Push vs. Pull

The Future of Real-Time Databases in the Cloud

Wolfram Wingerath

ww@bagend.com
December 10, SCDM 2018, Seattle

UH
Baend
2 Universitit Hamburg V

www.bagend.com

PhD Thesis &
Research

Research:

* NoSQL & Cloud Databases

Real-Time Databases
Stream Processing

UH
i‘ti_
2 Universitit Hamburg

About me

Wolfram Wingerath

00

Distributed
Systems
Engineer

Practice:
Backend-as-a-Service
Web Caching
Real-Time Database

BaQend

www.bagend.com

Outline

))) Push-Based Data Access
Why Real-Time Databases?

% Real-Time Databases
System survey

Discussion
What are the bottlenecks?

-/9- Future Directions
= Scalability & Use Cases

A Small History Lesson

The Problem With
Traditional Databases
Real-Time Databases to the
Rescue!

A Short History of Data Management
Hot Topics Through The Ages

. CEP & Stream
Relational Databases S Processing
B d
Entity-Relationship Model R Spark aqen
: apReduce
Trlggers SQL Starburst STREAM . Samza
Ingres Standard Telegraph Bigtable Meteor
HiPAC GFS
System R Rapide Clink | e
PostereSQL Dynamo| FINK | Firebase
Relational : Aurora & | RethinkDB
Model Borealis ~torm
Big Data & Real-Time

ive D
Active Databases NoSQL Databases

Traditional Databases
The Problem: No Request — No Datal

What'’s the

current state? D A @

circular shapes ——

L =

Periodic Polling for query result maintenance:
- inefficient
- slow

A

Real-time Databases
Always Up-to-Date With Database State

LIAO

circular shapes

U

Real-Time Queries for query result maintenance:
- efficient
- fast

A

Real-Time Query Maintenance
Matching Every Query Against Every Update

- Potential bottlenecks:

Number of queries
e Write throughput
* Query complexity

Similar processing for:
* Triggers

e ECATrules

* Materialized views

R
——
T D—
Is match?
& %
Was match? Was match?

%] ©

R ? & £
® (+) (})

change add remove none

Outline

))) Push-Based Data Access
Why Real-Time Databases?

Real-Time Databases
System survey

Discussion
What are the bottlenecks?

-/9- Future Directions
= Scalability & Use Cases

Meteor
RethinkDB
Parse
Firebase
Others

»)
/4 Y
S
e
-

Real-Time Databases
REgr ™ F 3

Meteor MET ER\\R

Overview:

JavaScript Framework for interactive apps and websites

* MongoDB under the hood

* Real-time result updates, full MongoDB expressiveness

Open-source: MIT license

Managed service: Galaxy (Platform-as-a-Service)
History:

2011: Skybreak is announced

2012: Skybreak is renamed to Meteor

2015: Managed hosting service Galaxy is announced

10

Live Queries

N
| METE \R
Poll-and-Diff
* Change monitoring: app servers detect relevant changes
— incomplete in multi-server deployment
» Poll-and-diff: queries are re-executed periodically

- staleness window ?
— does not scale with queries °
J‘
.
repeat query every 10 seconds
forward
CRUD

monitor g - — - — o

mcommg _____ | /
METE\\\R | METE\\R l

writes
I app server ' I app serverl'
~

|
C

11

Oplog Tailing METE\\R

Basics: MongoDB Replication

* Oplog: rolling record of data modifications ‘ D

* Master-slave replication:

Secondaries subscribe to oplog write operation

Primary C

.mongo cluster
(3 shards)

3 apply

propagate change

Secondary C1 Secondary C2 Secondary C3

12

Oplog Tailing
Tapping into the Oplog

query -~ -
(whenin doubt)<

E ~__ Oplogc

(\push relevant events

(
I
I
I
I
\

METE\\R

.mongo cluster (3 shards)

anaryA Primary B PrlmaryC

——\

¥
METE\R | GMETE\\R :

“p server ' | App server /I
/\ CRUD /\

—— oy

13

Oplog Tailing METE\\R

Oplog Info is Incomplete

What game does Bobby play?

— if baccarat, he takes first place!
— if something else, nothing changes!

