
Push vs. Pull
The Future of Real-Time Databases in the Cloud

Wolfram Wingerath
ww@baqend.com

December 10, SCDM 2018, Seattle

www.baqend.com

Research:
• Real-Time Databases
• Stream Processing
• NoSQL & Cloud Databases
• …

Practice:
Backend-as-a-Service

Web Caching
Real-Time Database

…

+
•

•

•

•

www.baqend.com

About me
Wolfram Wingerath

PhD Thesis &
Research

Distributed
Systems

Engineer

Outline

• A Small History Lesson
• The Problem With

Traditional Databases
• Real-Time Databases to the

Rescue!

Discussion
What are the bottlenecks?

Push-Based Data Access
Why Real-Time Databases?

Real-Time Databases
System survey

Future Directions
Scalability & Use Cases

3

…

1970

1980

1990

2000

2010

today

Relational
Model

Ingres

System R

Triggers

Entity-Relationship Model

SQL
Standard

PostgreSQL

HiPAC

Starburst

Rapide

STREAM

Aurora &
Borealis

MapReduce

Bigtable

Dynamo

Spark

Storm

Flink

Samza

RethinkDB

Meteor

Firebase

Baqend

GFS

Relational Databases

Active Databases

CEP &
Streams

Big Data &
NoSQL

Stream
Processing

Real-Time
Databases

A Short History of Data Management
Hot Topics Through The Ages

Telegraph

Traditional Databases
The Problem: No Request – No Data!

circular shapes

What‘s the
current state?

Periodic Polling for query result maintenance:
→ inefficient
→ slow

5

Real-time Databases
Always Up-to-Date With Database State

circular shapes

Real-Time Queries for query result maintenance:
→ efficient
→ fast

6

Real-Time Query Maintenance
Matching Every Query Against Every Update

 Potential bottlenecks:
• Number of queries
• Write throughput
• Query complexity

Similar processing for:
• Triggers
• ECA rules
• Materialized views

Outline

• Meteor
• RethinkDB
• Parse
• Firebase
• Others

Discussion
What are the bottlenecks?

Push-Based Data Access
Why Real-Time Databases?

Real-Time Databases
System survey

8

…

Future Directions
Scalability & Use Cases

Real-Time Databases

Overview:
◦ JavaScript Framework for interactive apps and websites

 MongoDB under the hood

 Real-time result updates, full MongoDB expressiveness

◦ Open-source: MIT license

◦ Managed service: Galaxy (Platform-as-a-Service)

History:
◦ 2011: Skybreak is announced

◦ 2012: Skybreak is renamed to Meteor

◦ 2015: Managed hosting service Galaxy is announced

Meteor

10

Live Queries
Poll-and-Diff

• Change monitoring: app servers detect relevant changes
→ incomplete in multi-server deployment

• Poll-and-diff: queries are re-executed periodically
→ staleness window
→ does not scale with queries

app server

monitor
incoming

writes

CRUD app server

repeat query every 10 seconds

?

forward
CRUD

11

!

Oplog Tailing
Basics: MongoDB Replication

• Oplog: rolling record of data modifications
• Master-slave replication:

Secondaries subscribe to oplog

Secondary C2

apply

propagate change

write operation

Secondary C3Secondary C1

MongoDB cluster
(3 shards)

Primary BPrimary A Primary C

12

Oplog Tailing
Tapping into the Oplog

Primary BPrimary A Primary C

MongoDB cluster (3 shards)

App server App server

Oplog broadcast

CRUD

query
(when in doubt)

monitor
oplog

push relevant events

13

Oplog Tailing
Oplog Info is Incomplete

1. { name: „Joy“, game: „baccarat“, score: 100 }

2. { name: „Tim“, game: „baccarat“, score: 90 }

3. { name: „Lee“, game: „baccarat“, score: 80 }

Baccarat players sorted by high-score

Partial update from oplog:
{ name: „Bobby“, score: 500 } // game: ???

What game does Bobby play?
→ if baccarat, he takes first place!
→ if something else, nothing changes!

14

Oplog Tailing
Tapping into the Oplog

• Every Meteor server receives
all DB writes through oplogs
→ does not scale Primary BPrimary A Primary C

MongoDB cluster (3 shards)

App server App server

Oplog broadcast

CRUD

query
(when in doubt)

monitor
oplog

push relevant events

Bottleneck!
15

Overview:
◦ „MongoDB done right“: comparable queries and data model, but also:

 Push-based queries (filters only)

 Joins (non-streaming)

 Strong consistency: linearizability

◦ JavaScript SDK (Horizon): open-source, as managed service

◦ Open-source: Apache 2.0 license

History:
◦ 2009: RethinkDB is founded

◦ 2012: RethinkDB is open-sourced under AGPL

◦ 2016, May: first official release of Horizon (JavaScript SDK)

