
Scalable Data Management
NoSQL Data Stores in Research
and Practice

Felix Gessert, Norbert Ritter
{gessert,ritter}@informatik.uni-hamburg.de

May 17, ICDE 2016

Extended version of this tutorial:

slideshare.net/felixgessert

Outline

• The Database Explosion
• NoSQL: Motivation and

Origins
• The 4 Classes of NoSQL

Databases:
• Key-Value Stores
• Wide-Column Stores
• Document Stores
• Graph Databases

• CAP Theorem

NoSQL Foundations and
Motivation

The NoSQL Toolbox:
Common Techniques

NoSQL Systems

Decision Guidance: NoSQL
Decision Tree

Introduction: What are NoSQL
data stores?

Typical Data Architecture:

Architecture

Applications

Data
Warehouse

Operative
Database

Reporting Data MiningAnalytics

D
a
ta

 M
a
n
ag

em
en

t
D
a
ta

 A
n
a
ly

ti
cs

NoSQL

The era of one-size-fits-all database systems is over

 Specialized data systems

The Database Explosion
Sweetspots

RDBMS

General-purpose
ACID transactions

Wide-Column Store

Long scans over
structured data

Parallel DWH

Aggregations/OLAP for
massive data amounts

Document Store

Deeply nested
data models

NewSQL

High throughput
relational OLTP

Key-Value Store

Large-scale
session storage

Graph Database

Graph algorithms
& queries

In-Memory KV-Store

Counting & statistics

Wide-Column Store

Massive user-
generated content

The Database Explosion
Cloud-Database Sweetspots

Amazon Elastic

MapReduce

Hadoop-as-a-Service

Big Data Analytics

Managed RDBMS

General-purpose
ACID transactions

Managed Cache

Caching and
transient storage

Azure Tables

Wide-Column Store

Very large tables

Wide-Column Store

Massive user-
generated content

Backend-as-a-Service

Small Websites
and Apps

Managed NoSQL

Full-Text Search

Google Cloud

Storage

Object Store

Massive File
Storage

Realtime BaaS

Communication and
collaboration

How to choose a database system?
Many Potential Candidates

Application Layer

Billing Data Nested
Application Data

Session data

Search Index

Files

Amazon Elastic

MapReduce

Google Cloud

Storage
Friend

network Cached data
& metrics

Recommen-
dation Engine

Question in this tutorial:

How to approach the decision problem?

requirements database

 „NoSQL“ term coined in 2009

 Interpretation: „Not Only SQL“

 Typical properties:
◦ Non-relational

◦ Open-Source

◦ Schema-less (schema-free)

◦ Optimized for distribution (clusters)

◦ Tunable consistency

NoSQL Databases

NoSQL-Databases.org:
Current list has over 150

NoSQL systems

NoSQL Databases

Scalability Impedance Mismatch

?

ID

Customer

Line Item 1: …
Line Item2: …

Orders
Line Items

Customers
Payment

 Two main motivations:

User-generated data,
Request load

Payment: Credit Card, …

Scale-up vs Scale-out

Scale-Up (vertical
scaling):

More RAM

More CPU

More HDD

Scale-Out (horizontal
scaling):

Commodity
Hardware

Shared-Nothing
Architecture

Schemafree Data Modeling

RDBMS: NoSQL DB:

SELECT Name, Age
FROM Customers

Customers

Explicit
schema

Item[Price] -
Item[Discount]

Implicit
schema

Highly Available Storage (SAN,
RAID, etc.)

Highly available network
(Infiniband, Fabric Path, etc.)

Specialized DB hardware
(Oracle Exadata, etc.)

Commercial DBMS

Open Source & Commodity Hardware

Commodity drives (standard
HDDs, JBOD)

Commodity network
(Ethernet, etc.)

Commodity hardware

Open-Source DBMS

 Two common criteria:

NoSQL System Classification

Data
Model

Consistency/Availability
Trade-Off

AP: Available & Partition
Tolerant

CP: Consistent &
Partition Tolerant

Graph

CA: Not Partition
Tolerant

Document

Wide-Column

Key-Value

 Data model: (key) -> value

 Interface: CRUD (Create, Read, Update, Delete)

 Examples: Amazon Dynamo (AP), Riak (AP), Redis (CP)

Key-Value Stores

{23, 76, 233, 11}users:2:friends

[234, 3466, 86,55]users:2:inbox

Theme → "dark", cookies → "false"users:2:settings

Value:
An opaque blob

Key

 Data model: (rowkey, column, timestamp) -> value

 Interface: CRUD, Scan

 Examples: Cassandra (AP), Google BigTable (CP),
HBase (CP)

Wide-Column Stores

com.cnn.www crawled: …
content : "<html>…"

content : "<html>…"content : "<html>…" title : "CNN"

Row Key Column
Versions (timestamped)

 Data model: (collection, key) -> document

 Interface: CRUD, Querys, Map-Reduce

 Examples: CouchDB (AP), Amazon SimpleDB (AP),
MongoDB (CP)

Document Stores

order-12338 {
order-id: 23,
customer: { name : "Felix Gessert", age : 25 }
line-items : [{product-name : "x", …} , …]

}

ID/Key JSON Document

 Data model: G = (V, E): Graph-Property Modell

 Interface: Traversal algorithms, querys, transactions

 Examples: Neo4j (CA), InfiniteGraph (CA), OrientDB
(CA)

Graph Databases

company:
Apple
value:

