. N
A 21 p A WA e 2
" . v P > d L
- . e = 1 pe i
L SR P »
Pain, «
) S - 5. Ll o . o
s FR 9, ; '3 e e .
*9 a? # pe '_‘ X
v >
[l y . ; ‘. b .y
L | > 4 ~ @ S B k) g #
' A -
® e i ’ & N @ e
L ¥ e o
. " o .
) . ¥ .y « ! e
. ? >
| < . @ @
e . o e
e 3 e
& ® SV P £l
& o =9 » .
& . &
°e@e .
'@ @ .
b4 L @
" 2]
e

Scalable Data Management

NoSQL Data Stores in Research
and Practice

Felix Gessert, Norbert Ritter

{gessert,ritter}@informatik.uni-hamburg.de
May 17, ICDE 2016

R $ 0 -

Q= a’»
oy

FORRRT. . ! AR
“' - - w2 .

» names"vViewport content= widthedevice-width, initial-scalest b, mmean sl
Lok rele" shortout jcon" hrefs’ Jfavicon. 160’ types" 1mage/v- 1>

.
<k relst oo’ nrefs’ Ifavicon.ic0’ typv“ingelx-m‘»
. LT« | ; o i -
iy types teRtICsS rstylesent NIy
. me(-“mpsziImcdn.bootsu .

Outline

L X+ys

{t

0B

NoSQL Foundations and
Motivation

The NoSQL Toolbox:
Common Techniques

NoSQL Systems

Decision Guidance: NoSQL
Decision Tree

The Database Explosion
NoSQL: Motivation and
Origins
The 4 Classes of NoSQL
Databases:
e Key-Value Stores
 Wide-Column Stores
* Document Stores
* Graph Databases
CAP Theorem

Introduction: What are NoSQL
data stores?

e .

Architecture
Typical Data Architecture:

Analytics Reporting Data Mining

The era of one-size-fits-all database systems is over

ytics

—> Specialized data systems

>3

S

N Applications
a PP

The Database Explosion

Sweetspots

RDBMS

General-purpose
ACID transactions

I ¥ °
®

HBASE
Wide-Column Store

Long scans over
structured data

?® Neoyj

@ the graph database

Graph Database

Graph algorithms
& queries

74 Greenplum

Parallel DWH

Aggregations/OLAP for
massive data amounts

. mongoDB

Document Store

Deeply nested
data models

&B redis

In-Memory KV-Store
Counting & statistics

Volt

NewSQL

High throughput
relational OLTP

sriak
Key-Value Store

Large-scale
session storage

o

cassandra

Wide-Column Store

Massive user-
generated content

The Database Explosion
Cloud-Database Sweetspots

g Firebase . Amazon RDS
Managed RDBMS

General-purpose
ACID transactions

Realtime BaaS

Communication and
collaboration

Amazon

‘—| Azure Tables DynamoDB
Wide-Column Store Wide-Column Store
Very large tables Massive user-

generated content

Google Cloud
Managed NoSQL Object Store
Full-Text Search Massive File

Storage

Amazon
=% ElastiCache

Managed Cache

Caching and
transient storage

Backend-as-a-Service

Small Websites
and Apps

‘ Amazon Elastic
MapReduce
Hadoop-as-a-Service

Big Data Analytics

How to choose a database system?
Many Potential Candidates

Question in this tutorial: @

A
How to approach the - decision problem?

N

requirements database

NoSQL Databases

,NoSQL" term coined in 2009
Interpretation: ,,Not Only SQL”

Typical properties:
Non-relational
Open-Source
Schema-less (schema-free
Optimized for distribution (clusters
Tunable consistency

NoSQL-Databases.org:
Curvent list has over 150
NoSQL systems

wicc Column Storc / Column Fami

on, .
Fully CONSISLENE 15 550

REST
=Scripe Funcs
~ Erizng

I protobut-bEsce JoTy
unificc chaina! Ty |@NEuEET (incl. [OINs,
sub-gucrics, MapRocucs, SroupccklspRocucs)
Symic & i

nEs cucrics, Pro
Partitioncc with consistone ha:
PCr-[CCOMD SETiCEt CONSiStEnCy.

y REST OD=ts Sy
s Tlucnt Quiry AP

NoSQL Databases

Two main motivations:

Scalability Impedance Mismatch

LID <> | Line Item 1: ...
Customer /\\Llne ltem?2: ... Q\\
Payment: Credit Card, ... \
[}
e
User-generated data, —
Request load
Line Items
@ - g%g Orders
N~ —F—F—

I A___

Payment
y Customers

Scale-up vs Scale-out

Scale-Up (vertical
scaling):

7

Scale-Out (horizontal
scaling):

More RAM
More CPU

—
—

(@

More HDD

|
((C
(O (©

Hardware

Shared-Nothing
Architecture

Schemafree Data Modeling

>0
O
o
<
»

NoSQL DB:

Item[Price] -
Item[Discount]

SELECT Name, Age

FROM Customers lW\p(icit
schema

I N N I
I EgiT=

(-

EEEEEE—

\

(

=,

Explicit
schema

Open Source & Commodity Hardware

‘\
l‘
A

Commercial DBMS

Specialized DB hardware
(Oracle Exadata, etc.)

Highly available network
(Infiniband, Fabric Path, etc.)

Highly Available Storage (SAN,
RAID, etc.)

o
o
EEE Y

Open-Source DBMS

Commodity hardware

Commodity network
(Ethernet, etc.)

