
WHITE PAPER

A U T O M A T E D M O B I L E
A P P T E S T I N G U S I N G
E M U L A T O R S , S I M U L A T O R S
A N D R E A L D E V I C E S

Simulators, emulators and real devices each play a key role in

continuous test automation for mobile. The proper strategy must

analyze and determine the right amount of each for the best

testing approach.

3 Executive Summary

3 Emulators Simulators and Real Devices

4 Your Pipeline

5 The Pyramid

6 How to do it in Code

7 Fitting These Tools on Your Team

8 What To Do Tomorrow

TABLE OF CONTENTS

EXECUTIVE SUMMARY

The mobile deploy pipeline is much more complex than a web application,

which are often built and tested locally. Instead of local testing, the code

needs to be installed on one or more mobile devices. Instruction and tooling

will need to be installed in order to run automated tests; this may need to be

coordinated across multiple devices. If the “device” is actually in memory on

the laptop, plumbing needs to be installed to get the automation to find the

virtual device. Of the handful of choices, those local, virtual devices operate

the least like the real thing. This paper will cover some fundamental tools

-- simulators, emulators, and real devices -- for testing mobile applications,

and discuss where they fit into the test process. It will also cover when to test

manually, and also how to reuse test tools on different platforms.

EMULATORS SIMULATORS AND REAL DEVICES

Emulators, simulators, and real devices all function slightly differently, and are

used by different people on the team.

iOS Simulators: Simulators are essentially a virtual machine running on a

desktop or laptop. Simulators offer the fastest testing platform, but also the

furthest away from what a customer will actually encounter when they use

the application. Simulators are typically used in the context of a development

cycle. An iOS developer might write a few lines of code in Swift to add a new

text field to an existing page, and have data from that field submitted to an

existing API when the form is submitted. They write the code, write a couple

of unit tests to verify that data can be saved and that nothing bad happens

when the field is null. Before adding the code to version control the developer

needs to really see the software running locally.

Android Emulators: Emulators are either accessed through a web browser or

launched from a developer environment on the desktop; their main benefits

are scale and availability. A tester can access their emulation environment,

select a device type and an operating system, and almost instantly have a

running version of a mobile device. This is fairly similar to Virtual Machines.

Emulators are generally the next step in the development and testing cycle

after a developer has built some new code, built unit tests that can run in

Continuous Integration, and then done their own testing on a simulator.

Unlike real device testing, which will be described next, emulators are infinitely

scalable. Access to emulators is purchased through a service provider.

Companies can get access to as many different devices, for as long as they

want them, as long as they are willing to pay.

Learn more at saucelabs.com

3

Devices: Using real mobile devices provides benefits not available with

emulators and simulators. These devices can be in the cloud, connected

through a tool, or an actual physical device in the hand. Developers and

testers using real devices will get a more authentic experience, something

much closer to what customers will see when they access the software.

There are two main considerations for teams that use real devices as part of

their mobile testing strategy -- device selection and test classification.

YOUR PIPELINE

Designing the build deploy pipeline is one of the first things teams will need to

do when considering a mobile automation project.

A developer, or in some cases teams of developers in different parts of the

world will be making code changes. Developers might test a change locally

on their machine using an emulator, and then commit to a feature branch or

a release branch. Committing the code creates a pull request. That pull

request gets reviewed by another developer for easy to catch bugs, and

stylistic consistency, and then merged into the appropriate branch. Merging

the code change triggers unit tests to kick off, and if those are green,

integration tests that cover the service layer after that.

THE MODERN DEVELOPMENT TOOL CHAIN

 CI/CD REQUIRES CONTINUOUS TESTING

CONTINUOUS TESTING

DEV OPS

When unit and integration tests come back green from Continuous

Integration, deployment to a test and staging environment begin. When the

server code is deployed to a test environment and complete, and for native

applications, the software is installed on the target devices, then the mobile UI

automation test suite can run.

Over time, this test suite can grow to take hours to provide feedback,

lowering the value of that feedback. Designing the tests to run in parallel
Learn more at saucelabs.com

4

from the start can prevent these problems. The entire point of a build and

deploy pipeline is facilitating fast feedback for the development team, and

the people making release decisions. A mobile UI automation suite run on

one environment might take an hour or more to complete. Using simulators,

a team could spin up as many instances as they need to get feedback from

their test suite in a reasonable amount of time. Rather than tests taking hours

in a single environment, they might complete in 15 minutes using simulators

running at the same time.