◦ 2016, October: RethinkDB announces shutdown

◦ 2017: RethinkDB is relicensed under Apache 2.0

RethinkDB

16

RethinkDB
Changefeed Architecture

William Stein, RethinkDB versus PostgreSQL: my personal experience (2017)
http://blog.sagemath.com/2017/02/09/rethinkdb-vs-postgres.html (2017-02-27)

RethinkDB proxy RethinkDB proxy

RethinkDB storage cluster

• Range-sharded data
• RethinkDB proxy: support node

without data
• Client communication
• Request routing
• Real-time query matching

• Every proxy receives
all database writes
→ does not scale

App server App server

Daniel Mewes, Comment on GitHub issue #962: Consider adding more docs on RethinkDB Proxy (2016)
https://github.com/rethinkdb/docs/issues/962 (2017-02-27)

Bottleneck!

17

http://blog.sagemath.com/2017/02/09/rethinkdb-vs-postgres.html
https://github.com/rethinkdb/docs/issues/962

Overview:
◦ Backend-as-a-Service for mobile apps

 MongoDB: largest deployment world-wide

 Easy development: great docs, push notifications, authentication, …

 Real-time updates for most MongoDB queries

◦ Open-source: BSD license
◦ Managed service: discontinued

History:
◦ 2011: Parse is founded
◦ 2013: Parse is acquired by Facebook
◦ 2015: more than 500,000 mobile apps reported on Parse
◦ 2016, January: Parse shutdown is announced
◦ 2016, March: Live Queries are announced
◦ 2017: Parse shutdown is finalized

Parse

18

Illustration taken from:
http://parseplatform.github.io/docs/parse-server/guide/#live-queries (2017-02-22)

• LiveQuery Server: no data, real-time query matching
• Every LiveQuery Server receives

all database writes
→ does not scale

Parse
LiveQuery Architecture

Bottleneck!

19

http://parseplatform.github.io/docs/parse-server/guide/#live-queries

Overview:
◦ Real-time state synchronization across devices
◦ Simplistic data model: nested hierarchy of lists and objects
◦ Simplistic queries: mostly navigation/filtering
◦ Fully managed, proprietary
◦ App SDK for App development, mobile-first
◦ Google services integration: analytics, hosting, authorization, …

History:
◦ 2011: chat service startup Envolve is founded

→ was often used for cross-device state synchronization
→ state synchronization is separated (Firebase)

◦ 2012: Firebase is founded
◦ 2013: Firebase is acquired by Google

Firebase

20

Firebase
Real-Time State Synchronization

Illustration taken from: Frank van Puffelen, Have you met the Realtime Database? (2016)
https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html (2017-02-27)

• Tree data model: application state ̴JSON object
• Subtree synching: push notifications for specific keys only

→ Flat structure for fine granularity

→ Limited expressiveness!

21

https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html

Firebase
Query Processing in the Client

Illustration taken from: Frank van Puffelen, Have you met the Realtime Database? (2016)
https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html (2017-02-27)

• Push notifications for specific keys only
• Order by a single attribute
• Apply a single filter on that attribute

• Non-trivial query processing in client
→ does not scale!

Jacob Wenger, on the Firebase Google Group (2015)
https://groups.google.com/forum/#!topic/firebase-talk/d-XjaBVL2Ko (2017-02-27)

22

https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html
https://groups.google.com/forum/#!topic/firebase-talk/d-XjaBVL2Ko

Firebase
Hard Scaling Limits

Firebase, Choose a Database: Cloud Firestore or Realtime Database (2018)
https://firebase.google.com/docs/database/rtdb-vs-firestore (2018-03-10)

“Scale to around 100,000 concurrent connections
and 1,000 writes/second in a single database.
Scaling beyond that requires sharding your data
across multiple databases.”

Bottleneck!

https://firebase.google.com/docs/database/rtdb-vs-firestore

Illustration taken from: Todd Kerpelman, Cloud Firestore for Realtime Database Developers (2017)
https://firebase.googleblog.com/2017/10/cloud-firestore-for-rtdb-developers.html (2018-03-10)

collections

documents

references

Firebase
Firestore: New Model

https://firebase.googleblog.com/2017/10/cloud-firestore-for-rtdb-developers.html

Firebase
Firestore: New Model

Illustration taken from: Todd Kerpelman, Cloud Firestore for Realtime Database Developers (2017)
https://firebase.googleblog.com/2017/10/cloud-firestore-for-rtdb-developers.html (2018-03-10)

tree-like structure

finer access granulates

https://firebase.googleblog.com/2017/10/cloud-firestore-for-rtdb-developers.html

Firebase
Firestore: Summary

• More specific data selection
• Logical AND for some filter combinations

… But:
• Still Limited Expressiveness

• No logical OR
• No logical AND for many filter combinations
• No content-based search (regex, full-text search)

• Still Limited Write Throughput:
• 500 writes/s per collection
• 1 writes/s per document

Firebase, Firestore: Quotas and Limits (2018)
https://firebase.google.com/docs/firestore/quotas (2018-03-10)

https://firebase.google.com/docs/firestore/quotas

27

Honorable Mentions
Other Systems With Real-Time Features

Outline

• System Classification:
• Databases
• Real-Time Databases
• Stream Management
• Stream Processing

• Side-by-Side Comparison

Discussion
What are the bottlenecks?

