wait { @d.find_element(*@@username) }.send_keys(username)

 @d.find_element(*@@password).send_keys(password)

 @d.find_element(*@@login_btn).click

 end

end

This is a little meatier, but still nice and simple. We have information about

finding our elements, and then the high-level login method exposed. Let’s

round out our object models with the model for the logged-in user page:

class UserView

 @@message = [

 :xpath,

 “//XCUIElementTypeOther[contains(@name, ‘You are logged in as’)]”

]

 def initialize(driver)

 @d = driver

 end

 def get_logged_in_user()

 message = @d.wait { @d.find_element(*@@message) }.text

 message.sub(/.*You are logged in as ([^]+).*/, ‘\1’)

 end

end

27

Since what we want is to provide a method which returns the name of the

logged-in user, we have to do some clever substitution on the text which

is actually available to us, but otherwise this Object Model is also very

straightforward. Assuming we have named these different files home_view.

rb, login_view.rb, and user_view.rb respectively, we can update our main

spec file to take advantage of these Object Models:

require ‘appium_lib’

require ‘test/unit/assertions’

require_relative ‘./home_view.rb’

require_relative ‘./login_view.rb’

require_relative ‘./user_view.rb’

include Test::Unit::Assertions

describe ‘Login’ do

 before(:each) do

 appium_txt = File.join(Dir.pwd, ‘appium.txt’)

 caps = Appium.load_appium_txt(file: appium_txt)

 @driver = Appium::Driver.new(caps)

 @home_view = HomeView.new(@driver)

 @login_view = LoginView.new(@driver)

 @user_view = UserView.new(@driver)

 @driver.start_driver

 end

 after(:each) do

 @driver.driver_quit

 end

 it ‘Login with valid credentials’ do

 @home_view.nav_to_login

 @login_view.login(“alice”, “mypassword”)

 user = @user_view.get_logged_in_user

 assert_equal(user, “alice”)

 end

end

Despite the fact that we have some extra requires, our test code itself is now

much more maintainable and easy to understand. Furthermore, in future tests

we now have access to a growing library of high-level methods that we can

reuse. And if a selector changes for an app element, we have one place to go

to fix it without having to worry about where else it might be in our codebase.

Migrating to the Page Object Model was great, but we can do a bit more

cleanup. Right now our directory structure is getting a bit cluttered. Let’s

move the test file into its own directory called spec (paving the way for more

tests), and the Page Objects into their own directory called views. Once we do

that, we can also create a handy little file called requires.rb whose job is

28

simply to require everything we need so that we don’t have to have a bunch

of require calls cluttering up our test code. Assuming we’ve put requires.rb

alongside our test code inside spec, it should look like:

require ‘appium_lib’

require ‘test/unit/assertions’

require_relative ‘../../common.rb’

require_relative ‘../views/home_view.rb’

require_relative ‘../views/login_view.rb’

require_relative ‘../views/user_view.rb’

include Test::Unit::Assertions

Finally, our login spec is getting pretty lean. There’s still some boilerplate in

it, however, around setting up the driver. Even though it’s only a few lines,

once we have more tests, we’ll want to factor that out. Let’s do it now so

that when we take a look at writing an Android test, everything will be ready.

We can create a file called common.rb in the project directory, with the

following contents:

def setup_driver

 appium_txt = File.join(Dir.pwd, ‘..’, ‘appium.txt’)

 caps = Appium.load_appium_txt(file: appium_txt)

 Appium::Driver.new(caps)

end

Once we add this to our requires.rb, it’s ready to use in our login spec file,

which at last looks like this:

require_relative ‘./requires.rb’

describe ‘Login’ do

 before(:each) do

 @driver = setup_driver

 @home_view = HomeView.new(@driver)

 @login_view = LoginView.new(@driver)

 @user_view = UserView.new(@driver)

 @driver.start_driver

 end

 after(:each) do

 @driver.driver_quit

 end

 it ‘Login with valid credentials’ do

 @home_view.nav_to_login

 @login_view.login(“alice”, “mypassword”)

 user = @user_view.get_logged_in_user

 assert_equal(user, “alice”)

 end

end

29

If everything is linked together correctly, you should be able to run rspec

login_spec.rb in the ios/spec directory, and get the same passing testcase,

only now with a much more beautified architecture. For reference, your

project files should now look like:

/path/to/project

 android

 appium.txt

 TheApp-v1.2.1.apk

 Gemfile

 Gemfile.lock

 ios

 appium.txt

 common.rb

 spec

 login_spec.rb

 requires.rb

 TheApp-v1.2.1.app.zip

 views

 home_view.rb

 login_view.rb

 user_view.rb

30

Chapter 6

ANDROID JOINS THE PART Y

Appium is a cross-platform automation tool, which means support for

Android in addition to iOS. Also, The App is a cross-platform app, designed

to work the same way on both iOS and Android. This makes it ideal for

showcasing our ability to leverage code reuse with Appium. What we’d ideally

like to see is complete test code reuse, such that the only difference between

our iOS and Android testcases is the setup for each. So rather than simply

recreate the same structure we had for iOS, but now for Android, let’s blow

it up and put it back together in a cross-platform friendly way.

Previously, we were building a directory structure that ultimately would have

looked like:

/path/to/project

 android

 common.rb

 spec

 requires.rb

 <specs here>

 views

 <views here>

 ios

 common.rb

 spec

 requires.rb

 <specs here>

 views

 <views here>

In other words, each of android and ios had their own whole test tree.

Since we want to share as much code as possible, we’re going to bring the

spec, views, and common code up top, and distinguish between iOS and

Android only inside spec:

/path/to/project

 apps

 common

 spec

 android

 base

 ios

 views

31

Essentially, we’ll be putting the test logic itself into spec files inside the base

dir, and merely referencing those from the android and ios spec files, which

will of course be neighbors to their platform-specific appium.txt and test

app. To make sure we share as much code as possible, we’ll also start using

RSpec’s configuration feature, which will hide away all the before(:each)

and after(:each) boilerplate. Let’s create a file inside our new common

directory called spec_helper.rb. (If you haven’t created the new directory

structure above yet, do so now). spec_helper.rb should look like:

require ‘rspec’

require ‘appium_lib’

RSpec.configure do |config|

 config.before(:all) do

 appium_txt = File.join(Dir.pwd, ‘appium.txt’)

 caps = Appium.load_appium_txt(file: appium_txt)

 @driver = Appium::Driver.new(caps)

 @home_view = HomeView.new(@driver)

 @login_view = LoginView.new(@driver)

 if caps[:caps][:platformName].downcase == “ios”

 @user_view = IOSUserView.new(@driver)

 else

 @user_view = AndroidUserView.new(@driver)

 end

 end

 config.before(:each) do

 @driver.start_driver

 end

 config.after(:each) do

 @driver.driver_quit

 end

end

What we’re doing in this file is basically creating before and after blocks

that will be run in any spec file which includes this helper. There are two

areas of our test setup that are platformspecific: (1) our appium.txt file which

contains our platform-specific capabilities, and (2) the Page Object Models.

We differentiate which appium.txt we’re using automatically in virtue of

relying on Dir.pwd; whichever directory we’re running the rspec command

from is where we’ll look for appium.txt. So when running the command

from android, it’ll find the appropriate file to use for caps, and likewise for iOS.

As for the Page Object Models, we’ll have a closer look momentarily. Two

of the three models are completely cross-platform, whereas one has minor

32

differences between platforms, so we need to choose the right model based

on the capabilities we’re using for the test.

Great. The next bit of code reuse is to make sure that both iOS and Android

spec files use the same test code. Before, we had it in ios/login_spec.rb.

Now, we’re going to move it to spec/base/login.rb, and simply expose the

test as a plain old method:

require_relative ‘./requires.rb’

def login_with_valid_credentials

 it ‘Login with valid credentials’ do

 @home_view.nav_to_login

 @login_view.login(“alice”, “mypassword”)

 user = @user_view.get_logged_in_user

 assert_equal(user, “alice”)

 end

end

Notice that the method returns an it block. This is so we can simply call the

method from inside our spec file’s describe block without having to specify

the block again. Notice also that our requires.rb is now in this same base

directory. It’s basically the same, but with updated paths:

require ‘appium_lib’

require ‘test/unit/assertions’

require_relative ‘../../common/spec_helper.rb’

require_relative ‘../../views/home_view.rb’

require_relative ‘../../views/login_view.rb’

require_relative ‘../../views/user_view.rb’

include Test::Unit::Assertions

With these changes, we’re able to construct our new platform-specific

spec files:

/path/to/project/spec/ios/login_spec.rb

require_relative ‘../base/login.rb’

describe ‘Login - iOS’ do

 login_with_valid_credentials

end

/path/to/project/spec/ios/login_spec.rb

require_relative ‘../base/login.rb’

describe ‘Login - Android’ do

 login_with_valid_credentials

end

33

These two files are extremely short—a mere 4 lines of code, including the

require. We’re relying on our spec_helper to decorate the it block with

the appropriate before and after methods, and then we’re simply mixing in

the desired test behavior as the login_with_valid_credentials method.

