
F O U R W AY S T E S T
A N A LY T I C S C A N I M P R O V E
A U T O M A T E D T E S T I N G

As a testing organization, it is important to continuously review testing

trends and improve the process. To date, analyzing trends in tests has

been limited to homegrown or third party apps. However, with the

recently released Sauce Labs Test Analytics, we have reviewed years

of anonymous data to uncover common test trends that can help

modern development teams test more successfully. We have identified

four key areas that most testing organizations can benefit from to

improve their testing practices. If you are an executive looking to

improve your team’s test velocity, or an engineer interested in writing

massively parallel tests, our insights can help you accelerate your tests

so you can release better software faster.

SOLUTIONS BRIEF

3 Executive Summary

3 Little to No Wait Time Helps Teams Test Faster

4 Best Written Tests are Shorter

6 How Quickly Should a Test Failure be Fixed?

7 Other Testing Best Practices

8 Conclusion

TABLE OF CONTENTS

EXECUTIVE SUMMARY

This paper focuses on four areas that many teams do not optimize for in their

testing. All the test practices recommendations are based on the data Sauce

Labs has gathered over the years and our experience working with thousands of

customers:

1. Test job queuing: Minimize queuing to help teams test faster

2. Small, atomic and autonomous tests: The fastest testers use shorter tests.

3. Fix failures quickly: Enable teams to get maximum benefit from Agile

development practices

4. Annotations: Use test annotations to help teams troubleshoot faster.

LITTLE TO NO WAIT TIME HELPS TEAMS TEST FASTER

Many organizations are constrained by the number of concurrent sessions*

with which they test. Due to budget, limited machine availability or large teams

sharing testing resources, we have found that high wait times are one of the

biggest impediments to testing faster. In general, it is a good testing practice for

Sauce Labs testers to have their virtual machine concurrency spike and reach its

peak multiple times a day. That shows a healthy DevOps pipeline, where

• Developers are able to run tests whenever they are ready

• Developers are not blocked by lower concurrency and do NOT have to

wait for resources

• Teams within an organization are not blocked by each other

The chart below shows how constraints in capacity slow down the testing

process. The blue line indicates the number of tests starting. The red line

indicates the average time these tests spend waiting for capacity to free up.

When an organization is not constrained and has adequate infrastructure

capacity, average wait time is very low to almost insignificant. Since tests do not

have to wait for resources to be freed up, developers are able to test faster and

testing is not a bottleneck to their release cycles.

0

5

10

15

20

25

30

0

20

20

60

Concurrent Tests (Left Axis) Seconds Waiting (Right Axis)

10
:3

0

10
:4

5

11
 A

M

11
:1

5

11
:3

0

11
:4

5

12
 P

M

12
:1

5

12
:3

0

12
:4

5

01
 P

M

01
:1

5

01
:3

0

01
:4

5

02
 P

M

02
:1

5

02
:3

0

02
:4

5

03
 P

M

03
:1

5

Example of test wait times with sufficient test concurrency assets - tests run and complete quickly

Learn more at saucelabs.com

3

*We refer to each parallel test as a concurrent session which includes a single use Virtual Machine

 (VM) along and analysis tools (videos, screenshots, logs, metadata and Test Analytics).

On the other hand, below is an example of how wait times spike when an

organization is running without enough capacity to support their testing needs.

Whenever they need to start tests, their capacity constraints incur a wait time

while capacity slowly frees up. All of these wait times add up over the course of

a build and slow everything down. This leads to teams battling for priority in the

testing cycle and introducing needless overhead in the release cycle.

2

4

6

8

10

12

Concurrent Tests (Left Axis) Seconds Waiting (Right Axis)

10
:1

5

10
:3

0

10
:4

5

11
 A

M

11
:1

5

11
:3

0

11
:4

5

12
 P

M

12
:1

5

12
:3

0

12
:4

5

01
 P

M

01
:1

5

01
:3

0

01
:4

5

02
 P

M

02
:1

5

02
:3

0

02
:4

5

03
 P

M

Job Timestamps Creation Minute

0

20

10

30

40

50

60

70

0

Example of test wait times with insufficient test concurrency assets - tests have high wait times

and overall, testing is slowed

Obtaining this information using Sauce Analytics

Using Sauce Test Analytics, you can review concurrency utilization and error

information to gauge how often your teams hit their concurrency limit and their

tests are bumped off the queue. That’s a good indicator of your team’s capacity

utilization.

Screenshot of Test Analytics showing errors due to insufficient concurrency. Ultimately, this slows

your testing and increases the time to release new features.

BEST WRITTEN TESTS ARE SHORTER

Sauce Labs has always advocated for atomic tests that validate a single specific

function in an application. Atomic tests are short and test a single function making

it easier and faster to identify a failure. The shorter the tests, the more efficiently

they can be parallelized for execution and make use of the maximum available

VM concurrency.

Learn more at saucelabs.com

4

A build can only be as short as its longest test. By breaking down long-running

tests into multiple smaller tests, more tests can run in parallel and builds can

finish faster. Long tests bottleneck the whole build and consume the concurrency

available to the whole organization, resulting in less efficient use of available

resources and slower testing times. In addition, longer running tests are brittle

and tend to fail more often. The failures leave the user with a long debugging

process, which slows down testing even more.