300Mrd

name:
John Doe

WORKS_FOR
since: 1999
salary: 140K

Nodes

Edges

Properties

Search Platforms (Full Text Search):
◦ No persistence and consistency guarantees for OLTP

◦ Examples: ElasticSearch (AP), Solr (AP)

Object-Oriented Databases:
◦ Strong coupling of programming language and DB

◦ Examples: Versant (CA), db4o (CA), Objectivity (CA)

XML-Databases, RDF-Stores:
◦ Not scalable, data models not widely used in industry

◦ Examples: MarkLogic (CA), AllegroGraph (CA)

Soft NoSQL Systems
Not Covered Here

Only 2 out of 3 properties are
achievable at a time:
◦ Consistency: all clients have the same

view on the data

◦ Availability: every request to a non-
failed node most result in correct
response

◦ Partition tolerance: the system has to
continue working, even under
arbitrary network partitions

CAP-Theorem

Eric Brewer, ACM-PODC Keynote, Juli 2000

Gilbert, Lynch: Brewer's Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web Services, SigAct News 2002

Consistency

Availability
Partition
Tolerance

Impossible

 Problem: when a network partition occurs, either
consistency or availability have to be given up

CAP-Theorem: simplified proof

Replication Value = V0

N2

Value = V1

N1

Response before
successful replication
 Availability

Block response until
ACK arrives
 Consistency

Network partition

NoSQL Triangle

A

C P

Every client can always
read and write

All nodes continue
working under network
partitions

All clients share the
same view on the data

Nathan Hurst: Visual Guide to NoSQL Systems
http://blog.nahurst.com/visual-guide-to-nosql-systems

CA
Oracle, MySQL, …

Data models

Relational
Key-Value
Wide-Column
Document-Oriented

AP
Dynamo, Redis, Riak, Voldemort
Cassandra
SimpleDB,

CP
Postgres, MySQL Cluster, Oracle RAC
BigTable, HBase, Accumulo, Azure Tables
MongoDB, RethinkDB

 Idea: Classify systems according to their behavior
during network partitions

PACELC – an alternative CAP formulation

Partiti

on

yes no

Abadi, Daniel. "Consistency tradeoffs in modern distributed
database system design: CAP is only part of the story."

Avail-

ability

Con-

sistency

Laten-

cy

Con-

sistency

AL - Dynamo-Style
Cassandra, Riak, etc.

AC - MongoDB CC – Always Consistent
HBase, BigTable and ACID systems

No consequence of the
CAP theorem

 Some weaker isolation levels allow high availability:
◦ RAMP Transactions (P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, und I. Stoica, „Scalable

Atomic Visibility with RAMP Transactions“, SIGMOD 2014)

Serializability
Not Highly Available Either

Global serializability and availability are incompatible:

Write A=1
Read B

Write B=1
Read A

𝑤1 𝑎 = 1 𝑟1(𝑏 = ⊥) 𝑤2 𝑏 = 1 𝑟2(𝑎 = ⊥)

S. Davidson, H. Garcia-Molina, and D. Skeen. Consistency in
partitioned networks. ACM CSUR, 17(3):341–370, 1985.

Where CAP fits in
Negative Results in Distributed Computing

Asynchronous Network,

Unreliable Channel

Impossible:
2 Generals Problem

Consensus

Atomic Storage

Impossible:
CAP Theorem

Asynchronous Network,

Reliable Channel

Impossible:
Fisher Lynch Patterson (FLP)
Theorem

Consensus

Atomic Storage

Possible:
Attiya, Bar-Noy, Dolev (ABD)
Algorithm

Lynch, Nancy A. Distributed algorithms.
Morgan Kaufmann, 1996.

ACID vs BASE

ACID

Atomicity

Consistency

Isolation

Durability

BASE

Basically
Available

Soft State

Eventually
Consistent

„Gold standard“
for RDBMSs

Model of many
NoSQL systems

http://queue.acm.org/detail.cfm?id=1394128

Data Models and CAP provide high-level
classification.

But what about fine-grained
requirements, e.g. query capabilites?

Outline

• Techniques for Functional
and Non-functional
Requirements
• Sharding
• Replication
• Storage Management
• Query Processing

NoSQL Foundations and
Motivation

The NoSQL Toolbox:
Common Techniques

NoSQL Systems

Decision Guidance: NoSQL
Decision Tree

Functional Techniques Non-Functional

Scan Queries

ACID Transactions

Conditional or Atomic Writes

Joins

Sorting

Filter Queries

Full-text Search

Aggregation and Analytics

Sharding

Replication

Logging
Update-in-Place
Caching
In-Memory Storage
Append-Only Storage

Storage Management

Query Processing

Elasticity

Consistency

Read Latency

Write Throughput

Read Availability

Write Availability

Durability

Write Latency

Write Scalability

Read Scalability

Data Scalability

Global Secondary Indexing
Local Secondary Indexing
Query Planning
Analytics Framework
Materialized Views

Commit/Consensus Protocol
Synchronous
Asynchronous
Primary Copy
Update Anywhere

Range-Sharding
Hash-Sharding
Entity-Group Sharding
Consistent Hashing
Shared-Disk

Functional
Require-

ments from
the

application

Central
techniques

NoSQL
databases

employ

Operational
Require-
ments

enable enable

http://www.baqend.com
/files/nosql-survey.pdf

Functional Techniques Non-Functional

Scan Queries

ACID Transactions

Conditional or Atomic Writes

Joins

Sorting

Sharding

Elasticity

Write Scalability

Read Scalability

Data Scalability

Range-Sharding
Hash-Sharding
Entity-Group Sharding
Consistent Hashing
Shared-Disk