Commodity drives (standard
HDDs, JBOD)

NoSQL System Classification

Two common criteria:

Data
Model

Key-Value
Wide-Column

Document

Graph

Consistency/Availability
Trade-Off

, AP: Available & Partition
Tolerant

CP: Consistent &
d .)
Partition Tolerant

__, CA: Not Partition
Tolerant

Key-Value Stores

Data model: (key) -> value
Interface: CRUD (Create, Read, Update, Delete)

users:2:friends — {23, 76, 233, 11}
Value:

users:2:inbox — [234, 3466, 86,55] An opaque blob

users:2:settings —> Theme — "dark", cookies — "false" Z

7

Examples: Amazon Dynamo (AP), Riak (AP), Redis (CP)

Key

Wide-Column Stores

Data model: (rowkey, column, timestamp) -> value
Interface: CRUD, Scan

Versions (timestamped)

Row Key Column /
com.chn.www content : "<html>..." title:"CNN" crawled: ...

Examples: Cassandra (AP), Google BigTable (CP),
HBase (CP)

Document Stores

Data model: (collection, key) -> document
Interface: CRUD, Querys, Map-Reduce

ID/Key JSON Document

N\order-12338 - {

order-id: 23,
customer: { name : "Felix Gessert", age : 25 }
line-items : [{product-name : "x", ...}, ...]

}

—

Examples: CouchDB (AP), Amazon SimpleDB (AP),
MongoDB (CP)

Graph Databases

Data model: G = (V, E): Graph-Property Modell

Interface: Trave ' ' ‘ . transactions
Nod :
%S usually unscalable Properties
company: (optimal partitioning %
Apple is NP-complete) _ name:
value: John Doe
300Mrd
Examples: iNeu4) (cAa), nnnnweuiaph (CA), OrientDB

(CA)

Soft NoSQL Systems

Not Covered Here

Search Platforms (Full Text Search):

S No persistence and consistency guarantees for OLTP
Examples: ElasticSearch (AP), Solr (AP)

Object-Oriented Databases:
5 Strong coupling of programming language and DB
Examples: Versant (CA), db4o (CA), Objectivity (CA)

XML-Databases, RDF-Stores:

</> Not scalable, data models not widely used in industry
Examples: MarkLogic (CA), AllegroGraph (CA)

CAP-Theorem

| Only 2 out of 3 properties are
Consistency achievable at a time:

Consistency: all clients have the same
view on the data

| Tllalgtr';fcne ' Availability A\(ailability: every request to a non-
| failed node most result in correct
response
Partition tolerance: the system has to
continue working, even under
arbitrary network partitions
[mpossible

1] Eric Brewer, ACM-PODC Keynote, Juli 2000

m Gilbert, Lynch: Brewer's Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web Services, SigAct News 2002

CAP-Theorem: simplified proof

Problem: when a network partition occurs, either
consistency or availability have to be given up

Block response until Response before
ACK arrives successful replication
- Consistency = Availability

Value =V, Value =V,

Network partition

NoSQL Triangle

Relational
_ Data models | Key-Value
Every client can always _
. Document-Oriented
read and write
CA AP
Oracle, MySQL, ... Dynamo, Redis, Riak, Voldemort
SimpleDB,
All clients share the cp All nodes continue
. Postgres, MySQL Cluster, Oracle RAC _
same view on the data working under network

m Nathan Hurst: Visual Guide to NoSQL Systems
http://blog.nahurst.com/visual-guide-to-nosql-systems

PACELC - an alternative CAP formulation

ldea: Classify systems according to their behavior
during network partitions

es
y Partiti no
on
| | No consequence of the |

CAP theorem

Avail- Con- CO”'

ability sistency sistency
AL - Dynamo-Stylé AC- MongoDB™ CC — Always Consistent
Cassandra, Riak, etc. HBase, BigTable and ACID systems

m Abadi, Daniel. "Consistency tradeoffs in modern distributed
database system design: CAP is only part of the story."

Serializability
Not Highly Available Either
Global serializability and availability are incompatible:

—_J Write B=1
= Read A

Write A=1
Read B ==

wi(a=1)r(b=1) wyo(b=1)r(a=1)

Some weaker isolation levels allow high availability:

RAMP Transactions (P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, und I. Stoica, ,Scalable
Atomic Visibility with RAMP Transactions”, SIGMOD 2014)

m S. Davidson, H. Garcia-Molina, and D. Skeen. Consistency in
partitioned networks. ACM CSUR, 17(3):341—-370, 1985.

Where CAP fits in

Negative Results in Distributed Computing

Asynchronous Network,
Unreliable Channel

Atomic Storage

Impossible:
CAP Theorem

Consensus

Impossible:
2 Generals Problem

Asynchronous Network,
Reliable Channel

Atomic Storage

Possible:
Attiya, Bar-Noy, Dolev (ABD)
Algorithm

Consensus

Impossible:
Fisher Lynch Patterson (FLP)
Theorem

m Lynch, Nancy A. Distributed algorithms.
Morgan Kaufmann, 1996.

ACID vs BASE

ﬂAC|D

,,gold standard‘
for RDBMSs Atomicity

Consistency

Isolation

Durability

BASE <_

Model of many
Basically NoSQL SgSt@VV\S

Available
Soft State

Eventually
Consistent

m http://queue.acm.org/detail.cfm?id=1394128

(L
L
i
ggl
i

|

-_Ftl
i

IIIE
it

i
il
“E

=
o b oo it
e e v A

i1
i

i
i
il

i
sl

HEH G
pii
el

8

Teele! |

ey e ¥ e by Mg e
' - e e
-

Data Models and CAP provide high-leve
classification.

But what about fine-grained
requirements, e.g. query capabilites?

¥
£
i
I
H
.

£
I
1
L
!

