
What Is Appium?
Appium is a free and open-source mobile automation framework

used for native, hybrid, and mobile web apps. It works on iOS,

Android, Mac, and Windows apps using the WebDriver protocol.

Appium currently fully supports the W3C (World Wide Web

Consortium) specification.

Getting Started
In order to get up and running on your local machine, you need to

download an Appium server and client bindings for your preferred

programming language. There are Appium language bindings for

multiple programming languages. The officially supported ones (in

alphabetical order) are:

• C# (.NET)

• Java

• JavaScript (Node.js)

• Objective C

• PHP

• Python

• RobotFramework

• Ruby

Before we dive into installing all the Appium dependencies, we are

first going to look into the iOS and Android dependencies.

PLATFORM DEPENDENCIES (IOS)
For testing on iOS, you'll need to have a Mac and install:

• Xcode

• Xcode Command Line Tools Package. The Command Line Tools

Package can be installed with the xcode-select --install

command in your terminal once Xcode has been installed.

BASIC SETUP

For basic setup, we recommend the use of Homebrew for installing

system dependencies.

• Ensure that you have Appium's general dependencies (e.g.

Node and NPM) installed and configured.

• Install the Carthage dependency manager:

brew install carthage.

Getting Started
With Appium

CONTENTS

 ö What is Appium?

 ö Getting Started

 ö Interrogating Your App

 ö Commands and Operations

 ö Appium Service Providers

WRITTEN BY DAVE HAEFFNER, AUTHOR, ELEMENTAL SELENIUM
UPDATED BY WIM SELLES, SENIOR SOLUTIONS ARCHITECT, SAUCE LABS

BROUGHT TO YOU IN PARTNERSHIP WITH

1

http://appium.io/
https://www.w3.org/TR/webdriver/
https://www.w3.org/TR/webdriver/
https://developer.apple.com/xcode/
https://brew.sh/
https://github.com/Carthage/Carthage
https://signup.saucelabs.com/signup/trial?utm_source=dzone&utm_medium=banner&utm_campaign=appiumrc

Find out how Sauce Labs
can accelerate your testing
to the speed of awesome.

For a demo, please visit saucelabs.com/demo
Email sales@saucelabs.com or call (855) 677-0011 to learn more.

A brief history of web and mobile app testing.

B E F O R E S A U C E L A B S
Devices. Delays. Despair.

A F T E R S A U C E L A B S
Automated. Accelerated. Awesome.

https://signup.saucelabs.com/signup/trial?utm_source=dzone&utm_medium=banner&utm_campaign=appiumrc

3 BROUGHT TO YOU IN PARTNERSHIP WITH

GETTING STARTED WITH APPIUM

If you don't need to automate real devices, you're done! To automate

an app on the simulator, the app capability should be set to an

absolute path or URL pointing to your .app or .app.zip file built for

the sim.

REAL DEVICE SETUP

Automating a real device with XCUITest is considerably more

complicated, due to Apple's restrictions around running apps on

real devices. Please refer to the XCUITest real device setup doc for

instructions.

Once set up, running a session on a real device is achieved by using

the following desired capabilities:

• app or bundleId — Specifies the application (local path

or URL referencing your signed .ipa file), or if it is already

installed, simply the bundle identifier of the app so that

Appium can launch it.

• udid — The specific id of the device to test on. This can also be

set to auto if there is only a single device, in which case Appium

will determine the device ID and use it.

NOTE: For additional information on system setup requirements

(since your needs might be different), be sure to check out the

Appium documentation.

PLATFORM DEPENDENCIES (ANDROID)
For testing on Android, you'll need to do the following:

• Install JDK 8 or higher

• Download and install Android Studio

Once done, open Android Studio and go to "Tools > SDK manager"

and select the SDKs you want to use. Then, go to "Tools > AVD

manager" to create an emulator for your tests to use (for the

examples that follow, we'll be using a Google Pixel with Android 8.1).

NOTE: For additional information on system setup requirements

(since your needs might be different), be sure to check out the

Appium documentation.

APPIUM SERVER
After installing all the iOS and Android platform dependencies,

you have two approaches for getting the Appium Server onto your

machine. You can use the command-line server available through

npm and install it with npm install -g appium.

Alternatively, you can use the Appium Desktop app, which is an

open-source app for Mac, Windows, and Linux that gives you the

Appium server in a simple and flexible UI (along with some extra

functionality). You can download and install the latest version here.

After you installed Appium, you now need to verify if your

environment is set up to run Appium. This can be done with

appium-doctor.

NOTE: If you have any questions about Appium Desktop, be sure

to check out its documentation.