Sharding (aka Partitioning, Fragmentation)

 Horizontal distribution of data over nodes

 Partitioning strategies: Hash-based vs. Range-based

 Difficulty: Multi-Shard-Operations (join, aggregation)

Shard 1

Shard 2

Shard 3

[G-O]
FranzPeter

Hash-based Sharding
◦ Hash of data values (e.g. key) determines partition (shard)
◦ Pro: Even distribution
◦ Contra: No data locality

Range-based Sharding
◦ Assigns ranges defined over fields (shard keys) to partitions
◦ Pro: Enables Range Scans and Sorting
◦ Contra: Repartitioning/balancing required

Entity-Group Sharding
◦ Explicit data co-location for single-node-transactions
◦ Pro: Enables ACID Transactions
◦ Contra: Partitioning not easily changable

Sharding

MongoDB, Riak, Redis,
Cassandra, Azure Table,
Dynamo

Implemented in

BigTable, HBase, DocumentDB
Hypertable, MongoDB,
RethinkDB, Espresso

Implemented in

G-Store, MegaStore,
Relation Cloud, Cloud SQL
Server

Implemented in

David J DeWitt and Jim N Gray: “Parallel database systems: The future of high performance
database systems,” Communications of the ACM, volume 35, number 6, pages 85–98, June 1992.

Example: Tumblr

 Caching

 Sharding from
application

Moved towards:

 Redis

 HBase

Problems of Application-Level Sharding

Web

Servers

MySQL

Web

Cache

Web

Cache

Web

Cache

LB

W W W

Web

Servers

My

SQL

Web

Cache

Web

Cache

Web

Cache

LB

W W W

My

SQL

My

SQL

Memcached Memcached

Manual

Sharding

Web

Server

MySQL

Web

Servers

MySQL

W W W

Memcached1 2

3 4

Functional Techniques Non-Functional

ACID Transactions

Conditional or Atomic Writes
Replication

Consistency

Read Latency

Read Availability

Write Availability

Write Latency

Read Scalability

Commit/Consensus Protocol
Synchronous
Asynchronous
Primary Copy
Update Anywhere

 Stores N copies of each data item

 Consistency model: synchronous vs asynchronous

 Coordination: Multi-Master, Master-Slave

Replication

DB Node

DB Node

DB Node

Özsu, M.T., Valduriez, P.: Principles of distributed database systems.
Springer Science & Business Media (2011)

Asynchronous (lazy)
◦ Writes are acknowledged immdediately

◦ Performed through log shipping or update propagation

◦ Pro: Fast writes, no coordination needed

◦ Contra: Replica data potentially stale (inconsistent)

Synchronous (eager)
◦ The node accepting writes synchronously propagates

updates/transactions before acknowledging

◦ Pro: Consistent

◦ Contra: needs a commit protocol (more roundtrips),
unavaialable under certain network partitions

Replication: When

Dynamo , Riak, CouchDB,
Redis, Cassandra, Voldemort,
MongoDB, RethinkDB

Implemented in

BigTable, HBase, Accumulo,
CouchBase, MongoDB,
RethinkDB

Implemented in

Charron-Bost, B., Pedone, F., Schiper, A. (eds.): Replication: Theory and
Practice, Lecture Notes in Computer Science, vol. 5959. Springer (2010)

Master-Slave (Primary Copy)
◦ Only a dedicated master is allowed to accept writes, slaves are

read-replicas

◦ Pro: reads from the master are consistent

◦ Contra: master is a bottleneck and SPOF

Multi-Master (Update anywhere)
◦ The server node accepting the writes synchronously

propagates the update or transaction before acknowledging

◦ Pro: fast and highly-available

◦ Contra: either needs coordination protocols (e.g. Paxos) or is
inconsistent

Replication: Where

Charron-Bost, B., Pedone, F., Schiper, A. (eds.): Replication: Theory and
Practice, Lecture Notes in Computer Science, vol. 5959. Springer (2010)

Consistency Levels

Writes
Follow Reads

Read Your
Writes

Monotonic
Reads

Monotonic
Writes

Bounded
Staleness

Lineari-
zability

PRAM

Causal
Consistency

Achievable with high availability
Bailis, Peter, et al. "Bolt-on causal
consistency." SIGMOD, 2013.

Bailis, Peter, et al. "Highly available transactions: Virtues and
limitations." Proceedings of the VLDB Endowment 7.3 (2013): 181-192.

Either version-based or
time-based. Both not
highly available.

Viotti, Paolo, and Marko Vukolić. "Consistency in Non-
Transactional Distributed Storage Systems." arXiv (2015).

Writes in one session are
strictly ordered on all
replicas.

Versions a client reads in
a session increase
monotonically.

Clients directly
see their own
writes.

If a value is read, any causally
relevant data items that lead to
that value are available, too.

Strategies:
• Single-mastered reads and

writes
• Multi-master replication with

consensus on writes

Functional Techniques Non-Functional

Logging
Update-in-Place
Caching
In-Memory Storage
Append-Only Storage

Storage Management

Read Latency

Write Throughput

Durability

NoSQL Storage Management
In a Nutshell

Si
ze

H
D

D
SS

D
R

A
M

SRRR

SWRW

SRRR

SWRW

SRRR

SWRW

 Caching
 Primary Storage
 Data Structures

D
ur

ab
le

V
ol

at
ile

 Caching
 Logging
 Primary Storage

 Logging
 Primary Storage

High Performance

Typical Uses in DBMSs:

Low Performance RR: Random Reads
RW: Random Writes

SR: Sequential Reads
SW: Sequential Writes

Sp
ee

d
, C

o
st

RAM

Persistent Storage

Logging

Append-Only
I/O

Update-In-
Place

Data
In-Memory/
Caching

Log

Data

Promotes durability of
write operations.