The general idea here is to get feedback about a code change at the earliest

point possible. This reduces many of the low hanging fruit type bugs that

testers spend their time finding, so that they can focus their efforts on deeper

and more complex testing tasks with real devices.

THE PYRAMID

Most people that have worked in software testing and development are

familiar with the test automation pyramid. The general idea here is to focus

automation efforts on the parts of the product where it is fastest to create and

maintain, and also cheapest to develop. Mobile test automation has its own

pyramid based on where in the tool stack people should focus their efforts --

simulators, emulators, and real devices.

The base of this pyramid is made up of simulators and emulators. Developers

and testers use these tools for expediency and repeatability. Both emulators

and simulators are very easy to spin up as a new test environment. They also

have none of the lag time of a real test environment. A developer might write

a few lines of code, kick off their local simulator to investigate those changes

quickly, and then run a full automation suite using a cloud based emulator to

get a better feel for where they are.

Device
Testing

(in network)

• Recommended only for network-dependent
use cases

Device Testing
(on Wi-Fi

Networks + Networks
Simulation Tools)

Emulator & Simulator Testing

• Use for stable features

• Distribute across device models / form factors

• Important for UX Testing

• Combine with WANem or similar tools for
simulating network connectivity conditions

• High volume functional tests for large builds

• Frequent builds with high concurrency

Learn more at saucelabs.com

5

https://martinfowler.com/bliki/TestPyramid.html
https://saucelabs.com/resources/webinars/tech-talk-the-mobile-testing-pyramid

HOW TO DO IT IN CODE

The ideal test tool strategy would be to have one framework to target web

or native applications on emulators, simulators, or real devices. Using that

framework, a tester will create a test a single time, then reuse that test on

different devices, platforms, and locations based on a simple switch.

The test needs to handle responsive design - to adapt the test activities based

on the user interface. One way to do this is by separation of concerns.

The page object controls behavior. Sample C# code for a login form might be

something like this, where m_driver is a browser driver object that is

a member of the class:

public void login(string username, string password) {

 driver.FindElement(USERNAME_FIELD).Clear();

 driver.FindElement(USERNAME_FIELD).SendKeys(username);

 driver.FindElement(PASSWORD_FIELD).Clear();

 driver.FindElement(PASSWORD_FIELD).SendKeys(username);

 driver.FindElement(SUBMIT).Click();

}

The function belongs to a page object class - but not the login page object.

This is the desktop login page object. It is served up by the desktop page

object factory. There is also a tablet page object factory, a phone page object

factory, and a tablet page object factory.

At run time, the test run adds a series of form factors to a list, then iterates

through that list. Each item in the list has an associated factory. The tests don’t

change. Instead, tests call methods on their page object -- but the page objects

are switched in at run time for the appropriate device. This allows the tester to

create one test per scenario, but reuse the test across various devices.

Switching between platforms (simulators, emulators, desktop) is a similar

process - create a factory that takes the type of connection in as a string, then

write the code to connect to that device (virtual or real), passing the object

that can control the browser to the actual test itself.

This process of separating concerns and creating them through a factory object,

then passing that object in for reuse, is known as Dependency Injection, or “DI.”

Learn more at saucelabs.com

6

The cycle time to get code on physical devices will be slower than the time

to get code on emulators and simulators, and physical devices will be harder

to scale, so test runs will take longer. Still, with the right architectural design,

it will be possible to re-use automated tests on the physical devices, perhaps

running in a slower but still continuous loop.

FITTING THESE TOOLS ON YOUR TEAM

Each of these tool options fits in a specific place during the development

cycle, and will probably be used by particular people on your technical team.

Simulators come into play during development. A developer does not have to

leave XCode to get a running version of the product. Once that person thinks

they have enough new code to test, they click a button to select what device

and operating system they want to use. This builds the software, and then

opens up a new test environment that looks just like the screen of

a mobile device. The simulator offers the ability to see the latest code in

action. Once the simulator is running, that developer can see the new text

field, enter strings into it, click submit, and then see how the app behaves and

whether not the data saves correctly. But, simulators are also missing much of

what real mobile devices offer and they don’t scale well.

This is where emulators enter the picture.