Outline

. NoSQL Foundations and Techniques for Functional
~ Motivation and Non-functional

Requirements

| e Sharding
; . The NoSQL Toolbox: Replication
IL—JI Common Techniques * Storage Management

* Query Processing

NoSQL Systems

Decision Guidance: NoSQL
Decision Tree

0B

enable enable

Functional Central
Require- techniques Operational
ments from NoSQL Require-
the databases ments
application employ

"«

Elo \i:‘

NoSQL Database Systems:
A Survey and Decision Guidance

Felix Gessert, Wolfram Wingerath, Steffen Friedrich, and Norbert Ritter

Universitit Hamburg, Germany
{gessert|, wingerath, friedrich, ritter}@informatik.uni-hamburg.de

Abstract. Today, data is generated and consumed at unprecedented
scale. This has lead to novel approaches for scalable data management
subsumed under the term “NoSQL” database systems to handle the ever-
increasing data volume and request loads. However, the heterogeneity
and diversity of the numerous existing systems impede the well-informed
selection of a data store appropriate for a given application context.
Therelore, this article gives a top-down overview ol the lield: Instead
of contrasting the implementation specilics of individual representatives,
we propose a comparative classification model that relates functional and
non-functional requirements to techniques and algorithms employed in
NoSQL databases. This NoSQL Toolbox allows us to derive a simple
decision tree to help practitioners and researchers filter potential system
candidates based on central application requirements.

1 Introduction

Traditional relational database management systems (RDBMSs) provide
powerful mechanisms to store and query structured data under strong con-
sistency and transaction guarantecs and have reached an unmatched level of
reliability, stability and support through decades of development. In recemnt
vears, however, the amount of useful data in some application areas has become
so vast that it cannot be stored or processed by traditional database solutions.
User-generated content in social networks or data retrieved from large sensor
networks are only two examples of this phenomenon commonly referved to as
Big Data [35]. A class of novel data storage systems able to cope with Big Data
are subsumed under the term NoSQL databases, many of which offer hori-
zontal scalability and higher availability than relational databases by sacrificing
querying capabilities and consistency guarantees. These trade-offs are pivotal for
service-oriented computing and as-a-service models, since any stateful service
can only be as scalable and fault-tolerant as its underlying data store.

There are dozens of NoSQL database systems and it is hard to keep track of
where they excel, where they fail or even where they differ, as implementation
details change quickly and feature sets evolve over time. In this article, we there-
fore aim to provide an overview of the NoSQL landscape by discussing employed
concepts rather than system specificities and explore the requirements typically
posed to NoSQL database systems, the techniques used to fulfil these require-
ments and the trade-offs that have to be made in the process. Our focus lies
on key-value, document and wide-column stores, since these NoSQL categories

http://www.bagend.com
[files/nosql-survey.pdf

Functional Techniques Non-Functional

Sharding

Scan Queries Data Scalability

Range-Sharding

Hash-Sharding

Entity-Group Sharding Write Scalability

ACID Transactions Consistent Hashing
Shared-Disk Read Scalability
Conditional or Atomic Writes Elasticity
Joins

Sorting

Sharding (aka Partitioning, Fragmentation)

Horizontal distribution of data over nodes

Peter

Partitioning strategies: Hash-based vs. Range-based
Difficulty: Multi-Shard-Operations (join, aggregation)

Sharding
Hash-based Sharding

Hash of data values (e.g. key) d MongoDB, Riak, Redis,
Pro: Even distribution Cassandra, Azure Table,

Contra: No data locality D”aO ”
: mplemented 1n
Range-based Sharding _
Assigns ranges defined over fig| BigTable, HBase, DocumentDB

Pro: Enables Range Scans and ¢ Hypertable, MongoDB,
RethinkDB, Espresso

Contra: Repartitioning/balancir 1 "
Entity-Group Sharding

Explicit data co-location for sin| G-Store, MegaStore,
Pro: Enables ACID Transactions Relation Cloud, Cloud SQL
Contra: Partitioning not easily ¢ SRS

m David J DeWitt and Jim N Gray: “Parallel database systems: The future of high performance
database systems,” Communications of the ACM, volume 35, number 6, pages 85—98, June 1992.

Problems of Application-Level Sharding

Web
Example: Tumblr Server

Caching @

Sharding from

. . MySQL
application y>Q

Moved towards:
Redis
HBase

Functional

ACID Transactions

Conditional or Atomic Writes

Techniques

Replication

Commit/Consensus Protocol
Synchronous

Asynchronous

Primary Copy

Update Anywhere

Non-Functional

Read Scalability

Consistency

Write Latency

Read Latency

Read Availability

Write Availability

Replication

Stores N copies of each data item

DB Node

DB Node

Consistency model: synchronous vs asynchronous
Coordination: Multi-Master, Master-Slave

m Ozsu, M.T., Valduriez, P.: Principles of distributed database systems.
Springer Science & Business Media (2011)

Replication: When

Asynchronous (lazy)

Writes are acknowledged imn [mplemented in

Performed through log shippii Dynamo , Riak, CouchDB,
Pro: Fast writes, no coordinati Redis, Cassandra, Voldemort,

Contra: Replica data potentiall 1 °"8°P8 Allil 1)
Synchronous (eager)

The node accepting writes syn Implemented in [

updates/transactions before ¢
BigTable, HBase, Accumulo,

Pro: Consistent CouchBase, MongoDB,
Contra: needs a commit protd RethinkDB

unavaialable under certain netwWork partitions

m Charron-Bost, B., Pedone, F., Schiper, A. (eds.): Replication: Theory and
Practice, Lecture Notes in Computer Science, vol. 5959. Springer (2010)

Replication: Where

Master-Slave (Primary Copy)

Only a dedicated master is allowed to accept writes, slaves are
read-replicas

Pro: reads from the master are consistent
Contra: master is a bottleneck and SPOF