Increases write
throughput.

Is good for
read latency.

Improve
latency.

Functional Techniques Non-Functional

Joins

Sorting

Filter Queries

Full-text Search

Aggregation and Analytics

Query Processing

Read Latency

Global Secondary Indexing
Local Secondary Indexing
Query Planning
Analytics Framework
Materialized Views

Local Secondary Indexing
Partitioning By Document

Kleppmann, Martin. "Designing data-intensive
applications." (2016).

Partition I

Key Color

12 Red

56 Blue

77 Red

Term Match

Red [12,77]

Blue [56]

D
at

a
In

d
ex

Partition II

Key Color

104 Yellow

188 Blue

192 Blue

Term Match

Yellow [104]

Blue [188,192]

D
at

a
In

d
ex

WHERE color=blue

Scatter-gather query
pattern.

Indexing is always
local to a partition.• MongoDB

• Riak
• Cassandra
• Elasticsearch
• SolrCloud
• VoltDB

Implemented in

Global Secondary Indexing
Partitioning By Term

Kleppmann, Martin. "Designing data-intensive
applications." (2016).

Partition I

Key Color

12 Red

56 Blue

77 Red

Term Match

Yellow [104]

Blue [56, 188, 192]

D
at

a
In

d
ex

Partition II

Key Color

104 Yellow

188 Blue

192 Blue

Term Match

Red [12,77]

D
at

a
In

d
ex

WHERE color=blue

Targeted Query

Consistent Index-
maintenance requires
distributed transaction.• DynamoDB

• Oracle Datawarehouse
• Riak (Search)
• Cassandra (Search)

Implemented in

 Local Secondary Indexing: Fast writes, scatter-gather
queries

 Global Secondary Indexing: Slow or inconsistent writes,
fast queries

 (Distributed) Query Planning: scarce in NoSQL systems
but increasing (e.g. left-outer equi-joins in MongoDB
and θ-joins in RethinkDB)

 Analytics Frameworks: fallback for missing query
capabilities

 Materialized Views: similar to global indexing

Query Processing Techniques
Summary

How are the techniques from the NoSQL
toolbox used in actual data stores?

Outline

• Overview & Popularity
• Core Systems:

• Dynamo
• BigTable

• Riak
• HBase
• Cassandra
• Redis
• MongoDB

NoSQL Foundations and
Motivation

The NoSQL Toolbox:
Common Techniques

NoSQL Systems

Decision Guidance: NoSQL
Decision Tree

NoSQL Landscape

Document

Wide Column

Graph

Key-Value

Project Voldemort

Google
Datastore

Popularity
http://db-engines.com/de/ranking

Scoring: Google/Bing results, Google Trends, Stackoverflow, job
offers, LinkedIn

System Model Score

1. Oracle Relational DBMS 1462.02

2. MySQL Relational DBMS 1371.83

3. MS SQL Server Relational DBMS 1142.82

4. MongoDB Document store 320.22

5. PostgreSQL Relational DBMS 307.61

6. DB2 Relational DBMS 185.96

7. Cassandra Wide column store 134.50

8. Microsoft Access Relational DBMS 131.58

9. Redis Key-value store 108.24

10. SQLite Relational DBMS 107.26

11. Elasticsearch Search engine 86.31

12. Teradata Relational DBMS 73.74

13. SAP Adaptive Server Relational DBMS 71.48

14. Solr Search engine 65.62

15. HBase Wide column store 51.84

16. Hive Relational DBMS 47.51

17. FileMaker Relational DBMS 46.71

18. Splunk Search engine 44.31

19. SAP HANA Relational DBMS 41.37

20. MariaDB Relational DBMS 33.97

21. Neo4j Graph DBMS 32.61

22. Informix Relational DBMS 30.58

23. Memcached Key-value store 27.90

24. Couchbase Document store 24.29

25. Amazon DynamoDB Multi-model 23.60

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

History
Google File System

MapReduce

CouchDB

MongoDBDynamo

Cassandra

Riak

MegaStore

F1

Redis

HyperDeX Spanner

CouchBase

Dremel

Hadoop &HDFS
HBase

BigTable

Espresso

RethinkDB

CockroachDB

 BigTable (2006, Google)
◦ Consistent, Partition Tolerant

◦ Wide-Column data model

◦ Master-based, fault-tolerant, large clusters (1.000+ Nodes),
HBase, Cassandra, HyperTable, Accumolo

 Dynamo (2007, Amazon)
◦ Available, Partition tolerant

◦ Key-Value interface

◦ Eventually Consistent, always writable, fault-tolerant

◦ Riak, Cassandra, Voldemort, DynamoDB

NoSQL foundations

Chang, Fay, et al. "Bigtable: A distributed storage system
for structured data."

DeCandia, Giuseppe, et al. "Dynamo: Amazon's highly
available key-value store."

 Developed at Amazon (2007)

 Sharding of data over a ring of nodes

 Each node holds multiple partitions

 Each partition replicated N times

Dynamo (AP)

DeCandia, Giuseppe, et al. "Dynamo: Amazon's
highly available key-value store."

