“An algorithm is a procedure with instructions so detailed that no further information is necessary”

Goal: Create a “universal algorithm machine”

In 1936, Emil Post created a Post machine – which he hoped would be a “universal algorithm machine”

Requires: Universal algorithm machines must accept *any language* which can be defined by humans
Definition

A **Post Machine**, denoted PM, is a collection of five things:

1. An alphabet Σ of input letters and the special symbol #
2. A linear storage location called the **STORE**. We can *read* the leftmost character in the store and *add* a new character to the “end” (rightmost location) of the STORE. We allow for characters *not* in Σ to be used in the STORE — usually denoted as Γ.
3. **READ** states which remove the leftmost character from the STORE and branch accordingly.

![Diagram of READ state with inputs a, #, and b]
Post Machines

Definition (continued)

4 ADD states which concatenate a character onto the right end of the string in the STORE. (This is the “opposite” of a PDA PUSH state). No branching can take place. Letters from Σ and Γ can be ADDed to the STORE.

\[\text{ADD } b\]

5 A START state (unenterable) and some halt states called ACCEPT and REJECT. REJECT states are optional.

\[\text{START}\]

\[\text{REJECT}\]

\[\text{ACCEPT}\]
Example

Trace: aaabbb
Example #2

START

ADD #

READ₁

ADD #

ACCEPT

ADD a

READ₂

b

READ₃

a

READ₄

ADD a

ADD b
Simulating a PM on a TM

Theorem

Any language that can be accepted by a PM can be accepted by some TM

Proof.

- START states remain unchanged
- ACCEPT states can be renamed to HALT
- REJECT states can be removed
- READ states should move the TAPE-HEAD to the first non-Δ character on the TAPE.

\[(a, a, L)\]
\[(\#, \#, L)\]
\[(b, b, L)\]
Simulating a PM on a TM

Proof.

- ADD states should move the TAPE-HEAD to the "end" of the tape and insert the character to the END

(a, a, R)
(b, b, R)
(#) #, R)

(Δ, y, L)
Simulating a TM on a PM

Theorem

Any language that can be accepted by a TM can be accepted by some PM

Proof.

- Key: use # to indicate the “tape” boundary separator
- TAPE may store any of \(\Sigma, \Gamma, \# , \Delta \)
- TAPE-HEAD will always be the *front* of the STORE
- When we *read* from the TM, we READ from the PM
- When we *write* to the TM, we ADD to the PM
- When we move to the *left*, we have to rotate all of the elements in our STORE right (cyclically)
- When we move to the *right*, we don’t have to do anything
- START needs a secondary *ADD #* state immediately after. Any cycles will go to this new ADD state
Simulating a TM on a PM

Converting transition of \((X, Y, R)\)

Converting transition of \((X, Y, L)\)

Changing START
$\text{TM} = \text{PM}$

Proof.

- $\text{PM} \subseteq \text{TM}$ because we can show how to convert a PM to a TM
- $\text{TM} \subseteq \text{PM}$ because we can show how to convert a TM to a PM
- $\text{PM} = \text{TM}$ because of the above two claims