Multi-Master (Update anywhere)

The server node accepting the writes synchronously
propagates the update or transaction before acknowledging
Pro: fast and highly-available

Contra: either needs coordination protocols (e.g. Paxos) or is
inconsistent

m Charron-Bost, B., Pedone, F., Schiper, A. (eds.): Replication: Theory and
Practice, Lecture Notes in Computer Science, vol. 5959. Springer (2010)

Consistency Levels

Strategies: A
Achievable with high availability Lineari- « Single-mastered reads and
Bailis, Peter, et al. "Bolt-on causal zability writes
consistency.” SIGMOD, 2013. * Multi-master replication with
consensus on writes Y,
Causal
Consistency
Pa
If a value is read, any causally s aclientreadsin pne session are prsion-based or
relevant data items that lead to | |on increase ered on all ed. Both not
that value are available, too. onically. ailable.
N N
Writes Read Your Monotonic Monotonic Bounded
Follow Reads Writes Reads Writes Staleness
m Viotti, Paplo, an.d Marko Vukolic. "Consistelr'1cy ilj Non- m Bai!is, I?eterlf et al. "Hi.ghly available transactions: Virtues and
Transactional Distributed Storage Systems." arXiv (2015). limitations." Proceedings of the VLDB Endowment 7.3 (2013): 181-192.

Functional Techniques Non-Functional

Storage Management

Logging Read Latency
Update-in-Place

Caching

In-Memory Storage Write Throughput
Append-Only Storage

Durability

NoSQL Storage Management

In a Nutshell

Improve
latency.
Typical Uses in DBMSs:
A In-Memory/

ﬁ RR SR e Caching Data § Caching

LOU e Primary Storage -

> RW | SW e Data Structures Is good for
2 read latency.
Q \. ___/ ™~ Update-In-
< RR || SR | e Caching
5 § e Logging If |; - Place
S S\W | ¢ Primary Storage
n @ Increases write

© T Append-Only

g throughput. /0

g - R . Logging Log < logging
T W e Primary Storage
S Persistent Storage yd
\ —

. Low Performance RR: Random Reads SR: Sequential Reads Promotes durability of

[] High Performance RW: Random Writes SW: Sequential Writes write operations.

Functional Techniques Non-Functional

Joins

Sorting

Read Latency

Filter Queries

Query Processing

Full-text Search Global Secondary Indexing

Local Secondary Indexing
Query Planning

Analytics Framework

Aggregation and Analytics Materialized Views

Local Secondary Indexing
Partitioning By Document

-

~N

Partition | Partition Il

= Implemented in Koy Color
oS 12 F Yellow
O 56 £ * MongoDB Blue

77 r* Riak Blue

e (Cassandra
% Red N SolrCloud (104]
~ Blue | * VoltDB [188,192]
Scatter-gather query
pattern.
WHERE color=blue

m Kleppmann, Martin. "Designing data-intensive
applications." (2016).

Global Secondary Indexing
Partitioning By Term

-

~N

Partition | Partition Il
Key Color Key Color
T 12 .] 104 Yellow
© SUBEE Implemented in
O 56 maint Blue
77 distrit « DynamoDB Blue
* Oracle Datawarehouse
Term | » Riak (Search
) () Match
S Yellow | * Cassandra (Search)
< [12,77]
Blue [56, 188, 192] A/} k\¥
[Targeted Query

WHERE color=blue

m Kleppmann, Martin. "Designing data-intensive
applications." (2016).

Query Processing Techniques
Summary

Local Secondary Indexing: Fast writes, scatter-gather
queries

Global Secondary Indexing: Slow or inconsistent writes,
fast queries

(Distributed) Query Planning: scarce in NoSQL systems
but increasing (e.g. left-outer equi-joins in MongoDB
and B-joins in RethinkDB)

Analytics Frameworks: fallback for missing query
capabilities
Materialized Views: similar to global indexing

How are the technigues from the NoSQL
toolbox used in actual data stores?

Outline

L X+ys

(

0B

NoSQL Foundations and
Motivation

The NoSQL Toolbox:
Common Techniques

NoSQL Systems

Decision Guidance: NoSQL
Decision Tree

Overview & Popularity
Core Systems:
* Dynamo
e BigTable
Riak
HBase
Cassandra
Redis
MongoDB

NoSQL Landscape

T I\, Wil HYPERTABLE

Q,_\
W amazon HBASE ~E ?
Document Qsmazan DynamoDB> Google W

=Z2) Datastore Cassandra

‘ mongoDB

Wide Column

K: Key-Value é redis

CouchDB e
sriak amazon | § 3 ﬁ

RA% NDB webservices’
Graph CoucHBase

» Neoa; “ Project Voldemort

8’ the graph database
4. InfiniteGraph

Popularity

http://db-engines.com/de/ranking

System Model Score 11. Elasticsearch Search engine 86.31
1. Oracle Relational DBMS 1462.02 12. Teradata Relational DBMS 73.74
13. SAP Adaptive Server Relational DBMS 71.48

2. MySQL Relational DBMS 1371.83 14. Solr Search engine 65.62
3. MSSQL Server Relational DBMS 1142.82 15. HBase Wide column store = 51.84
4. MongoDB Document store 320.22 16. H.|ve Relatfonal DBMS 47.51
17. FileMaker Relational DBMS 46.71

5. PostgreSQL Relational DBMS 307.61 18. Splunk Search engine 44.31
6. DB2 Relational DBMS 185.96 19. SAP HANA Relational DBMS 41.37
S r — ‘ eV 20. MariaDB Relational DBMS 33.97
. assandra ide column store . 21. Neodj Graph DBMS 32.61
8. Microsoft Access Relational DBMS 131.58 22. Informix Relational DBMS 30.58
9. Redis Key-value store 108.24 23. Memcached Key-value store 27.90
_ _ 24. Couchbase Document store 24.29