The main use case for emulators is mobile test automation. Each sprint, a team

will build and modify their bank of automated tests. Of course, this also means

that each sprint the set of tests is getting a little bit more complicated and taking a

little longer to complete. Testers can solve this problem by using simulators. They

start by splitting up the suite of mobile UI tests into groups. This enables what

is called parallelization. Rather than kicking off one long test suite at the end of

each build, a new emulator is started dynamically based on how many test suites

there currently are. Each of these emulators comes live and runs a group of tests

at the same time. When done this way, test suites take minutes instead of hours.

They also have the benefit of providing a brand new, clean test environment

every time the test suite is run.

The downside to emulators and simulators is the development group can’t

walk around with them. They can’t do real gestures, taps, and device rotation.

Testers can’t watch device resources drain while the app is running, they don’t

know what will happen when connectivity drops, and they will not be able to

feel the change in temperature. Real mobile devices, sometimes augmented

Learn more at saucelabs.com

7

https://developer.apple.com/library/content/documentation/IDEs/Conceptual/iOS_Simulator_Guide/Introduction/Introduction.html
https://developer.apple.com/library/content/documentation/IDEs/Conceptual/iOS_Simulator_Guide/Introduction/Introduction.html
https://developer.apple.com/library/content/documentation/IDEs/Conceptual/iOS_Simulator_Guide/TestingontheiOSSimulator/TestingontheiOSSimulator.html#//apple_ref/doc/uid/TP40012848-CH4-SW1
https://developer.apple.com/library/content/documentation/IDEs/Conceptual/iOS_Simulator_Guide/TestingontheiOSSimulator/TestingontheiOSSimulator.html#//apple_ref/doc/uid/TP40012848-CH4-SW1
https://saucelabs.com/products/open-source-frameworks

with cloud service providers, can make the physical mobile testing problems

much more approachable.

Emulators are great for quickly providing a variety of test devices, and making

test automation complete in a reasonable amount of time, but this is still no

no replacement for real devices.

Automating tests for these devices can be a challenge - not only in switching

out the device, but also in dealing with responsive design. Activities like log in

and search can actually have different behaviors at different resolutions. Smaller

screen resolutions associated with phone and tablets have less screen real

estate, so a login button might require the user to first select from a menu. That

requires a different test - or at least a different way of writing test programs.

WHAT TO DO TOMORROW

Like any test strategy, development and test groups should blend the tool and

approaches they want based on how their development flow works today,

what software they are developing and the technology stack being used, and

the available skill set.

Teams with a strong culture of automation, such as those that are moving

towards DevOps and Continuous Delivery will use simulators and emulators

heavily. Each development cycle will be accompanied by some new

automated tests, or some old tests updated for new functionality. Each time

the app is built, a new group of emulators gets spun up as an automation test

bed. The emulator bank is nearly endlessly scalable, so as the number of tests

grow, so do the number of available emulators to run them on. The remaining

testing is done on a combination of devices in house or in a real device cloud

and can be used to catch issues that automation can’t.

Teams further off from continuous delivery may focus more of their time on

hands on testing. They will spend their time analyzing which devices their

customers are likely to have so that the right devices can be purchased for

a test lab. The development group may do some cursory testing -- submit

forms, and navigate through through the app -- using a simulator, and then

testers spend most of their time with real mobile devices. In this context,

automation is generally built by testers when they have spare cycles.

Every mobile testing option -- simulator, emulator, or real device -- has its place in

the mobile development cycle. The trick is analyzing where a development group is

right now, and finding the right amount of each to sprinkle into their test approach.

Learn more at saucelabs.com

8

WP-11-112019

ABOUT SAUCE L ABS

Sauce Labs ensures the world’s leading apps and websites work flawlessly on every

browser, OS and device. Its award-winning Continuous Testing Cloud provides

development and quality teams with instant access to the test coverage, scalability,

and analytics they need to rapidly deliver a flawless digital experience. Sauce Labs is a

privately held company funded by Toba Capital, Salesforce Ventures, Centerview Capital

Technology, IVP, Adams Street Partners and Riverwood Capital. For more information,

please visit saucelabs.com.

saucelabs.com/signup/trial

FREE TRIAL

SAUCE LABS INC. - HQ

116 New Montgomery Street, 3rd Fl

San Francisco, CA 94105 USA

SAUCE LABS EUROPE GMBH

Stralauer Allee 6

10245 Berlin DE

SAUCE LABS INC. - CANADA

128 West Pender Street, 8th Floor

Vancouver, BC V6B 1R8, Canada

SAUCE LABS - POLAND

Złota 59 St., 4th Fl.

00-120 Warsaw, Poland

https://saucelabs.com/