 Naive approach: Hash-partitioning (e.g. in Memcache,
Redis Cluster)

Consistent Hashing

partition = hash(key) % server_count

 Solution: Consistent Hashing – mapping of data to
nodes is stable under topology changes

Consistent Hashing

hash(key)

position = hash(ip)

02160

Reading and Writing

 An arbitrary node acts as a coordinator
 N: number of replicas

 R: number of nodes that need to confirm a read

 W: number of nodes that need to confirm a write

N=3
R=2
W=1

Versioning and Consistency

 𝑅 + 𝑊 ≤ 𝑁 ⇒ no consistency guarantee

 𝑅 + 𝑊 > 𝑁 ⇒ newest acked value included in reads

 Vector Clocks used for versioning

Read Repair
Semantic
Reconciliation

𝑅 + 𝑊> 𝑁 does not imply linearizability

 Consider the following execution:

Writer

Replica 1

Replica 2

Replica 3

Reader A

Reader B

set x=1

ok

ok

0

1

get x 1

0

0

get x 0

ok

Kleppmann, Martin. "Designing data-
intensive applications." (2016).

 Goal: avoid manual conflict-resolution

 Approach:
◦ State-based – commutative, idempotent merge function

◦ Operation-based – broadcasts of commutative upates

 Example: State-based Grow-only-Set (G-Set)

CRDTs
Convergent/Commutative Replicated Data Types

Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek
Zawirski "Conflict-free Replicated Data Types"

Node 1 Node 2

𝑆1 = {} 𝑆2 = {}

add(x)
𝑆1 = {𝑥}

add(y)
𝑆2 = {𝑦}

𝑆2 = 𝑚𝑒𝑟𝑔𝑒 𝑦 , 𝑥
= {𝑥, 𝑦}

𝑆1 = 𝑚𝑒𝑟𝑔𝑒 𝑥 , 𝑦
= {𝑥, 𝑦}

𝑆1

𝑆2

 Open-Source Dynamo-Implementation

 Extends Dynamo:
◦ Keys are grouped to Buckets

◦ KV-pairs may have metadata and links

◦ Map-Reduce support

◦ Secondary Indices, Update Hooks, Solr Integration

◦ Riak CS: S3-like file storage, Riak TS: time-series database

Riak (AP) Riak

Model:

Key-Value

License:

Apache 2

Written in:

Erlang und C

Consistency Level: N, R, W, DW

Storage Backend: Bit-Cask, Memory, LevelDB

BucketData: KV-Pairs

 Available and Partition-Tolerant

 Consistent Hashing: hash-based distribution with stability
under topology changes (e.g. machine failures)

 Parameters: N (Replicas), R (Read Acks), W (Write Acks)
◦ N=3, R=W=1 fast, potentially inconsistent

◦ N=3, R=3, W=1 slower reads, most recent object version contained

 Vector Clocks: concurrent modification can be detected,
inconsistencies are healed by the application

 API: Create, Read, Update, Delete (CRUD) on key-value pairs

 Riak: Open-Source Implementation of the Dynamo paper

Summary: Dynamo and Riak

Dynamo and Riak
Classification

Range-
Sharding

Hash-
Sharding

Entity-Group
Sharding

Consistent
Hashing

Shared
DiskSharding

Replication

Storage
Management

Query
Processing

Trans-
action

Protocol

Sync.
Replica-

tion

Logging
Update-
in-Place

Global
Index

Local
Index

Async.
Replica-

tion

Primary
Copy

Update
Anywhere

Caching
In-

Memory
Append-Only

Storage

Query
Planning

Analytics
Materialized

Views

 Remote Dictionary Server

 In-Memory Key-Value Store

 Asynchronous Master-Slave Replication

 Data model: rich data structures stored under key

 Tunable persistence: logging and snapshots

 Single-threaded event-loop design (similar to Node.js)

 Optimistic batch transactions (Multi blocks)

 Very high performance: >100k ops/sec per node

 Redis Cluster adds sharding

Redis (CA) Redis

Model:

Key-Value

License:

BSD

Written in:

C

 String, List, Set, Hash, Sorted Set

Data structures

"<html><head>…"String

{23, 76, 233, 11}Set

web:index

users:2:friends

[234, 3466, 86, 55]List users:2:inbox

Theme → "dark", cookies → "false"Hash users:2:settings

466 → "2", 344 → "16"Sorted Set top-posters

"{event: 'comment posted', time : …"Pub/Sub users:2:notifs

Example Redis Data Structure: lists

 (Linked) Lists:

234 3466 86

LPUSH RPUSH

RPOP

LREM inbox 0 3466

BLPOP

LPOP

Blocks until element
arrives

55

LINDEX inbox 2

LRANGE inbox 1 2

LLEN

inbox

4

LPUSHX

Only if list
exists

Master-Slave Replication

Master

Slave1 Slave2

Slave2.1

Slave2.2

Writes
Asynchronous

Replication

> SLAVEOF 192.168.1.1 6379
< +OK

Memory Backlog

Slave Offsets

Stream

Why is Redis so fast?

Pessimistic
transactions

are expensive

Data in RAM

Single-threading

Operations are
lock-free

AOF

No Query
Parsing

Harizopoulos, Stavros, Madden, Stonebraker "OLTP through
the looking glass, and what we found there."