As we write more tests, we can simply add their method calls here.

The last real difference we need to look at is the user_view.rb Page Object

Model. We now need two versions, because we can’t, unfortunately, use com-

pletely identical locators across platforms. We can, however take advantage of

Ruby’s class inheritance to only change what we absolutely must:

class IOSUserView

 def message

 [:xpath,

 “//XCUIElementTypeOther[contains(@name, ‘You are logged’)]”]

 end

 def initialize(driver)

 @d = driver

 end

 def get_logged_in_user()

 message = @d.wait { @d.find_element(*self.message) }.text

 message.sub(/.*You are logged in as ([^]+).*/, ‘\1’)

 end

end

class AndroidUserView < IOSUserView

 def message

 [:xpath,

 “//android.widget.TextView[contains(@text, ‘You are logged’)]”]

 end

end

Here we’ve decided that the ‘default’ view is IOSUserView, and then we

extend it to AndroidUserView below. We’ve also changed from using class

variables (@@message) to instance methods, because class variables don’t play

nice with inheritance in Ruby. So what we end up with is a set of Page Object

Models that is platform-specific, but shares all the possible logic. We wire this

conditionality into our test via the spec_helper.rb code we saw above.

With this addition, our new full-blown project setup looks like:

34

/path/to/project

 apps

 TheApp-v1.2.1.apk

 TheApp-v1.2.1.app.zip

 common

 spec_helper.rb

 spec

 android

 appium.txt

 login_spec.rb

 base

 login.rb

 requires.rb

 ios

 appium.txt

 login_spec.rb

 views

 home_view.rb

 login_view.rb

 user_view.rb

 Gemfile

 Gemfile.lock

Given that we’ve decided to put our apps in an apps directory, we’ll also

need to make the changes in appium.txt to point to /path/to/project/

apps instead of the platform-specific directory. Once you’ve done that, we

can test our refactoring to make sure we haven’t broken the iOS test:

cd /path/to/project/spec/ios

rspec login_spec.rb

And then, because we’ve made everything totally cross-platform, we can run

the same test on Android:

cd /path/to/project/spec/android

rspec login_spec.rb

Don’t forget to launch your emulator before attempting to run the test! And

that’s it. Of course, if you aren’t dealing with a cross-platform app in your own

testing, you may not want to go to such lengths to share code the way we did

here. We went through this exercise to drive home the point that it’s possible,

and a good idea, to think about your test code as a software product just as

much in need of refactoring and code reuse as your app itself. Keep it clean

and keep it pretty!

35

Chapter 7

RUNNING LOCAL TESTS WITH RAKE

So far we’ve been running our tests locally using the rspec test runner

directly. But Ruby projects often use a task runner called rake (Ruby’s version

of Make), which comes with some niceties for command line execution of

tasks like our tests. Let’s upgrade our project for use with rake.

First, we need to add rake to our Gemfile:

source ‘https://rubygems.org’

gem ‘rspec’, ‘~> 3.7.0’

gem ‘appium_lib’, ‘~> 9.10.0’

gem ‘appium_console’, ‘~> 2.8.1’

gem ‘rake’, ‘~> 12.3.0’

Make sure to run bundle install at this point to get the new gem on your

system. Now we can build a Rakefile which specifies the kinds of tasks we

want rake to run for us:

desc ‘Run iOS tests’

task :ios do

 Dir.chdir ‘spec/ios’

 exec ‘rspec *_spec.rb’

end

desc ‘Run Android tests’

task :android do

 Dir.chdir ‘spec/android’

 exec ‘rspec *_spec.rb’

end

This Rakefile tells rake that when we want to run the ios task, to first switch

to the spec/ios directory, and then to execute the rspec command with the

appropriate arguments to make it run any spec files it finds nearby. To make

sure our Rakefile is put together correctly, we can query it for tasks:

> rake -T

rake android # Run Android tests

rake ios # Run iOS tests

Go ahead and give each of these commands a try, to verify the tests still pass

successfully. Next, we’ll move on to adding more rake tasks and running our

tests in the cloud!