Partial update from oplog:
{ name: ,Bobby"“, score: 500 }

Baccarat players sorted by high-score

I 1. { name: ,Joy"“, game: ,baccarat"“, score: 100 }
I 2. { name: ,Tim"“, game: ,baccarat"“, score: 90 }
I 3. { name: ,Lee"“, game: ,baccarat"“, score: 80 }

Oplog Tailing METE\\R

Tapping into the Oplog

Every Meteor server receives
all DB writes through oplogs .mongo cluster (3 shards)
— does not scale

anaryA Primary B PrlmaryC

(I
| |
| |
| |
| |
\

query -~ -
(whenin doubt)<
D monitor - _\ ——
oplog l
METENR | METE\R |
p servgr | A '
—) pp server
(\Esh relevant events /\

Bottleneck!

15

RethinkDB ¢)RethinkDB

Overview:
,MongoDB done right“: comparable queries and data model, but also:
- Push-based queries (filters only)
* Joins (non-streaming)
- Strong consistency: linearizability
JavaScript SDK (Horizon): open-source, as managed service

Open-source: Apache 2.0 license
History:
2009: RethinkDB is founded
2012: RethinkDB is open-sourced under AGPL
2016, May: first official release of Horizon (JavaScript SDK)
2016, October: RethinkDB announces shutdown
2017: RethinkDB is relicensed under Apache 2.0

16

RethinkDB

 Range-sharded data
e RethinkDB proxy: support node
without data
e Client communication
* Request routing
e Real-time query matching

-—ees e e . -

* FEvery proxy receives T
all database writes :
— does not scale l
|
__________ /
App server App server
m William Stein, RethinkDB versus PostgreSQL: my personal experience (2017) B 0 ttle ne Ck !

http://blog.sagemath.com/2017/02/09/rethinkdb-vs-postgres.html (2017-02-27)

m Daniel Mewes, Comment on GitHub issue #962: Consider adding more docs on RethinkDB Proxy (2016)
https://github.com/rethinkdb/docs/issues/962 (2017-02-27) 17

http://blog.sagemath.com/2017/02/09/rethinkdb-vs-postgres.html
https://github.com/rethinkdb/docs/issues/962

Parse @ Parse

Overview:
Backend-as-a-Service for mobile apps
* MongoDB: largest deployment world-wide
* Easy development: great docs, push notifications, authentication, ...
* Real-time updates for most MongoDB queries
Open-source: BSD license
Managed service: discontinued
History:
2011: Parse is founded
2013: Parse is acquired by Facebook
2015: more than 500,000 mobile apps reported on Parse
2016, January: Parse shutdown is announced
2016, March: Live Queries are announced
2017: Parse shutdown is finalized

18

Parse @
LiveQuery Architecture Parse

* LiveQuery Server: no data, real-time query matching
* Every LiveQuery Server receives

all database writes

— does not scale Parse LiveQuery Server

Update

Event "
LiveQuery Subscribe Message Client
Message
A
Parse Server)

ParseObject Message WebSockerServer K

. . Subscriber \
Publisher q ParseObject ParseObject A Subscribe Client

Update Update Message
Parse Server % Redis ﬁ Parse LiveQuery Server
Event Client

Publisher d N Subscriber W
Subscribe

Pa{f:é)a?: ct Meesage WebSockerServer |<
A 4
Event
LiveQuery Message % ;
Message Cient

Bottleneck!

[llustration taken from:
http://parseplatform.github.io/docs/parse-server/guide/#live-queries (2017-02-22)

http://parseplatform.github.io/docs/parse-server/guide/#live-queries

Firebase Firebase

Overview:

Real-time state synchronization across devices

Simplistic data model: nested hierarchy of lists and objects

Simplistic queries: mostly navigation/filtering

Fully managed, proprietary

App SDK for App development, mobile-first

Google services integration: analytics, hosting, authorization, ...
History:

2011: chat service startup Envolve is founded

— was often used for cross-device state synchronization
— state synchronization is separated (Firebase)