Example Redis Use-Case: Twitter

http://www.infoq.com/presentations/Real-Time-Delivery-Twitter

>150 million users
~300k timeline querys/s

 Per User: one
materialized timeline in
Redis

 Timeline = List

 Key: User ID

RPUSHX user_id tweet

Classification: Redis
Techniques

Range-
Sharding

Hash-
Sharding

Entity-Group
Sharding

Consistent
Hashing

Shared
DiskSharding

Replication

Storage
Management

Query
Processing

Trans-
action

Protocol

Sync.
Replica-

tion

Logging
Update-
in-Place

Global
Index

Local
Index

Async.
Replica-

tion

Primary
Copy

Update
Anywhere

Caching
In-

Memory
Append-Only

Storage

Query
Planning

Analytics
Materialized

Views

 Published by Google in 2006

 Original purpose: storing the Google search index

 Data model also used in: HBase, Cassandra, HyperTable,
Accumulo

Google BigTable (CP)

A Bigtable is a sparse,
distributed, persistent

multidimensional sorted map.

Chang, Fay, et al. "Bigtable: A distributed storage system
for structured data."

 Storage of crawled web-sites („Webtable“):

Wide-Column Data Modelling

Column-Family:
contents

com.cnn.www cnnsi.com : "CNN" my.look.ca : "CNN.com"

Column-Family:
anchor

content : "<html>…"
content : "<html>…"

content : "<html>…"

t5

t3

t6

1. Dimension:
Row Key

2. Dimension:
CF:Column

3. Dimension:
Timestamp

Sparse
Sorted

Rows

A-C

C-F

F-I

I-M

M-T

T-Z

Range-based Sharding
BigTable Tablets

Tablet Server 1

A-C

I-M

Tablet Server 2

C-F

M-T

Tablet Server 3

F-I

T-Z

Master

Controls Ranges, Splits, Rebalancing

Tablet: Range partition of ordered records

Architecture

Tablet Server Tablet Server Tablet Server

Master Chubby

GFS

SSTables

Commit
Log

ACLs, Garbage
Collection,
Rebalancing

Master Lock, Root
Metadata Tablet

Stores Ranges,
Answers client
requests

Stores data and
commit log

 Goal: Append-Only IO when writing (no disk seeks)

 Achieved through: Log-Structured Merge Trees

 Writes go to an in-memory memtable that is periodically
persisted as an SSTable as well as a commit log

 Reads query memtable and all SSTables

Storage: Sorted-String Tables

Variable Length

Key Value Key Value Key Value

Sorted String Table

Key Block

Key Block

Key Block

Block Index

...

...

Block (e.g. 64KB)

Row-Key

 Open-Source Implementation of BigTable

 Hadoop-Integration
◦ Data source for Map-Reduce

◦ Uses Zookeeper and HDFS

 Data modelling challenges: key design, tall vs wide
◦ Row Key: only access key (no indices) key design important

◦ Tall: good for scans

◦ Wide: good for gets, consistent (single-row atomicity)

 No typing: application handles serialization

 Interface: REST, Avro, Thrift

Apache HBase (CP) HBase

Model:

Wide-Column

License:

Apache 2

Written in:

Java

HBase Storage

Key cf1:c1 cf1:c2 cf2:c1 cf2:c2

r1

r2

r3

r4

r5

r1:cf2:c1:t1:<value>

r2:cf2:c2:t1:<value>

r3:cf2:c2:t2:<value>

r3:cf2:c2:t1:<value>

r5:cf2:c1:t1:<value>

r1:cf1:c1:t1:<value>

r2:cf1:c2:t1:<value>

r3:cf1:c2:t1:<value>

r3:cf1:c1:t2:<value>

r5:cf1:c1:t1:<value>

HFile cf2

HFile cf1

 Logical to physical mapping:
Key Design – where to store data:
r2:cf2:c2:t1:<value>
r2-<value>:cf2:c2:t1:_
r2:cf2:c2<value>:t1:_

George, Lars. HBase: the definitive guide. 2011.

In Value

In Key

In Column

Example: Facebook Insights

Extraction
every 30 min

Log

6PM
Total

6PM
Male

… 01.01
Total

01.01
Male

… Total Male …

10 7 100 65 1000 567

MD5(Reversed Domain) + Reversed Domain + URL-ID Row Key

CF:Daily CF:Monthly CF:All

Lars George: “Advanced
HBase Schema Design”

Atomic HBase
Counter

TTL – automatic deletion of
old rows

 Data model: 𝑟𝑜𝑤𝑘𝑒𝑦, 𝑐𝑓: 𝑐𝑜𝑙𝑢𝑚𝑛, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 →
𝑣𝑎𝑙𝑢𝑒

 API: CRUD + Scan(start-key, end-key)

 Uses distributed file system (GFS/HDFS)

 Storage structure: Memtable (in-memory data structure)
+ SSTable (persistent; append-only-IO)

 Schema design: only primary key access implicit
schema (key design) needs to be carefully planned

 HBase: very literal open-source BigTable implementation

Summary: BigTable, HBase

Classification: HBase
Techniques

Range-
Sharding

Hash-
Sharding

Entity-Group
Sharding

Consistent
Hashing

Shared
DiskSharding

Replication

Storage
Management

Query
Processing

Trans-
action

Protocol

Sync.
Replica-

tion

Logging
Update-
in-Place

Global
Index

Local
Index

Async.
Replica-

tion

Primary
Copy

Update
Anywhere

Caching
In-

Memory
Append-Only

Storage

Query
Planning

Analytics
Materialized

Views

 Published 2007 by Facebook

 Idea:
◦ BigTable‘s wide-column data model

◦ Dynamo ring for replication and sharding

 Cassandra Query Language (CQL): SQL-like query- and
DDL-language

 Compound indices: partition key (shard key) + clustering
key (ordered per partition key) Limited range queries

 Secondary indices: hidden table with mapping
queries with simple equality condition

Apache Cassandra (AP) Cassandra

Model:

Wide-Column

License:

Apache 2

Written in:

Java

Architecture

Cassandra Node
Thrift

Session
Thrift

Session
Thrift RPC

or CQL

set_keyspace()
get_slice()

TCP Cluster
Messages

Column

Family Store
Row Cache

MemTable
Local

Filesystem Key Cache

Storage

Proxy

Stores SSTables
and Commit Log

Replication,
Gossip, etc.