36

Chapter 8

RUNNING TESTS IN THE SAUCE L ABS CLOUD

There comes a time in the life of every testsuite when it becomes so large

that it’s impractical to run locally on your own machine, or requires platforms

you no longer have easy access to. For these and a variety of other reasons,

it’s a good idea to invest in cloud Appium providers like Sauce Labs. appium_

lib comes with built-in support for running tests in the Sauce cloud. To take

advantage of this support, we’ll need:

1. A Sauce Labs username and access key (if you don’t already have

one, you can start a free trial here, and find your access key at your

dashboard after login)

2. Another Rubygem to help with the Sauce API, called sauce_whisk.

Let’s update our Gemfile accordingly (and run bundle install):

source ‘https://rubygems.org’

gem ‘rspec’, ‘~> 3.7.0’

gem ‘appium_lib’, ‘~> 9.10.0’

gem ‘appium_console’, ‘~> 2.8.1’

gem ‘rake’, ‘~> 12.3.0’

gem ‘sauce_whisk’, ‘~> 0.1.0’

In order to make our test app accessible to the Sauce cloud,

we have two options:

1. Host our app on the web somewhere and provide a url as the app capability

2. Use sauce_whisk to upload our app to Sauce with the Sauce Storage API

Let’s pursue option 2 here, since it is what you’d want to do in the context of

a CI server. What we’re going to do is upgrade our spec_helper.rb to include

Sauce-specific test setup and app uploading:

https://signup.saucelabs.com/signup/trial

37

require ‘rspec’

require ‘appium_lib’

require ‘sauce_whisk’

def using_sauce?

 user = ENV[‘SAUCE_USERNAME’]

 key = ENV[‘SAUCE_ACCESS_KEY’]

 user && !user.empty? && key && !key.empty?

end

def upload_app(app)

 storage = SauceWhisk::Storage.new({debug: true})

 storage.upload(app)

 “sauce-storage:#{File.basename(app)}”

end

RSpec.configure do |config|

 config.before(:all) do

 appium_txt = File.join(Dir.pwd, ‘appium.txt’)

 caps = Appium.load_appium_txt(file: appium_txt)

 if using_sauce?

 caps[:caps][:app] = upload_app(caps[:caps][:app])

 end

 @driver = Appium::Driver.new(caps)

 @home_view = HomeView.new(@driver)

 @login_view = LoginView.new(@driver)

 if caps[:caps][:platformName].downcase == “ios”

 @user_view = IOSUserView.new(@driver)

 else

 @user_view = AndroidUserView.new(@driver)

 end

 end

 config.before(:each) do

 @driver.start_driver

 end

 config.after(:each) do

 @driver.driver_quit

 end

end

What we’ve done is add two new methods, one to check if we want to run on

Sauce by querying the environment variables, and another to upload an app

to Sauce Storage using Sauce Whisk. We then use these methods to reset the

app capability to the Sauce Storage location if we’re running on Sauce.

Next, we need to update our appium.txt for both iOS and Android, ensuring

we’re using capabilities that are valid on Sauce. We also need to add the

appiumVersion capability, because when we run tests on Sauce, we can

choose between any version of Appium currently hosted on the provider.

38

How do we know what capabilities we should use to select the appropriate

Sauce platform? By using Sauce’s Platform Configurator, a handy tool to walk

you through getting the capabilities for the platforms you need. Using this

tool, I’ve updated the appium.txt files (and also removed our hack to prevent

tests from running on Sauce before we wanted to).

For iOS:

[caps]

appiumVersion = “1.7.2”

platformName = “iOS”

platformVersion = “11.1”

deviceName = “iPhone 7”

app = “/path/to/project/apps/TheApp-v1.2.1.app.zip”

And for Android:

[caps]

appiumVersion = “1.7.2”

platformName = “Android”

platformVersion = “7.1”

deviceName = “Android GoogleAPI Emulator”

app = “/path/to/project/apps/TheApp-v1.2.1.apk”

automationName = “UiAutomator2”

Finally, we need to update our Rakefile, so that we can decide on the

command line whether we’d like to run a test locally (as before), or opt in to

the new Sauce support. We do this by parameterizing the tasks with a :where

argument. This argument dictates whether we allow the Sauce environment

variables to stay set. If we want a local test, we simply unset those variables,

and our spec_helper.rb will leave off the Sauce logic.