Push-Based Data Access
Why Real-Time Databases?

Real-Time Databases
System survey

28

…

Future Directions
Scalability & Use Cases

Wrapup &
Discussion

Database
Management

static collections

push-basedpull-based

Real-Time
Databases

evolving collections

Data Management Overview
DBMS vs. Real-Time DB vs. Stream Management

Data Stream
Management

persistent/
ephemeral streams

Poll-and-Diff Log Tailing Unknown 2-D Partitioning

Write Scalability      

Read Scalability     ?
(100k connections)



Composite
Filters (AND/OR)     

(AND In Firestore)


Sorted Queries     
(single attribute)



Limit      

Offset     
(value-based)



Self-Maintaining
Queries      

Event Stream
Queries      

Real-Time Database Comparison

Outline

• Performance & Scalability
• Query Expressiveness
• Use Cases

• Real-Time Apps
• Query Caching

• Summary

Discussion
What are the bottlenecks?

Push-Based Data Access
Why Real-Time Databases?

Real-Time Databases
System survey

32

…

Future Directions
Scalability & Use Cases

Making Real-Time
Databases Scale

Pub-Sub Pub-Sub

Baqend Real-Time Queries
Real-Time Decoupled

Keeps data up-to-date!
34

App Server

Match!

Baqend Real-Time Queries
Filter Queries: Distributed Query Matching

Two-dimensional partitioning:
• by Query
• by Object
→ scales with queries and writes

Implementation:
• Apache Storm
• Topology in Java
• MongoDB query language
• Pluggable query engine

Subscription!

Write op!

35

Baqend Real-Time Queries
Staged Real-Time Query Processing

Change notifications go through up to 4
query processing stages:
1. Filter queries: track matching status

→ before- and after-images
2. Sorted queries: maintain result order
3. Joins: combine maintained results
4. Aggregations: maintain aggregations

Ordering

Joins

Aggregation

Filtering

Event!

Event!

Event!

Event!

a

b

c

∑

36

Linear Scalability Stable Latency Distribution

Baqend Real-Time Queries
Low Latency + Linear Scalability

Quaestor: Query Web Caching for Database-as-a-Service Providers
VLDB ‘17

var query = DB.Tweet.find()
.matches('text', /my filter/)
.descending('createdAt')
.offset(20)
.limit(10);

query.resultList(result => ...);

query.resultStream(result => ...);

Static Query

Real-Time Query

Programming Real-Time Queries
JavaScript API

Problem: Slow Websites
Two Bottlenecks: Latency and Processing

High

Latency

Processing Overhead

Solution: Global Caching
Fresh Data From Distributed Web Caches

Low Latency

Less Processing

New Caching Algorithms
Solve Consistency Problem

1 0 11 0 0 10

How to detect changes to
query results:
„Give me the most popular
products that are in stock.“

Add

Change

Remove

InvaliDB
Invalidating DB Queries

 Scalability:

 Handle increasing throughput

 Handle additional queries

 Expressiveness:

 Content-based search? Composite filters?

 Ordering? Limit? Offset?

 Legacy Support:

 Real-time queries for existing databases?

 Decouple OLTP from real-time workloads?

Summary
Real-Time Databases: Major challenges

Our Related Publications

Quaestor: Query Web Caching for Database-as-
a-Service Providers VLDB ‘17

NoSQL Database Systems: A Survey and
Decision Guidance SummerSOC ‘16

Real-time stream processing for Big Data
it - Information Technology 58 (2016)

Real-Time Databases Explained: Why Meteor, RethinkDB, Parse and Firebase Don't Scale
Baqend Tech Blog (2017): https://medium.com/p/822ff87d2f87

The Case For Change Notifications in Pull-Based
DatabasesBTW ‘17

Book, Papers, Articles & Tutorials:

Blog Posts:

Learn more at blog.baqend.com!

Real-Time & Stream Data Management: Push-Based
Data in Research & Practice. Springer 2019

Real-Time Data Management for Big Data.
EDBT 2018

Scalable Push-Based Real-Time Queries on Top of Pull-
Based Databases. PhD thesis, Wolfram Wingerath, 2018

Low Latency for Cloud Data Management.
PhD thesis, Felix Gessert, 2018

https://medium.com/p/822ff87d2f87
blog.baqend.com

Thank you

@baqendcom

wingerath@informatik.uni-hamburg.de

Blog: blog.baqend.com
Slides: slides.baqend.com