APPIUM-DOCTOR
Appium uses more dependencies than just the Appium server. To

check if all dependencies are installed, you can use appium-doctor.

appium-doctor is a small NPM package that can diagnose and

fix common Node, iOS, and Android configuration issues before

starting Appium.

appium-doctor can be installed with npm install -g appium-doctor.

RUNNING APPIUM-DOCTOR

appium-doctor can diagnose:

• iOS and Android setup together by running appium-doctor

• iOS only by running appium-doctor --ios

• Android only by running appium-doctor --android

For example, when you run appium-doctor (for iOS and Android

diagnostics), you may get the following output:

appium-doctor

info AppiumDoctor Appium Doctor v.1.9.0

info AppiumDoctor ### Diagnostic for necessary

dependencies

starting ###

info AppiumDoctor ✔ The Node.js binary was found at:
/Users/exampleUser/.nvm/versions/node/v10.15.2/bin/

node

info AppiumDoctor ✔ Node version is 10.15.2
info AppiumDoctor ✔ Xcode is installed at:
/Applications/Xcode.app/Contents/Developer

info AppiumDoctor ✔ Xcode Command Line Tools are
installed in:

/Applications/Xcode.app/Contents/Developer

info AppiumDoctor ✔ DevToolsSecurity is enabled.
info AppiumDoctor ✔ The Authorization DB is set up
properly.

info AppiumDoctor ✔ Carthage was found at: /usr/
local/bin/carthage

info AppiumDoctor ✔ HOME is set to: /Users/wimselles
info AppiumDoctor ✔ ANDROID_HOME is set to:
/Users/exampleUser/Library/Android/sdk

info AppiumDoctor ✔ JAVA_HOME is set to:
/Library/Java/JavaVirtualMachines/jdk1.8.0_191.jdk/

Contents/Home

CODE CONTINUED ON NEXT PAGE

http://appium.io/docs/en/drivers/ios-xcuitest-real-devices/
http://appium.io/docs/en/drivers/ios-xcuitest/index.html
http://appium.io/docs/en/drivers/ios-xcuitest/index.html
https://developer.android.com/studio
https://en.wikipedia.org/wiki/Multi-master_replication
https://en.wikipedia.org/wiki/Multi-master_replication
https://github.com/appium/appium-desktop
https://github.com/appium/appium-desktop/releases
https://github.com/appium/appium-desktop/blob/master/README.md
https://github.com/appium/appium-doctor

4 BROUGHT TO YOU IN PARTNERSHIP WITH

GETTING STARTED WITH APPIUM

info AppiumDoctor ✔ adb exists at:
/Users/exampleUser/Library/Android/sdk/platform-

tools/adb

info AppiumDoctor ✔ android exists at:
/Users/exampleUser/Library/Android/sdk/tools/android

info AppiumDoctor ✔ emulator exists at:
/Users/exampleUser/Library/Android/sdk/tools/

emulator

info AppiumDoctor ✔ Bin directory of $JAVA_HOME is
set

info AppiumDoctor ### Diagnostic for necessary

dependencies

completed, no fix needed. ###

info AppiumDoctor

info AppiumDoctor Bye! Run appium-doctor again when

all manual fixes

have been applied!

info AppiumDoctor

If there are any issues that can automatically be fixed, appium-doctor

will do that for you. Otherwise, you will get a list of things that you

need to fix. Run appium-doctor again to see if all the fixes were

applied in the correct way.

When everything is green, you are ready to start testing with Appium.

NOTE: The remaining examples will be shown using WebdriverIO,

a test framework for Node.js.

SAMPLE APPS
Don't have a test app? Don't sweat it. There are pre-compiled test

apps available to kick the tires with. You can grab an iOS or an

Android app here.

Just make sure to put your test app in a known location because

you'll need to reference the path to it next.

WEBDRIVERIO
Before you start to automate with WebdriverIO and Appium, you

first need to install WebdriverIO. The documentation is descriptive

enough to help you install WebdriverIO.

The advice is to start with the setup for the testrunner. The

advantage of the testrunner is that it will be an orchestrator for you

to start one or multiple drivers at once, by only providing an object of

capabilities. This will be handled in the following part.

APP CONFIGUR ATION
When it comes to configuring your app to run on Appium, there are a

lot of similarities to Selenium — namely the use of capabilities. You

can specify the necessary configurations of your app by providing a

capabilities array with an object per capability.