2012: Firebase is founded
2013: Firebase is acquired by Google

20

Firebase .
. o ¥ Firebase
Real-Time State Synchronization

* Tree data model: application state ~JSON object
« Subtree synching: push notifications for specific keys only

— Flat structure for fine granularity

— Limited expressiveness! / e

O 10

m [llustration taken from: Frank van Puffelen, Have you met the Realtime Database? (2016)
https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html (2017-02-27)

21

https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html

Firebase

” Firebase

Query Processing in the Client

* Push notifications for specific keys only

* Order by a single attribute

* Apply a single filter on that attribute

* Non-trivial query processing in client

— does not scale!

m Jacob Wenger, on the Firebase Google Group (2015)

“chat”

“message_1"

t name: “Frank”
message: “Hello. Anyone here?”

“message_2"

https://groups.google.com/forum/#!topic/firebase-talk/d-XjaBVL2Ko (2017-02-27)

m [llustration taken from: Frank van Puffelen, Have you met the Realtime Database? (2016)
https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html (2017-02-27)

t name: “Jeff”
message: “Sorry, working on some AI”

22

https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html
https://groups.google.com/forum/#!topic/firebase-talk/d-XjaBVL2Ko

Firebase
Hard Scaling Limits

Firebase

“Scale to around 100,000 concurrent connections
and 1,000 writes/second in a single database.
Scaling beyond that requires sharding your data
across multiple databases.”

Bottleneck!

m Firebase, Choose a Database: Cloud Firestore or Realtime Database (2018)
(2018-03-10)

https://firebase.google.com/docs/database/rtdb-vs-firestore

Firebase

Firestore: New Model
documents

q/ references

”' Firebase

collections

m [llustration taken from: Todd Kerpelman, Cloud Firestore for Realtime Database Developers (2017)
https://firebase.googleblog.com/2017/10/cloud-firestore-for-rtdb-developers.html (2018-03-10)

https://firebase.googleblog.com/2017/10/cloud-firestore-for-rtdb-developers.html

Firebase
Firestore: New Mode|

¥ Firebase

finer access granulates ,

on . N

tree-like structure

m [llustration taken from: Todd Kerpelman, Cloud Firestore for Realtime Database Developers (2017)
(2018-03-10)

https://firebase.googleblog.com/2017/10/cloud-firestore-for-rtdb-developers.html

Firebase
Firestore: Summary

Firebase

 More specific data selection
* Logical AND for some filter combinations

... But:
 Still Limited Expressiveness
* No logical OR

* No logical AND for many filter combinations

* No content-based search (regex, full-text search)
 Still Limited Write Throughput:

* 500 writes/s per collection

» 1 writes/s per document

m Firebase, Firestore: Quotas and Limits (2018)
(2018-03-10)

https://firebase.google.com/docs/firestore/quotas

Honorable Mentions
Other Systems With Real-Time Features

& realm

() GRAPHCOOL i: CouchDB
L (

rapidio < QrientDB

y
. mongo

27

Outline

))) Push-Based Data Access
Why Real-Time Databases?

% Real-Time Databases
System survey

Discussion
What are the bottlenecks?

-/9- Future Directions
= Scalability & Use Cases

System Classification:
Databases

Real-Time Databases
Stream Management
Stream Processing
Side-by-Side Comparison

sy tvee
\r<e

2

Data Management Overview
DBMS vs. Real-Time DB vs. Stream Management

Database Real-Time Data Stream
Management Databases Management

. . : : ersistent
static collections evolving collections P /

! ! ephemeral streams

pull-based push-based

Real-Time Database Comparison . ;%

METE\R [|{RethinkpB|) Parse [/ Firebase| BalQend

Poll-and-Diff Log Tailing Unknown 2-D Partitioning

Write Scalability \/ X X \/

?

(100k connections)

Read Scalability

Composite
Filters (AND/OR)

NN %

(AND In Firestore)

Queries

Event Stream
Queries

NSNS NN %
AN N N N N N R
NU® % NN NS
NS NN S

Sorted Queries X
(single attribute)
Limit X v
Offset X
(value-based)
Self-Maintaining X X

v

Outline

))) Push-Based Data Access
Why Real-Time Databases?

% Real-Time Databases
System survey

Discussion
What are the bottlenecks?