10. SQlite Relational DBMS 107.26 25. Amazon DynamoDB = Multi-model 23.60

Scoring: Google/Bing results, Google Trends, Stackoverflow, job
offers, LinkedIn

History

Google File System 2003

MapReduce 2004
CouchDB 2005

BigTable 2006
Dynamo MongoDB . 2007

V/ Cassandra 2008

Redls 2009
2010

Rlak

CouchBase ,
MegaStore 2011
RethinkDB HyperDeX o — 2012
2013
2014

Espresso

2015

NoSQL foundations

BigTable (2006, Google) Coc ,g[e

Consistent, Partition Tolerant
Wide-Column data model

Master-based, fault-tolerant, large clusters (1.000+ Nodes),
HBase, Cassandra, HyperTable, Accumolo

Dynamo (2007, Amazon) amazon

Available, Partition tolerant

Key-Value interface

Eventually Consistent, always writable, fault-tolerant
Riak, Cassandra, Voldemort, DynamoDB

m Chang, Fay, et al. "Bigtable: A distributed storage system
for structured data."

m DeCandia, Giuseppe, et al. "Dynamo: Amazon's highly
available key-value store."

Dynamo (ap)

Developed at Amazon (2007)
Sharding of data over a ring of nodes
Each node holds multiple partitions
Each partition replicated N times

o
8,0
5
\

o]

m DeCandia, Giuseppe, et al. ' Dynamo Amazon's
highly available key-value store."

Consistent Hashing

Naive approach: Hash-partitioning (e.g. in Memcache,
Redis Cluster)

@ _«

Consistent Hashing

Solution: Consistent Hashing — mapping of data to
nodes is stable under topology changes

2160 0

\/

/- hash(key)
B

c | position = hash(ip)

Reading and Writing

An arbitrary node acts as a coordinator

N: number of replicas

R: number of nodes that need to confirm a read
W: number of nodes that need to confirm a write

= 0 =2
nm un 1
RN W

Versioning and Consistency

R + W < N = no consistency guarantee
R + W > N = newest acked value included in reads
Vector Clocks used for versioning

s g o=
= = =
|) \ 1k !

o
=
P

-
@
[[
P, P

Semantic
Reconciliation

Read Repair

R + W> N does not imply linearizability

Consider the following execution:

Replica 1 & -------}-------femmmmmee e T oo
N~

Replica 2 L (Y A o

Replica3 b ---------¥ed g N
N~

getx—>0

m Kleppmann, Martin. "Designing data-
intensive applications." (2016).

CRDTs

Convergent/Commutative Replicated Data Types

Goal: avoid manual conflict-resolution
Approach:

State-based — commutative, idempotent merge function
Operation-based — broadcasts of commutative upates

Example: State-based Grow-only-Set (G-Set)

S:={} . S, ={}
add), S = {x} —Si S, = {y} 2ddy)
2

S; = merge({x},{y}) [S, =merge({y},{x}

={x, ¥} = {x, ¥}
Node 1 Node 2

m Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek
Zawirski "Conflict-free Replicated Data Types"

. sriak
Riak (ap) Riak

Model:
. Key-Value
Open-Source Dynamo-Implementation icanse
Extends Dynamo: Apache 2
Written in:
Keys are grouped to Buckets Erm——

KV-pairs may have metadata and links
Map-Reduce support

Secondary Indices, Update Hooks, Solr Integration
Riak CS: S3-like file storage, Riak TS: time-series database

(] g N

v L 1 e—— Consistency Level: N, R, W, DW

o Q 2 . .

s .g 5 amm- Storage Backend: Bit-Cask, Memory, LevelDB
(@] Data: KV-Pairs Bucket

Summary: Dynamo and Riak

Available and Partition-Tolerant
Consistent Hashing: hash-based distribution with stability
under topology changes (e.g. machine failures)

Parameters: N (Replicas), R (Read Acks), W (Write Acks)

N=3, R=W=1 - fast, potentially inconsistent

N=3, R=3, W=1 = slower reads, most recent object version contained
Vector Clocks: concurrent modification can be detected,
inconsistencies are healed by the application
API: Create, Read, Update, Delete (CRUD) on key-value pairs

Riak: Open-Source Implementation of the Dynamo paper

Dynamo and Riak

Classification

0 Sharding
O Replication

H Storage
. Management

'® Query
N Processing

Hash-

Sharding

. Update-

Logging in-Place
Global Local
Index Index

Consistent
Hashing
Async.
: Update
Replica-
. Anywhere
tion
Caching
Analytics

. &8 redis
Redis (ca) —

Model:
Remote Dictionary Server Ll
In-Memory Key-Value Store BSD
Asynchronous Master-Slave Replication R

Data model: rich data structures stored under key
Tunable persistence: logging and snapshots
Single-threaded event-loop design (similar to Node.js)
Optimistic batch transactions (Multi blocks)

Very high performance: >100k ops/sec per node
Redis Cluster adds sharding

Data structures

String, List, Set, Hash, Sorted Set

String web:index — "<html><head>..."

Set users:2:friends — {23, 76, 233, 11}

List users:2:inbox — [234, 3466, 86, 55]

Hash users:2:settings —> Theme — "dark", cookies — "false"
Sorted Set top-posters —> 466 — "2",344 — "16"

Pub/Sub users:2:notifs —> "{event: 'comment posted’, time: ..."