https://wiki.saucelabs.com/display/DOCS/Platform+Configurator

39

desc ‘Run iOS tests’

task :ios, :where do |t, args|

 setup_env args[:where]

 Dir.chdir ‘spec/ios’

 exec ‘rspec *_spec.rb’

end

desc ‘Run Android tests’

task :android, :where do |t, args|

 setup_env args[:where]

 Dir.chdir ‘spec/android’

 exec ‘rspec *_spec.rb’

end

def setup_env(where)

 if where != “sauce”

 ENV[‘SAUCE_USERNAME’] = nil

 ENV[‘SAUCE_ACCESS_KEY’] = nil

 end

end

To successfully run a test on Sauce, we now need to first ensure our

environment variables are set correctly. We can do this in our terminal

using the following commands:

export SAUCE_USERNAME=”my_username”

export SAUCE_ACCESS_KEY=”my_access_key”

This will store the variables for the duration of the current terminal session.

If you want to store them permanently, it’s a good idea to add the export

commands to your ~/.bashrc, ~/.bash_profile, ~/.zshrc, etc…, shell login

file. That way you never have to remember them again.

Now, we can use our new rake task parameters to decide whether we want

to launch a Sauce session or a local one:

rake android # run android local

rake android[‘sauce’] # run android on sauce

rake ios # run ios local

rake ios[‘sauce’] # run ios on sauce

Go ahead and run the Sauce versions. While you’re running them, log onto

the Sauce Labs website and you can see the tests running on your dashboard.

If you click on a test, you will be greeted with a variety of details about

it, including a stream of the running test (or a video if you catch it after it

40

finishes). You might notice that the name of the test (unnamed test)

isn’t very descriptive, and that we see a nasty gray question mark even though

we know our test passed. Let’s fix that.

ANNOTATING TESTS ON SAUCE

By default, Sauce doesn’t know what our test is called, or whether it passed

or failed—it just knows what Appium commands we sent over, but that could

mean anything! Luckily, RSpec knows these things, and we can use Sauce

Whisk to communicate them back to Sauce so we see prettier information

on our Sauce dashboard.

Let’s once again upgrade our spec_helper.rb. This time we just need to

modify the before(:each) and after(:each) blocks to take a parameter

we’ll call test. This is RSpec’s way of giving us access to information about

the testcase. We can use this information to set the name capability before

the test begins, and to set the status of the Sauce job after it has finished:

config.before(:each) do |test|

 @driver.caps[:name] = test.metadata[:full_description] if using_sauce?

 @driver.start_driver

end

config.after(:each) do |test|

 if using_sauce?

 SauceWhisk::Jobs.change_status(@driver.driver.session_id,

 test.exception.nil?)

 end

 @driver.driver_quit

end

Now, when you run rake ios[‘sauce’] or rake android[‘sauce’], you’ll

see a nice humanreadable name show up in the Sauce dashboard, and you’ll

see a beautiful green checkmark when the test passes (or a correspondingly

terrifying red X if it fails).

At this point, we’ve got a very robust and flexible setup that can work well for

local development as well as extend to the cloud. The last step in our journey

is to set our tests up to be run as part of a Continuous Integration server.

41

Chapter 9

AUTOMATING TEST RUNS WITH A CI SERVER

The point of automating your tests is to have total flexibility in how and when

they are run. The ideal scenario is for your entire test suite to be run on every

single code change, so that changes are gated on passing the entire test suite.

Why allow code in to your app if it breaks something?

The way many teams work this out in practice is by using a “CI server”.

CI stands for “Continuous Integration”, and refers to the process whereby

new code is constantly added to the shippable version of your app. Typically

developers use a branching version control system with one branch (master

or trunk) always representing a known-working increment of the app.

In other words, master is always primed for release. Developers work on

their own forks or branches, and before their code is merged to master, it

undergoes a battery of automated tests. This is where the CI server comes

in: from an automated testing perspective, the CI server is responsible for

figuring out when new code needs to be tested, testing that code, and then

merging code which passes the tests into the main trunk. Of course, the CI

server can do a whole lot more, for example building artifacts used in testing

or for eventual release.

One popular open source CI server is Jenkins, and we’ll set up a local version

of Jenkins in this chapter, to see how easy it is to configure tests to run in CI.