The chart below shows concurrency utilization through time during a build that

has a “long tail” - a single long running test which makes the entire build take

much longer than it needs to, slowing down both the build time and the

testing cycle.

Comparison of test times. If your tests are not similar in length, the

longest test will determine total test time.

This practice of having long-running tests within a build is not recommended if it

can be avoided. Below is a good example of the same build but with the single

long test being broken down into four separate, much shorter tests. In this model,

throughout the run time of the build, all tests run in parallel and make maximum

use of the available concurrency. Because of the increased parallelism, the build

runs in half the time-- thereby speeding up the entire testing process. The smaller

tests are able to utilize the capacity that was previously wasted while waiting for

other tests to end.

Learn more at saucelabs.com

5

Tests that are similar in length help optimize test times so your test suite finishes quickly.

Obtaining this information using Sauce Analytics

Within the Sauce Test Analytics ‘Build and Test Statistics’, review the efficiency

percentage of your builds to understand if your builds are sequential, semi-

parallel or parallelized. If they are semi-parallel, review long-running tests and try

to break them down into smaller atomic tests using these best practices.

Not only can you view test duration and status, but the Efficiency column shows how

parallelized your tests are to help you identify which tests are not running as quickly as possible.

HOW QUICKLY SHOULD A TEST FAILURE BE FIXED?

This subject is often debated - how quickly should a test be fixed in order for

a team to continue to be agile and test quickly? The correct answer is ASAP, but

in reality, automated test failures are often misconstrued as an impediment to

release and teams end up finding work arounds. Often times, testers manually

verify test cases to push the release forward. But the best way to continue testing

and releasing faster is to determine if a failure is a release blocker or not, then fix

the issue and run automated tests again to determine release readiness.

Time to fix a failure varies from team to team. Based on anonymized data, we

have determined that tests are most effective when failures are fixed within the

Learn more at saucelabs.com

6

same day of their occurrence. Below is a graph that shows how quickly a test

goes from red -> green.

The x-axis is represented in hours and the first bucket starts from 30 minutes to

eliminate any re-tries made for flakes. As you can see, this model shows most

of our users fixing failures within the first 12 hours of their occurrence. A failure

starts getting less relevant if it takes more time to address it.

Most Sauce users fix test issues in under 12 hours.

OTHER TESTING BEST PRACTICES
Adding relevant test metadata

It is always good practice among testers to add metadata to tests so that

they can troubleshoot faster. Here are some relevant metadata that helps in

troubleshooting:

• Tagging tests as pass/fail using sauce labs REST API to make better use of

analytics data.

• Adding contextual information to a test eases the troubleshooting and

debugging process through Selenium logs and commands. This also helps

users identify areas where tests are slowing down.

 Here is a snippet from Sauce Labs’ test framework that shows how to

 add context information to tests written in Java using TestNG:

 WebDriver driver = this.getWebDriver();

 String commentInputText = UUID.randomUUID().toString();

 this.annotate(“Visiting GuineaPig page...”);

 GuineaPigPage page = GuineaPigPage.visitPage(driver);

 this.annotate(String.format(“Submitting comment: \”%s\””,

 commentInputText));

 page.submitComment(commentInputText);

 this.annotate(String.format(“Asserting submitted comment is: \”%s\””,

 commentInputText));

Learn more at saucelabs.com

7

• Adding build information in order to group tests together. This allows

users to review test run times and help improve testing times.

• Using tags to identify different features and projects useful for analysis.

CONCLUSION

Using Sauce Test Analytics offers a number of best practices that can help any

test team become more efficient and optimize the use of their testing resources.

Small testing improvements go a long way - be it run time or reducing failures

- and can make a big difference in shortening your release cycles. Using

Sauce Test Analytics and your own data, you should be able to quickly identify

bottlenecks in your testing processes that you can address to speed up your

testing time. By running shorter tests, optimizing resources to minimize queuing

time and addressing failures quickly, your team can reduce testing time and

accelerate your releases.

Learn more at saucelabs.com

8

SB-02-062017

Sauce Labs ensures the world’s leading apps and websites work fl awlessly on every browser, OS and

device. Its award-winning Continuous Testing Cloud provides development and quality teams with

instant access to the test coverage, scalability, and analytics they need to deliver a fl awless digital

experience. Sauce Labs is a privately held company funded by Toba Capital, Salesforce Ventures,

Centerview Capital Technology, IVP and Adams Street Partners. For more information, please visit

saucelabs.com.

ABOUT SAUCE L ABS

SAUCE LABS INC. - HQ

116 NEW MONTGOMERY STREET, 3RD FL

SAN FRANCISCO, CA 94105 USA

SAUCE LABS EUROPE GMBH

NEUENDORFSTR. 18B

16761 HENNIGSDORF GERMANY

SAUCE LABS INC. - CANADA

134 ABBOTT ST #501

VANCOUVER, BC V6B 2K4 CANADA