Example Redis Data Structure: lists

(Linked) Lists:

HPUSH LPUSH : RPUSH
Only ifIist‘\ LRANGE inbox 1 2
exists TS / A \

inbox — 234 —— 3% g ==
. _

4 l :l LREM inbox © 3466 l l

LLEN |
LPOP LINDEX inbox 2 RPOP

. |

Blocks until element |
. |

arrives

BLPOP

Master-Slave Replication

> SLAVEOF 192.168.1.1 6379 l lSIave Offsets
< +0K

________ » Memory Backlog r--

Asynchronous
Replication -

-
-
-

Why is Redis so fast?

Pessimistic

are expensive

0
\ 14.2% Iaming

16.2% handssaded | NO Query
optimi ns | Parsing

\

34.6%

bufferx.anager

Data in RAM

----- useful work

Operations are
lock-free

Single-threading

o

Harizopoulos, Stavros, Madden, Stonebraker "OLTP through
the looking glass, and what we found there."

Example Redis Use-Case: Twitter

Per User: one
materialized timeline in
Redis

Timeline = List
Key: User ID

RPUSHX user_id tweet

What's napgening?

a s =

Write API

S

1
=

&8

>150 million users
~300k timeline querys/s

m http://www.infoq.com/presentations/Real-Time-Delivery-Twitter

Classification: Redis

Techniques

0 Sharding

Replication

Storage
Management

Query
Processing

Range- Hash- Entity-Group Consistent Shared
Sharding Sharding Sharding Hashing Disk
Trans- Sync. Async. Pri Uod
action Replica- Replica- ::lmary A P f\te
Protocol tion tion opy nywhere
L - L - L. L N
. Update- . In- Append-Only
Logging in-Place Caching Memory Storage
| i L . o L _ L _ L .
Global Local Query Analvti Materialized
Index Index Planning nalyties Views

Google BigTable (cp)

Published by Google in 2006
Original purpose: storing the Google search index

A Bigtable is a sparse,
distributed, persistent
multidimensional sorted map.

Data model also used in: HBase, Cassandra, HyperTable,
Accumulo

m Chang, Fay, et al. "Bigtable: A distributed storage system
for structured data."

Wide-Column Data Modelling

Storage of crawled web-sites (,Webtable®):

[Column-Family:
contents

1. Dimension: i | 2. Dimension:
Row Key i 1 CF:Column
1 i [/ L [T 1

——

Column-Family:
anchor

t; 3. Dimension:
ES Timestamp

com.cnn.www 1> content : "<html>..." cnnsi.com : "CNN" my.look.ca : "CNN.com"

Sparse I

B L L e L L T T e e e s

4
1
1
1
1
1
1
i
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
\

——

Range-based Sharding

Tablet: Range partition of ordered records

Rows Tablet Server 1 Tablet Server 2 Tablet Server 3
A-C p------- > A-C
C-F » C-F
F-I Eol
I-M f--eeee- > I-M
M-T s M-T
e T-Z
M Controls Ranges, Splits, Rebalancing

Master

Architecture

ACLs, Garbage P I Master Lock, Root __—
Collection, = g Metadata Tablet
=7

Rebalancing

e "Tea
e Cea
- L
.. .a
ce
e Cea
- e
- oo
- -
-
e
Sa

Stores Ranges,
Answers client
requests

»

Tablet Server Tablet Server Tablet Server

N
N

Stores data and
SSTables

commit log
GFS

- |Commit

Storage: Sorted-String Tables

Goal: Append-Only 10 when writing (no disk seeks)
Achieved through: Log-Structured Merge Trees

Writes go to an in-memory memtable that is periodically
persisted as an SSTable as well as a commit log

Reads query memtable and all SSTables

/ Row-Key
Key Block _/\:'B|0Ck (eg 64KB)

Key

Block

Key

Block

Key

Value

Key

Value

Key

Block Index

Variable Length

Sorted String Table

T 1\
o

HBASE

Apache HBase (cp)

Model:

: . Wide-Column
Open-Source Implementation of BigTable oem—
Hadoop-Integration Apache 2

Written in:
Data source for Map-Reduce

Uses Zookeeper and HDFS
Data modelling challenges: key design, tall vs wide
Row Key: only access key (no indices) = key design important

Tall: good for scans
Wide: good for gets, consistent (single-row atomaicity)

No typing: application handles serialization
Interface: REST, Avro, Thrift

Java

HBase Storage

Logical to physical mapping:

In Value \Key Design — where to store data:
r2:cf2:c2:tl:<value>

In Key Tr2-<value>:cf2:c2:t1:_
In Column — r2:cf2:c2<value>:tl:_

Key | cfl:cl | cfl:c2 | cf2:cl | cf2:c2

rl Ill |II
r2 []]
r3 iiﬂ
r4 II
rS iin III

:<value>

:<value>
:<value>
:<value>

:<value>
HFile cf2

:cl:tl:<value>
:c2:tl:<value>

:c2:tl:<value>

:cl:t2:<value>

:cl:tl:<value>
HFile cfl

m George, Lars. HBase: the definitive guide. 2011.

Example: Facebook Insights

EXtraCtion Dally Active Users Daily New Users Total installed Users
every30 min J_¥gYe [
> . W\/\‘W—O—O\
HBASE
MD5(Reversed Domain) + Reversed Domain + URL-ID Row Key
6PM 6PM 01.01 01.01 Total Male
Total Male Total Male
10 7 100 65 \/I et Esse] 567
LCounter)
I
g N A W
N ~N" N
CF:Daily CF:Monthly CF:All

TTL — automatic deletion of
old rows

m Lars George: “Advanced
HBase Schema Design”

Summary: BigTable, HBase

Data model: (rowkey, cf: column, timestamp) —
value

API: CRUD + Scan(start-key, end-key)

Uses distributed file system (GFS/HDFS)

Storage structure: Memtable (in-memory data structure)
+ SSTable (persistent; append-only-10)

Schema design: only primary key access = implicit
schema (key design) needs to be carefully planned

HBase: very literal open-source BigTable implementation

Classification: HBase
Techniques

. Range-
o AR Sharding

Sync.