SETTING UP JENKINS

Jenkins runs on any platform, and at some point you may want to run it in a

Linux container or on a Linux host, but for now we will stick with macOS so

that we can run Jenkins locally. There are a number of ways to install Jenkins,

but we’re going to stick with homebrew to make things easy:

brew install jenkins

You could follow homebrew’s instructions and set up Jenkins to run on

server start, but since we’re just playing around, let’s instead run an instance

of Jenkins right here from the command line:

jenkins

Jenkins will go through its startup routine and automatically launch itself

on port 8080, so you can open up a browser and navigate to

https://jenkins.io/

42

http://localhost:8080. Before you do that, take a look at the CLI output

from the Jenkins startup, and copy the admin password you will need to log

in. Now head to your web browser and launch the URL.

At this point Jenkins will guide you through a little setup flow. First, paste

in the admin password you copied from the command line, or cat it out

using the terminal in order to set up the admin account. Then, bypass the

“Customize Jenkins” wizard by clicking the close button at the top right.

You might find it valuable to explore the ecosystem of Jenkins plugins after

you’re done with this guide.

CREATING AN ANDROID BUILD

Once you’re all logged in, we’re going to add a Project to house our

Android tests:

1. Click “New Item” in the top left sidebar nav

2. For the item name, enter “Android Appium” (or some other clever moniker

not suitable for publishing in a guide like this)

3. Click “Freestyle Project”

4. Click “OK”

The result will be a page with a host of options. This is where we would teach

the Project how to read from our version control system, or when it should

run itself (either via a remote trigger or on a schedule), etc… For now, let’s just

focus on the Build step itself:

5. Under “Build”, click “Add Build Step”

6. Click “Execute shell”

This will open up a text input area where we can type commands as if we

were running them from the terminal. Enter the following commands:

cd /path/to/project

bundle update

rake android

These are the same commands we would run if we were a new user getting

started with running tests. Now let’s run our Project. Head back to the main

dashboard, and navigate to the Project we just created. On the left sidebar,

click “Build Now”. You’ll see a little progress indicator pop up with a build

number by it (#1). This is a “Job” representing an instance of building the

43

Android Project you created. At the Job page, you’ll see its status, and you

can follow along with what’s happening by clicking on “Console Output”

on the left sidebar. If all goes well, you’ll be greeted by this output:

Started by user admin

Building in workspace /Users/user/.jenkins/workspace/Appium Android

[Appium Android] $ /bin/sh -xe /var/folders/gv/vdnhjfy96ps3gb6vz8x...

+ cd /path/to/project

+ bundle update

Fetching gem metadata from https://rubygems.org/..........

Resolving dependencies...

Using rake 12.3.0

Using json 2.1.0

Using ffi 1.9.23

Using childprocess 0.8.0

Using rubyzip 1.2.1

Using selenium-webdriver 3.9.0

Using appium_lib_core 1.3.2

Using mini_portile2 2.3.0

Using nokogiri 1.8.2

Using tomlrb 1.2.6

Using appium_lib 9.10.0

Using awesome_print 1.8.0

Using bond 0.5.1

Using coderay 1.1.2

Using method_source 0.9.0

Using pry 0.11.3

Using numerizer 0.1.1

Using chronic_duration 0.10.6

Using spec 5.3.4

Using thor 0.20.0

Using appium_console 2.8.1

Using bundler 1.16.1

Using diff-lcs 1.3

Using rspec-support 3.7.1

Using rspec-core 3.7.1

Using rspec-expectations 3.7.0

Using rspec-mocks 3.7.0

Using rspec 3.7.0

Bundle updated!

+ rake android

.

Finished in 27.69 seconds (files took 1.42 seconds to load)

1 example, 0 failures

Finished: SUCCESS

44

This is the log of what happened during the job. As you can see, we made

sure dependencies were up to date (in case our Gemfile had changed since

the last build), and ran the android tests locally.

CREATING AN IOS BUILD

The procedure is exactly the same for running our iOS tests in Jenkins.

Let’s walk through it:

1. Go back to the main page and click “New Item”

2. Enter the name of the new Project (something more iOS-sounding,

perhaps?)

3. This time, start typing the name of the Android project in the “Copy from”

field, and select the existing project

4. Now, the shell commands are already pre-populated for us

5. Modify the shell commands, substituting rake ios for rake android

6. Save the Project, and click “Build Now” from the Project page

7. Verify that the iOS build completed successfully

Copying from an existing Project the way we did means we could rely on the

existing shell commands and not have to start from a blank slate.