Here's what the object looks like for the iOS test app running on an

iPhone simulator:

capabilities: [

 {

 // The defaults you need to have in your

 // config

 deviceName: 'iPhone X',

 platformName: 'iOS',

 platformVersion: '12.1',

 orientation: 'PORTRAIT',

 // The path to the app

 app: './your/path/to/iOS-Simulator-

NativeDemoApp-0.2.1.app.zip',

 // Read the reset strategies very well, they

 // differ per platform, see

 // http://appium.io/docs/en/writing-running-

 // appium/other/reset-strategies/

 noReset: true,

 },

]

And here's what an object looks like for Android on a local emulator:

capabilities: [

 {

 // The defaults you need to have in your

 // config

 automationName: 'UiAutomator2',

 deviceName: 'Pixel_8.1', // The name you gave

 // it in Android Studio

 platformName: 'Android',

 platformVersion: '8.1',

 orientation: 'PORTRAIT',

 app: './your/path/to/Android-NativeDemoApp-

0.2.1.apk',

 // Read the reset strategies very well, they

 // differ per platform, see

 // http://appium.io/docs/en/writing-running-

 // appium/other/reset-strategies/

 noReset: true,

 },

]

NOTE: You can see a full list of available capabilities here.

Interrogating Your App
Writing automated scripts to drive an app in Appium is very similar

to how it's done in Selenium. You first need to choose a locator

strategy. A locator is how you want to find an element. Then, you

have the selector, which finds an element based on the provided

search criteria.

Below, you will find a table with all available locator strategies for

Selenium/Appium:

https://github.com/webdriverio/native-demo-app/releases
https://github.com/webdriverio/native-demo-app/releases
https://webdriver.io/docs/gettingstarted.html
http://appium.io/docs/en/writing-running-appium/caps/index.html

5 BROUGHT TO YOU IN PARTNERSHIP WITH

GETTING STARTED WITH APPIUM

LOCATOR STRATEGY FROM SUPPORT IN APPIUM

class name Selenium Yes

id Selenium Yes

name Selenium Yes

xpath Selenium Yes

accessibility id Appium Yes

-ios predicate string Appium Yes

-ios class chain Appium Yes

-android uiautomator Appium Yes

-ios uiautomation Appium Deprecated

css selector Selenium No/Yes*

link text Selenium No/Yes*

partial link text Selenium No/Yes*

tag name Selenium No/Yes*

This is a No when a native app is automated, but it is a Yes if the app is a

hybrid or a web app.

Depending on the app that needs to be automated, there are multiple

ways to locate elements. When you are automating a web app, you

can use the default tools to locate elements like, for example, Chrome

Developer Tools.

Note: Because a native app is used as an example, we are going to

use Appium Desktop to locate the elements

USING THE APPIUM DESKTOP APP
When you download and open Appium Desktop, you will see the

following screen.

When you press the Start Server button, the Appium Desktop server

will start and a new screen will be shown.

NOTE: If you have Appium running in a terminal window, you'll

need to kill it by issuing a CTRL+C command.

Click on the magnifying glass to start the inspector session:

This will start the New Session window:

The New Session window allows you to construct a set of Appium-

desired capabilities used to launch an Appium session. You can launch

a session against the currently-running Appium Desktop server (which

is the default), or you can launch a session against a variety of other

endpoints. For now, we are going to focus on the automatic server

and use the iOS simulator as an example. Android will only differ in

capabilities, see above.

The capabilities that are used for WebdriverIO can also be added here:

NOTE: You can save your configuration by clicking the Save As

button next to Start Session and giving it a helpful name. Then,

you can easily refer to this configuration later.

After pressing Start Session, the Appium Desktop Inspector will start.

This is a three-pane inspector window that shows a screenshot of the

app on the left, the underlying UI hierarchy of the app in the center,

and details about the element you are attempting to interact with on

the right.

6 BROUGHT TO YOU IN PARTNERSHIP WITH

GETTING STARTED WITH APPIUM

In the left-pane, you can click on an element you'd like to interact

with. When you do, the middle pane will update the source code. The

right-pane will then:

• Offer actions you can take against it (e.g. Tap or Send Keys)

• Show you one or multiple locator strategies with their selector

• Show details about the element (attribute values like type,

value, visible, and so on).

Commands and Operations
The most common operations you'll end up doing in Appium are finding

an element (or a set of elements) and performing actions with those

elements (e.g. tap, type text, swipe, etc.). You can also ask questions

about the elements (e.g. Is it displayed? Is it enabled? etc.), pull

information out of the element (e.g. the text of an element or the text of

a specific attribute within an element), or perform additional gestures.