Replication Replica-
tion

H Storage
s Management

Logging

'® Query
N Processing

Caching

Primary
Copy

Append-Only
Storage

Cassandra

Apache Cassandra (apr)

Model:
Wide-Column

Published 2007 by Facebook icace

Idea: Apache 2
BigTable‘s wide-column data model —
Dynamo ring for replication and sharding

Cassandra Query Language (CQL): SQL-like query- and

DDL-language

Compound indices: partition key (shard key) + clustering

key (ordered per partition key) = Limited range queries

Secondary indices: hidden table with mapping =2
gueries with simple equality condition

Java

Architecture

Stateful
Communication J

-

Replication,

Gossip, etc.

Cassandra Node

set_keyspace() TCP Cluster
get slice() Thrift RPC Storage Messages
or CQL Proxy — >

e
Column - —[Stores Rows
Family Store Row Cache j

Stores SSTables Local ("I e
and Commit Log Filesystem | & |--=={_MemTable)| Key Cache 1

~\

Stores Primary Key Index
(Seek Position)

MD5(ke
Hashing: (key)

Random Partitioner

Order Preservering
Partitioner

T~

Snitch: Rack, Datacenter,
EC2 Region Information

Classification: Cassandra

Techniques

0 Sharding
O Replication

H Storage
. Management

'® Query
N Processing

Hash-
Sharding
Async.
Replica-
tion

Logging Caching
Global Local
Index Index

Consistent

Hashing

Update
Anywhere

Append-Only
Storage

Materialized
Views

. mongoDB

MongoDB (cp)

Model:
~ . Document
From humongous = gigantic icance
Tunable consistency GNU AGPL 3.0
Written in:
Schema-free document database Cot

Allows complex queries and indexing
Sharding (either range- or hash-based)
Replication (either synchronous or asynchronous)

Storage Management:

Write-ahead logging for redos (journaling)

Storage Engines: memory-mapped files, in-memory, Log-
structured merge trees (WiredTiger)

Data Modelling

{
" id" : ObjectId("51a5d316d70beffe74ecc940")
title : "Iron Man 3",
year : 2013, 00 .
: Denormalisation instead
rating : 7.6, n £ ioi
director: "Shane Block", r otk
"Adventure", n SRR Nesting replaces 1:n
"Sci -Fi"], and 1:1 relations
actors : ["Downey IJr., Ro% ‘
"Paltrow , Gwyneth"],
tweets : [{ ° text Schgmafreeness.
"user" : "Franz Kafka", wordinates Attributes per document
"text" : "#nowwatching Iron Man 3",
REDmEE e, __ Unit of atomicity:
date" : ISODate("2013-05-29T13:15:51Z") document
}]
}