RUNNING ON SAUCE

Creating a project to run on Sauce is just as easy as running locally.

To see how:

1. Follow the same steps as in the previous section to copy one of the

existing Projects to a new Project called “Appium on Sauce”

2. In the shell command box, replace the existing rake command with two

new ones: rake ios[‘sauce’] && rake android[‘sauce’]

Now build this new Project and watch your tests run on Sauce!

For a real CI setup, you might consider checking out the Sauce Jenkins plugin

which comes with a number of helpful features to make the experience of

running on Sauce more integrated with your Jenkins server.

https://wiki.saucelabs.com/display/DOCS/Setting+Up+Sauce+Labs+with+Jenkins

45

JENKINS FOR PRODUCTION

It’s easy to see the power of something like Jenkins, once you imagine having

these tests kicked off whenever a new commit comes in, or on an automated

schedule of some sort. You have only to log back into your Jenkins server and

see how your builds are doing, or explore the logs to debug any failures.

What we’ve done in this guide is run Jenkins as a toy under our own user. This

would not be advisable in production. Instead, you’d want to follow one of

many guides online (like this one) about setting Jenkins up for the appropriate

host type in a secure and reliable fashion.

We also took advantage of the fact that Jenkins was running under our

system user in order to keep our shell commands simple. In a real production

setup, we’d have to worry about setting environment variables correctly

(remember how we set $ANDROID_HOME, and all the rest? That needs to be

done for Jenkins too). We’d also have to worry about emulator management

for Android (for example, creating and tearing down emulators to ensure

complete data isolation between builds), dependency management (ensuring

Android and Xcode stay updated on build machines), etc… It’s a lot! But

getting CI set up for your team is always worth the effort.

https://nickcharlton.net/posts/installing-jenkins-osx-yosemite.html

46

Chapter 10

HEADING OUT ON YOUR OWN

Here ends this guided tour of Appium. What have we covered?

1. What Appium is, and why we would use it

2. How to set up Appium for iOS and Android testing on macOS

3. How to interrogate iOS and Android apps using the command line and

the Appium Desktop Inspector

4. How to write simple tests in Ruby and RSpec using the Appium Ruby client

5. How to refactor and organize test code, leveraging Page Objects to make

it fully crossplatform

6. How to use rake to set up tasks for convenient test running

7. How to run tests in the cloud on Sauce Labs, leveraging different aspects

of the Sauce API

8. How to set up a CI server we can use to run builds involving our

Appium test suite

I hope you found it valuable, and I’ll leave you with a few resources for further

engagement with Appium.

RESOURCES

• The Appium Discussion Group is a great place to go and ask other

Appium users for help

• The Appium Documentation has a set of guides, and a complete list of

client commands, so it’s a great place to go to figure out everything you

can do with Appium

• Appium’s GitHub Page contains links to the source code for the (many)

Appium packages that make up the Appium server and clients

• Appium’s Issue Tracker is where to go if you think you’ve found a bug and

want to report it

• There’s a handy reference card for Appium setup and commands

https://discuss.appium.io/
https://appium.io/docs/en/about-appium/intro/
https://github.com/appium/appium
https://github.com/appium/appium/issues
https://dzone.com/refcardz/getting-started-with-appium?chapter=1

47

EB-03-042018

SUPPORT

Appium is community-supported via the discussion forums and GitHub.

Sauce Labs customers can receive support for Sauce-related Appium issues

via their account manager. And of course, there are a number of experienced

Appium consultants out there who would be happy to offer paid support for

tough issues.

Thanks for reading, and Happy Testing!

SAUCE LABS INC. - HQ

116 NEW MONTGOMERY STREET, 3RD FL

SAN FRANCISCO, CA 94105 USA

SAUCE LABS EUROPE GMBH

NEUENDORFSTR. 18B

16761 HENNIGSDORF GERMANY

SAUCE LABS INC. - CANADA

134 ABBOTT ST #501

VANCOUVER, BC V6B 2K4 CANADA

Sauce Labs ensures the world’s leading apps and websites work flawlessly on every browser, OS and device. Its award-

winning Continuous Testing Cloud provides development and quality teams with instant access to the test coverage,

scalability, and analytics they need to deliver a flawless digital experience. Sauce Labs is a privately held company

funded by Toba Capital, Salesforce Ventures, Centerview Capital Technology, IVP and Adams Street Partners. For more

information, please visit saucelabs.com.

ABOUT SAUCE L ABS