-:9:- Future Directions
= Scalability & Use Cases

Performance & Scalability
Query Expressiveness
Use Cases
* Real-Time Apps
 Query Caching
Summary

32

Making Real-Time -
Databases Scale '

Bagend Real-Time Queries
Real-Time Decoupled

Y9
Y9 IW/‘@
BaQend =
App Server F'H
nvali =
Rt e 1.

~0DB

Keeps data up-to-date!

Bagend Real-Time Queries

Filter Queries: Distributed Query Matching

SELECT * FROM posts WHERE tags CONTAINS 'NoSQL'

Subscription!

Two-dimensional partitioning: /”/ l “‘“\\
* by Query n (Query | [Query)| [Query)
o by Object é j Part. 1 Part. 2 Part. 3
> scales with queriesand writes g |85 { ForEach Queny }

é /|oe s Migtch?
Implementation: Write op! E"’/ - g Vg
* Apache Storm Sk <change 2dd remove %}
* Topology in Java th H .
* MongoDB query language '*g; ﬁ ﬁ
* Pluggable query engine \'8“&“ ‘ DA ‘

J J

v

Bagend Real-Time Queries
Staged Real-Time Query Processing

Change notifications go through up to 4
query processing stages:
1. Filter queries: track matching status

— before- and after-images

2. Sorted queries: maintain result order
3. Joins: combine maintained results

: Filtering
< Event! :
LT
: Ordering
| a
< Event!
D
|
I Joins
< Event! : \/]
\/ ! !
VvAggregation

[

4. Aggregations: maintain aggregations | < °7'
[
[

>]

36

Bagend Real-Time Queries
Low Latency + Linear Scalability

Linear Scalability Stable Latency Distribution

80M

@9 99th Pe;centile Latency‘ < 25ms Frequency
l I 99th Percentile Latency < 20 ms %
40M || ¢ # 99th Percentile Latency =< 15ms| ol 271 0.15 i N 1 node (3M ops/s)
= T Tt i 16 nodes (48M ops/s)
O Z20MP 2 e Tt |
3 ' 0.10}
Q_ L
c
2 10M|
o -] J
-|E L7 ".“ : : 0-05 B : I-"l
5M| .~ ,’ SO OO URUOR ST I w -
A | | S
2.5M 2 4 g 16 5 10 15 20 25 30
Matching Nodes Latency

m Quaestor: Query Web Caching for Database-as-a-Service Providers
VLDB ‘17

Programming Real-Time Queries

JavaScript API

vaP query = DB.Tweet.find()
.matches('text', /my filter/)
.descending('createdAt’)
.offset(20)
.1imit(10);

Static Query

Twoogle Twoogle

Filter word, e.g. "http", "Java", "Bagend” n Filter word, e.g. "http”, "Java’, "Bagend” n

Real-Time Static Real-Time Static

Last result update at 15:51:21 (less than a second ago) Last result update at 15:51:21 (less than a second ago)
1. Conju.re (conju_re, 3840 followers) tweeted: 1. Conju.re (conju_re, 3840 followers) tweeted:
https://twitter.com/conju_re/status/859767327570702336 https:/twitter.com/conju_re/status/859767327570702336
Congress Saved the Science Budget—And That's the Problem https://t.co/UdrjNidakc Congress Saved the Science Budget—And That’s the Problem
https://t.co/xINjpEpKZG https://t.co/UdrjNidakc https://t.co/xINjpEpKZG
2. 2l d 17 —7Z L (Yuuu__key, 229 followers) tweeted: 2. #AalEd 17w —7ZL (Yuuu__key, 229 followers) tweeted:
https://twitter.com/Yuuu___key/status/859767323384623104 https://twitter.com/Yuuu___key/status/859767323384623104

[JW& E A & PENGUIN RESEARCH®D IF W< A A 7D Y LT3.. [FW&E Z A & PENGUIN RESEARCH®D |FWWo< A A 7D)ERY LTS..