Movie Document Principles

Sharding und Replication

Sharding:
-Sharding attribute

~~~~~ Config i Master \
i M - -Load-Balancing
Client mongos ~ ~ ~| -can trigger rebalancing of
= | / "~ chunks (64MB) and splitting
=l ~ %
Client Master ~
|

Controls Write Concern:
Unacknowledged, Acknowledged,
Journaled, Replica Acknowledged

-Hash vs. range sharding .‘

-Receives all writes

-Replicates asynchronously




Classification: MongoDB
Techniques

) Range- Hash-
o Sharding  oharding  Sharding

Sync. Async.

Replication Replica- Replica-
tion tion

H Storage
. Management

Logging Caching

'® Query Local Query
N Processing Index Planning

Primary
Copy
In- Append-Only
Memory Storage
Analytics



How can the choices for an appro-
priate system be narrowed down?



Outline

P Xtys

0B

NoSQL Foundations and
Motivation

The NoSQL Toolbox:
Common Techniques

NoSQL Systems

Decision Guidance: NoSQL
Decision Tree

Decision Tree
Classification Summary
Literature
Reommendations



NoSQL Decision Tree

RA

Access

|
Fast Looku ps Complex Queries

H Unbounded HDD-Size I Unbounded
0 @
ACID Availability  Ad-hoc Analytics

1 N

Purpose:

Application Architects: narrowing down the potential
system candidates based on requirements

Database Vendors/Researchers: clear communication and
design of system trade-offs



System Properties
According to the NoSQL Toolbox

For fine-grained system selection:

Functional Requirements

(7,]
c g
.0 =
. 5 =
2 a ©
o c c
3 u = -
o (= % " <
3 5 5 £ E
3 < o 2 (7]
Mongo X X X
Redis X X X
HBase X X X
Riak
Cassandra X X X

MySQL X X X X X

> Filter Query
< Full-Text Search

< Analytics

X X X X



System Properties

According to the NoSQL Toolbox

For fine-grained system selection:

Non-functional Requirements

Avjiqeing

Aijiqejieay aaum

Ajige|ieny peay

indysnoayl a3

Adudje peay

Aduajeq 93

Adudjsisuo)

Aydnse|3

AMiqe|eds peay

Avjige|eas ayum

Ajiqejeas eyeq

X

Mongo
Redis
HBase
Riak

X

Cassandra

MySQL



According to the NoSQL Toolbox
For fine-grained system selection:

System Properties

SMII/ pazijeldle|A
yiomauweu4 sonhjeuy
Suiuue|d Asanp
Suixapuj |e207
3uixapuj jeqo|9
98e1015 AjJup-puaddy
Alowd|N-u|

Suiyoe)
de|d-ul-alepdn
3ui18301

aJaymAuy arepdn

Techniques

Ado) Asewinnd
uoined||day “auAsy
uonyedday *auls
0201044 uoidesued)
ysig-pateys

SuiyseH juaisisuo)
Suipaeys dnoio-Ajul
3uipJeys-yseH
Suipieys-aduey

X
X

Mongo
Redis
HBase
Riak
Cassandra
MySQL



Summary . I

High-Level NoSQL Categories:

» Key-Value, Wide-Column, Docuement, Graph
» Two out of {Consistent, Available, Partition Tolerant}

The NoSQL Toolbox: systems use similar techniques
that promote certain capabilities

i Functional
| Techmqges oromote C'" L) o :
Sharding, Replication, equirements
Storage Management,

Query Processing

1
-

Non-functional

\& Requirements
Decision Tree



D @ -""""O...
eoe0o 0000000 °°

-

: < . . ‘
= o, . - -
- . - -‘..

Our NoSQL research at the
University of Hamburg




Caching- and Database-as-a-Service
Middleware for NoSQL databases

Y Build faster Apps faster.

f

Cloud Startup for
Ovrestes as a Service



Orestes
Components Backend-as-a-Service Middleware:

Caching, Transagiéppsot Prasistence

Upified REST API Invalidation Detm&mator
St P Caching

——— e ——— —— — —_——— —_—— e ——— — e e e —_—— — — — —

InvaliDB TTL Estimator
Streaming Cache Lifetime
Queries Prediction

Expiring Bloom Node.js
Filter User-defined
Stale Data Business Logic

=

Orestes

Desktop

Fpaaaree Wl Rais ‘ |

Mobile

..-_______________________..__
— e e o e e o . = — — — — =



Orestes

As-a-Service

T yr——

Cloud Service

— e o — — o — — — — — — —— — ——— —— =

—_——— e — — — o — — — — e

CDN

—_— e e — =

P e e e e e i e i e

—_—— e e — — =

S S

e e



@ scom2015

Home Schedule CFP Submission Contact

3"4 Workshop on Scalable Cloud Data
Management

Co-located with the IEEE BigData Conference.
Santa Clara, CA, October 29th 2015.
Starting at 8am in Ballroom C.

Workshop Schedule

October 29, 2015

< SCDM 2015

SCDM 2015 Workshop in Santa Clara, CA. The preliminary schedule is online. SCDM starts
on Oct 29, 8am (Ballroom C) with a keynote by Russel Sears on "Purity and the future of

This year‘s SCDM will be announced soon






Recommended Literature

OREILLY"

Pramodkumar J Sadalage Martin Fowler

Designing
Data-Intensive
Applications

THE BIG DE S BEHIND RELIABLE, SCALABLE,
AND MAINTAINABLE SYSTEMS s Ny
/ :*t—r," " v o
i 2
SIS :
P f =
. ,

A Brief Gu the Emerging World of Polyglot Per

Distilled

-y

Martin Kleppmann




Recommended Literature

Coprrghted Mater iyt

A
vy

Lena Wiese

ADVANCED DATA .
MANAGEMENT

FOR@QL NOSQL, CLOUD AND DISTRIBUTED DATABASES.

Software-IndependentAp, dach!




Recommended Literature: Cloud-DBs

Liang Zhao - Sherif Sakr
Anna Liu - Athman Bouguettaya

Wolfgang Lehner
Kai-Uwe Sattler

| Web-Scale Data MJ (loud Data

Management K
for the Cloud Management




Recommended Literature: Blogs

NoSQL Weekly

https://martin.kleppmann.com/ http://www.nosqglweekly.com/
‘v BaQend
http://www.dzone.com/mz/nosq| http://blog.bagend.com/
|nfoQ High Scalability
http://www.infoq.com/nosql/ http://highscalability.com/

Metadata 'DB-ENGINES

http://muratbuffalo.blogspot.de/ http://db-engines.com/en/ranking




Seminal NoSQL Papers

* Lamport, Leslie. Paxos made simple., SIGACT News, 2001

* S.Gilbert, et al., Brewer's conjecture and the feasibility of consistent, available, partition-tolerant web
services, SIGACT News, 2002

* F Chang, et al., Bigtable: A Distributed Storage System For Structured Data, OSDI, 2006

* G. DeCandia, et al., Dynamo: Amazon's Highly Available Key-Value Store, SOSP, 2007

* M. Stonebraker, el al., The end of an architectural era: (it's time for a complete rewrite), VLDB, 2007

* B. Cooper, et al., PNUTS: Yahoo!'s Hosted Data Serving Platform, VLDB, 2008

*  Werner Vogels, Eventually Consistent, ACM Queue, 2009

* B. Cooper, et al., Benchmarking cloud serving systems with YCSB., SOCC, 2010

* A. Lakshman, Cassandra - A Decentralized Structured Storage System, SIGOPS, 2010

* J. Baker, et al., MegaStore: Providing Scalable, Highly Available Storage For Interactive Services, CIDR,
2011

* M. Shapiro, et al.: Conflict-free replicated data types, Springer, 2011

* J.C.Corbett, et al., Spanner: Google's Globally-Distributed Database, OSDI, 2012

*  Eric Brewer, CAP Twelve Years Later: How the "Rules" Have Changed, IEEE Computer, 2012

* J.Shute, et al., F1: A Distributed SQL Database That Scales, VLDB, 2013

* L. Qiao, et al., On Brewing Fresh Espresso: Linkedin's Distributed Data Serving Platform, SIGMOD, 2013

* N. Bronson, et al., Tao: Facebook's Distributed Data Store For The Social Graph, USENIX ATC, 2013

* P Bailis, et al., Scalable Atomic Visibility with RAMP Transactions, SIGMOD 2014