Stateful
Communication

Stores Rows

Stores Primary Key Index
(Seek Position)

Random Partitioner

MD5(key)

Order Preservering
Partitioner

key

Snitch: Rack, Datacenter,
EC2 Region Information

Hashing:

Classification: Cassandra
Techniques

Range-
Sharding

Hash-
Sharding

Entity-Group
Sharding

Consistent
Hashing

Shared
DiskSharding

Replication

Storage
Management

Query
Processing

Trans-
action

Protocol

Sync.
Replica-

tion

Logging
Update-
in-Place

Global
Index

Local
Index

Async.
Replica-

tion

Primary
Copy

Update
Anywhere

Caching
In-

Memory
Append-Only

Storage

Query
Planning

Analytics
Materialized

Views

 From humongous ≅ gigantic

 Tunable consistency

 Schema-free document database

 Allows complex queries and indexing

 Sharding (either range- or hash-based)

 Replication (either synchronous or asynchronous)

 Storage Management:
◦ Write-ahead logging for redos (journaling)

◦ Storage Engines: memory-mapped files, in-memory, Log-
structured merge trees (WiredTiger)

MongoDB (CP) MongoDB

Model:

Document

License:

GNU AGPL 3.0

Written in:

C++

Data Modelling

Tweet

text

coordinates

retweets

Movie

title

year

rating

director

Actor

Genre

User

name

location

1

n

n

n 11

{
"_id" : ObjectId("51a5d316d70beffe74ecc940")
title : "Iron Man 3",
year : 2013,
rating : 7.6,
director: "Shane Block",
genre : ["Action",

"Adventure",
"Sci -Fi"],

actors : ["Downey Jr., Robert",
"Paltrow , Gwyneth"],

tweets : [{
"user" : "Franz Kafka",
"text" : "#nowwatching Iron Man 3",
"retweet" : false,
"date" : ISODate("2013-05-29T13:15:51Z")

}]
}

Movie Document

Denormalisation instead
of joins

Nesting replaces 1:n
and 1:1 relations

Schemafreeness:
Attributes per document

Unit of atomicity:
document

Principles

Sharding:
-Sharding attribute
-Hash vs. range sharding

Sharding und Replication

Client

Client

configconfigconfig

mongos

Replica Set

Replica Set

Master

Slave

Slave

Master

Slave

Slave

-Receives all writes
-Replicates asynchronously

-Load-Balancing
-can trigger rebalancing of
chunks (64MB) and splitting

mongos

Controls Write Concern:
Unacknowledged, Acknowledged,
Journaled, Replica Acknowledged

Classification: MongoDB
Techniques

Range-
Sharding

Hash-
Sharding

Entity-Group
Sharding

Consistent
Hashing

Shared
DiskSharding

Replication

Storage
Management

Query
Processing

Trans-
action

Protocol

Sync.
Replica-

tion

Logging
Update-
in-Place

Global
Index

Local
Index

Async.
Replica-

tion

Primary
Copy

Update
Anywhere

Caching
In-

Memory
Append-Only

Storage

Query
Planning

Analytics
Materialized

Views

How can the choices for an appro-
priate system be narrowed down?

Outline

• Decision Tree
• Classification Summary
• Literature

Reommendations

NoSQL Foundations and
Motivation

The NoSQL Toolbox:
Common Techniques

NoSQL Systems

Decision Guidance: NoSQL
Decision Tree

Access

Fast Lookups

RAM

Redis
Memcache

Unbounded

AP CP

Complex Queries

HDD-Size Unbounded

AnalyticsACID Availability Ad-hoc

Cache

VolumeVolume

CAP Query PatternConsistency

Example Applications

Cassandra
Riak

Voldemort
Aerospike

Shopping-
basket

HBase
MongoDB
CouchBase
DynamoDB

Order
History

RDBMS
Neo4j

RavenDB
MarkLogic

OLTP

CouchDB
MongoDB
SimpleDB

Website

MongoDB
RethinkDB

HBase,Accumulo
ElasticSeach, Solr

Social
Network

Hadoop, Spark
Parallel DWH

Cassandra, HBase
Riak, MongoDB

Big Data

NoSQL Decision Tree

Purpose:
Application Architects: narrowing down the potential
system candidates based on requirements

Database Vendors/Researchers: clear communication and
design of system trade-offs

System Properties
According to the NoSQL Toolbox

Functional Requirements

Sc
an

 Q
u

e
ri

e
s

A
C

ID
 T

ra
n

sa
ct

io
n

s

C
o

n
d

it
io

n
al

W
ri

te
s

Jo
in

s

So
rt

in
g

Fi
lt

e
r

Q
u

e
ry

Fu
ll-

Te
xt

 S
e

ar
ch

A
n

al
yt

ic
s

Mongo x x x x x x

Redis x x x

HBase x x x x

Riak x x

Cassandra x x x x x

MySQL x x x x x x x x

 For fine-grained system selection:

System Properties
According to the NoSQL Toolbox

Non-functional Requirements

D
at

a
Sc

al
ab

ili
ty

W
ri

te
 S

ca
la

b
ili

ty

R
e

ad
 S

ca
la

b
ili

ty

El
as

ti
ci

ty

C
o

n
si

st
e

n
cy

W
ri

te
 L

at
e

n
cy

R
e

ad
 L

at
e

n
cy

W
ri

te
 T

h
ro

u
gh

p
u

t

R
e

ad
 A

va
ila

b
ili

ty

W
ri

te
 A

va
ila

b
ili

ty

D
u

ra
b

ili
ty

Mongo x x x x x x x x

Redis x x x x x x x

HBase x x x x x x x x

Riak x x x x x x x x x x

Cassandra x x x x x x x x x

MySQL x x x

 For fine-grained system selection:

System Properties
According to the NoSQL Toolbox

Techniques

R
an

ge
-S

h
ar

d
in

g

H
as

h
-S

h
ar

d
in

g

En
ti

ty
-G

ro
u

p
 S

h
ar

d
in

g

C
o

n
si

st
e

n
t

H
as

h
in

g

Sh
ar

e
d

-D
is

k

Tr
an

sa
ct

io
n

 P
ro

to
co

l

Sy
n

c.
 R

e
p

lic
at

io
n

A
sy

n
c.

 R
e

p
lic

at
io

n

P
ri

m
ar

y
C

o
p

y

U
p

d
at

e
 A

n
yw

h
e

re

Lo
gg

in
g

U
p

d
at

e
-i

n
-P

la
ce

C
ac

h
in

g

In
-M

e
m

o
ry

A
p

p
e

n
d

-O
n

ly
 S

to
ra

ge

G
lo

b
al

 In
d

ex
in

g

Lo
ca

l I
n

d
ex

in
g

Q
u

e
ry

 P
la

n
n

in
g

A
n

al
yt

ic
s

Fr
am

ew
o

rk

M
at

e
ri

al
iz

e
d

V
ie

w
s

Mongo x x x x x x x x x x x x

Redis x x x x

HBase x x x x x x

Riak x x x x x x x x x x

Cassandra x x x x x x x x x x

MySQL x x x x x x x x

 For fine-grained system selection:

 High-Level NoSQL Categories:
 Key-Value, Wide-Column, Docuement, Graph

 Two out of {Consistent, Available, Partition Tolerant}

 The NoSQL Toolbox: systems use similar techniques
that promote certain capabilities

 Decision Tree

Summary

Techniques
Sharding, Replication,

Storage Management,
Query Processing

Functional
Requirements

Non-functional
Requirements

promote

Our NoSQL research at the
University of Hamburg

Caching- and Database-as-a-Service
Middleware for NoSQL databases

Cloud Startup for
Orestes as a Service

Orestes
Components

Content-Delivery-
Network

Polyglot Persistence
Mediator

Backend-as-a-Service Middleware:
Caching, Transactions, Schemas,
Invalidation Detection, …

Standard HTTP Caching
Unified REST API

Orestes
As-a-Service

Content-Delivery-
Network

Cloud Service

Learning

CDN
Caching

This year‘s SCDM will be announced soon

Literature Recommendations

Recommended Literature

1.

2.

Recommended Literature

Recommended Literature: Cloud-DBs

Recommended Literature: Blogs

https://martin.kleppmann.com/

http://www.dzone.com/mz/nosql

http://www.infoq.com/nosql/

http://blog.baqend.com/

http://highscalability.com/

http://www.nosqlweekly.com/

http://muratbuffalo.blogspot.de/ http://db-engines.com/en/ranking

Seminal NoSQL Papers

• Lamport, Leslie. Paxos made simple., SIGACT News, 2001
• S. Gilbert, et al., Brewer's conjecture and the feasibility of consistent, available, partition-tolerant web

services, SIGACT News, 2002
• F. Chang, et al., Bigtable: A Distributed Storage System For Structured Data, OSDI, 2006
• G. DeCandia, et al., Dynamo: Amazon's Highly Available Key-Value Store, SOSP, 2007
• M. Stonebraker, el al., The end of an architectural era: (it's time for a complete rewrite), VLDB, 2007
• B. Cooper, et al., PNUTS: Yahoo!'s Hosted Data Serving Platform, VLDB, 2008
• Werner Vogels, Eventually Consistent, ACM Queue, 2009
• B. Cooper, et al., Benchmarking cloud serving systems with YCSB., SOCC, 2010
• A. Lakshman, Cassandra - A Decentralized Structured Storage System, SIGOPS, 2010
• J. Baker, et al., MegaStore: Providing Scalable, Highly Available Storage For Interactive Services, CIDR,

2011
• M. Shapiro, et al.: Conflict-free replicated data types, Springer, 2011
• J.C. Corbett, et al., Spanner: Google's Globally-Distributed Database, OSDI, 2012
• Eric Brewer, CAP Twelve Years Later: How the "Rules" Have Changed, IEEE Computer, 2012
• J. Shute, et al., F1: A Distributed SQL Database That Scales, VLDB, 2013
• L. Qiao, et al., On Brewing Fresh Espresso: Linkedin's Distributed Data Serving Platform, SIGMOD, 2013
• N. Bronson, et al., Tao: Facebook's Distributed Data Store For The Social Graph, USENIX ATC, 2013
• P. Bailis, et al., Scalable Atomic Visibility with RAMP Transactions, SIGMOD 2014