FINDING AN ELEMENT

// The $ is a shorthand for browser.

findElement('locator', 'selector')

// Find 1 element

const element = $('locator');

// The $$ is a shorthand for browser.

findElements('locator', 'selector')

// Find multiple elements with the same locator

const elements = $$('locator');

WORK WITH A FOUND ELEMENT

// Chain actions together

$('locator').click();

// Store the element and then click it

const element = $('locator');

element.click();

CHAIN ELEMENTS

// Add a value to the child within the parent

$('parent').$('child').setValue('type some text');

ASK A QUESTION

// Check if the element is displayed

$('locator').isDisplayed();

// Check if the element is enabled

$('locator').isEnabled();

RETRIEVE INFORMATION

// Get the text of an element

$('locator').getText();

// Get the attribute value

$('locator').getAttribute('type');

GESTURES

it('should do a touch gesture', () => {

 const screen = $('//UITextbox');

 // simple touch action on element

 driver.touchAction({

 action: 'tap',

 element: screen,

 });

 // simple touch action x y variables

 // tap location is 30px right and 20px down

 // relative from the viewport

 driver.touchAction({

 action: 'tap',

 x: 30,

 y: 20,

 });

 // simple touch action x y variables

 // tap location is 30px right and 20px down

 // relative from the center of the element

 driver.touchAction({

 action: 'tap',

 x: 30,

 y: 20,

 element: screen,

 });

 // multi action on an element

 // drag&drop from position 200x200 down 100px on

 // the screen

 driver.touchAction([

 { action: 'press', x: 200, y: 200 },

 { action: 'moveTo', x: 200, y: 300 },

 'release',

]);

});

NOTE: For a full list of available commands and operations, be

sure to check out the documentation.

EX AMPLE TESTS
To give you a quick start, WebdriverIO created:

• A demo app for iOS and Android

https://webdriver.io/docs/api.html
https://github.com/webdriverio/native-demo-app/releases

7 BROUGHT TO YOU IN PARTNERSHIP WITH

GETTING STARTED WITH APPIUM

• A boilerplate on how to quickly get started with WebdriverIO

and Appium

The boilerplate will hold test examples for automating:

• A native app

• A webview (loading a website into an app)

• Safari/Chrome browser

And helpers for:

• Pickers

• Alerts

• Gestures

• And many more

Appium Service Providers
Rather than take on the overhead of standing up and maintaining a

test infrastructure, you can easily outsource these services to a third-

party cloud provider like Sauce Labs. With Sauce Labs, you'll be able

to get access to real devices as well as simulators and emulators.

NOTE: You'll need an account to use Sauce Labs. Their free trial

offers enough to get you started. And if you're signing up because

you want to test an open-source project, then be sure to check

out their Open Sauce account.

In the previously mentioned appium-boilerplate for WebdriverIO, you'll

also find a setup to connect to the real device cloud of Sauce Labs.

Please make sure you have added the API-key, which you get when you

sign up, to your environment variables and you are good to go.

NOTE: Also, you can spin up a Sauce Labs session from within the

Appium Desktop app's Start New Session menu. After providing

your credentials, specify the caps for the setup that you need and

click Start Session.

NOTE: You can see a full list of Sauce Labs' available platform

options here. There's also a handy configuration generator that

will tell you what values to plug into your test. Be sure to check

out Sauce Labs' documentation portal for more details.

Devada, Inc.
600 Park Offices Drive
Suite 150
Research Triangle Park, NC

888.678.0399 919.678.0300

Copyright © 2019 DZone, Inc. All rights reserved. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

DZone communities deliver over 6 million pages each

month to more than 3.3 million software developers,

architects, and decision makers. DZone offers something for

everyone, including news, tutorials, cheat sheets, research

guides, feature articles, source code, and more. "DZone is a

developer’s dream," says PC Magazine.

Updated by Wim Selles, Test Automation Engineer
Wim Selles is a Solution Architect for Sauce Labs based in the Netherlands. During the day, he assists

customers with solving automation challenges in their organization. By night, he practices his passion for

front-end test automation with Javascript. He likes to create his own Node.js modules to help and support

automation engineers and is also a contributor to multiple open source projects that involve testing, such as

WebdriverIO, Protractor, ng-Apimock, and many more. Wim also has extensive experience using Appium for

automating Hybrid and React Native Apps.

https://github.com/webdriverio/appium-boilerplate
https://saucelabs.com/
https://saucelabs.com/signup/trial
https://saucelabs.com/opensauce
https://wiki.saucelabs.com/display/DOCS/Appium+Capabilities+for+Real+Device+Testing
https://wiki.saucelabs.com/display/DOCS/Platform+Configurator#/
https://wiki.saucelabs.com/