s

3. Whitney Shackley (bschneids11, 5 followers) tweeted: 3. Whitney Shackley (bschneids11, 5 followers) tweeted:
https://twitter.com/bschneids11/status/859767319534469122 https://twitter.com/bschneids11/status/859767319534469122

holy...... waiting for it so long@® © https://t.co/UdXcHJb7X3 holy...... waiting for it so long@® @ https://t.co/UdXcHJb7X3

4. Lisa Schmid (LisaMSchmid, 67 followers) tweeted on #teamscs, and #scs... 4. Lisa Schmid (LisaMSchmid, 67 followers) tweeted on #teamscs, and...
https://twitter.com/LisaMSchmid/status/859767317311500290 https://twitter.com/LisaMSchmid/status/859767317311500290

Congrats to Matthew Kent, winner of the 26th #TeamSCS Coding Challenge. Congrats to Matthew Kent, winner of the 26th #TeamSCS Coding Challenge.
https://t.co/vx100WgJrZ #SCSchallenge https://t.co/vx100WgJrZ #SCSchallenge

5. Brian Martin Larson (Brian_Larson, 40 followers) tweeted on #teamscs, a... 5. Brian Martin Larson (Brian_Larson, 40 followers) tweeted on #teams...
https://twitter.com/Brian_Larson/status/859767317303001089 https://twitter.com/Brian_Larson/status/859767317303001089

Congrats to Matthew Kent, winner of the 26th #TeamSCS Coding Challenge. Congrats to Matthew Kent, winner of the26th #TeamSCS Coding Challenge.

Problem: Slow Websites
Two Bottlenecks: Latency and Processing

9

Processing Overhead

— % &= |

Solution: Global Caching
Fresh Data From Distributed Web Caches

IOW atency - \Q{Q \3 —&

New Caching Algorithms

Solve Consistency Problem

InvaliDB

Invalidating DB Queries

How to detect changes to |

query results:

,,Give me the most popular
products that are in stock.”

g

$10.25-$179.99 $97.99

Ends in 16:45:48 List: $449-95 (35% off)

Up to 50% Off Handbags Ends in 16:45:48

ey 21 Save on Hitachi Gas Powered Leaf
Blower
Ships from and sold by Amazon.com.
e e ke e ol 1961

l See details | [Add o Cart

w
)

$15.63 - $16.79

9% Claimed Ends in 4:40:49
BESTEK surge protector
Sold by BESTEK. and Fulfiled by Amazon.

o el 162

Choose options I

$18.66
Price: $39-99 (53% off)

18% Claimed Ends in 3:05:49
AUKEY Table Lamp. Touch Sensor
Bedside Lamp + Dimmable War.
Sold by Aukey Direct and Fulfiled by
Amazon.

e e e 57 669

l Add to Cart

Summary J@(¥
Real-Time Databases: Major challenges Ead 2

fﬁl_ Scalability:

» Handle increasing throughput
» Handle additional queries

q@ Expressiveness:
» Content-based search? Composite filters?
» Ordering? Limit? Offset?

c@ Legacy Support:

» Real-time queries for existing databases?
» Decouple OLTP from real-time workloads?

Our Related Publications

Book, Papers, Articles & Tutorials:

m Quaestor: Query Web Caching for Database-as- m Real-Time & Stream Data Management: Push-Based
a-Service Providers VVLDB ‘17 Data in Research & Practice. Springer 2019

m NoSQL Database Systems: A Survey and m Real-Time Data Management for Big Data.
Decision Guidance SummerSOC ‘16 EDBT 2018
m Real-time stream processing for Big Data m Scalable Push-Based Real-Time Queries on Top of Pull-
it - Information Technology 58 (2016) Based Databases. PhD thesis, Wolfram Wingerath, 2018
m The Case For Change Notifications in Pull-Based m Low Latency for Cloud Data Management.
DatabasesBTW ‘17 PhD thesis, Felix Gessert, 2018

Blog Posts:

Real-Time Databases Explained: Why Meteor, RethinkDB, Parse and Firebase Don't Scale
Bagend Tech Blog (2017):

Learn more at

https://medium.com/p/822ff87d2f87
blog.baqend.com

Thank you

wingerath@informatik.uni-hamburg.de

Blog: blog.bagend.com
Slides: slides.bagend.com

, @bagendcom

