
The Blocks World

1

The Blocks World

The blocks world
• Representation
• Actions
• Precondition/Add/Delete lists

l i

1

Planning
Means-ends reasoning
Examples
Sussman’s Anomaly

2

Questions

How do we represent. . .
• goal to be achieved
• state of environment
• actions available to agent

l it lf• plan itself

3

Blocks World

We’ll illustrate the techniques with
reference to the blocks world
This world contains
• a robot arm with gripper,
• 3 blocks (A, B and C) of equal size,
• a table-top.

4

Blocks World

S d i t i t

TABLE

Some domain constraints:
• Only one block can be directly on top of another

block
• Any number of blocks can be on the table
• The hand can only hold one block

5

Ontology

To represent this environment, we need an
Ontology
On(x,y) means block x is on top of block y
OnTable(x) --- block x is on the table()
Clear(x) --- nothing is on top of block x
Holding(x) --- robot arm is holding block x
ArmEmpty() --- robot arm/hand is not
holding anything (block in this world)

6

State Representation = Environment
A representation of one state of the
blocks world. The state in the figure
is:
• Clear(A)
• Clear(C) A
• On(A,B)
• OnTable(B)
• OnTable(C)
• ArmEmpty()

Use the closed world assumption:
anything not stated is assumed to be
false

B C

The Blocks World

2

7

Goal Representation

A goal is represented as a set of
formulae
Here is a goal:
OnTable(A)()
OnTable(B)
OnTable(C)

B CA

8

Actions
Represented using a technique that was

developed in the STRIPS planner
Each action has:

a name which may have arguments;
a pre-condition list --- a list of facts which
must be true for action to be executed;
a delete list --- a list of facts that are no longer
true after action is performed;
an add list --- a list of facts made true by
executing the action.

Each of the facts may contain variables

9

Action/Operator Representation
Basic operations
• stack(X,Y): put block X on block Y
• unstack(X,Y): remove block X from block Y
• pickup(X): pickup block X from the table
• putdown(X): put block X on the table

Each operator is represented by facts that describe the
state of the world before and changes to the world after
an action is performed.
• a list of preconditions
• a list of new facts to be added (add-effects)
• a list of facts to be removed (delete-effects)
• optionally, a set of (simple) variable constraints

10

Precondition/Delete/Add Lists
Preconditions
• P1 … Pi

Additions
• A1 … Ak

Deletions
• D1 … Dj

Meaning: g
All P must be true before an action is performed
(otherwise it can’t be accomplished)
After the action, all A are added to the agent’s
memory/state
After the action, all D are removed from the agent’s
memory/state
Subject to constraints imposed on the state of the world
• e.g. a block can’t be stacked on top of itself!!

11

Stack Operator

The stack action occurs when the robot
arm places the object it is holding [x] on
top of another object [y]
Form: Stack(x,y)
Pre: Clear(y) ∧ Holding(x)
Add: ArmEmpty ∧ On(x,y) ∧ Clear(x)
Del: Clear(y) ∧ Holding(x)
Constraints: (x ≠ y), x ≠ Table, y ≠ Table

12

Unstack Operator

The unstack action occurs when the
robot arm picks up an object x from on
top of another object y.
Form: UnStack(x,y)
P O () Cl () A E ()Pre: On(x,y) ∧ Clear(x) ∧ ArmEmpty()
Add: Holding(x) ∧ Clear(y)
Del: On(x,y) ∧ Clear(x) ∧ ArmEmpty()
Constraints: x ≠ y, x ≠ Table, y ≠ Table

The Blocks World

3

13

Pickup Operator

The pickup action occurs when the arm picks
up an object (block) from the table
Form: Pickup(x)
Pre: OnTable(x) ∧ Clear(x) ∧ ArmEmpty()
Add: Holding(x)
Del: OnTable(x) ∧ Clear(x) ∧ ArmEmpty()
Constraints: x ≠ table

14

Putdown Operator

The putdown action occurs when the arm
places the object x onto the table
Form: PutDown(x)
Pre: Holding(x)g()
Add: OnTable(x) ∧ ArmEmpty ∧ Clear(x)
Del: Holding(x)
Constraints: x ≠ table

15

Planning and Agents

Since the early 1970s, the AI planning community has
been closely concerned with the design of artificial
agents
Planning is essentially automatic programming: the
design of a course of action that will achieve some
desired goaldesired goal
Within the symbolic AI community, it has long been
assumed that some form of AI planning system will be
a central component of any artificial agent
Building largely on the early work of Fikes & Nilsson,
many planning algorithms have been proposed, and the
theory of planning has been well-developed

16

What is a Plan?

A sequence (list) of actions, with
variables replaced by constants (specific
objects in the environment)

17

Planner
18

Means-Ends Reasoning

Idea is to give an agent:
• representation of goal/intention to achieve;
• representation of actions it can perform; and
• representation of the environment;

h h hThen have the agent generate a plan to
achieve the goal.
The plan is generated entirely by the
planning system, without human
intervention.

The Blocks World

4

19

STRIPS Planning
STRIPS maintains two additional data structures:
• State List - all currently true predicates.
• Goal Stack - a push down stack of goals to be solved, with current goal on

top of stack.

If the current goal is not satisfied by present state,
Find goal in the add list of an operator,

and
push operator and preconditions list on stack. (=Subgoals)
When a current goal is satisfied, POP it from stack.
When an operator is on top of the stack,

• record the application of that operator – update the plan sequence
and

• use the operator’s add and delete lists to update the current state.

20

Planning in STRIPS
Uses means-ends reasoning (actions = means,
goals = ends)
States of the world and goals are represented as a
set/list of predicates that are true (e.g. on(x,y) ..)

1 The current state is initialized to the start state1. The current state is initialized to the start state
2. The goal is placed on the goal stack
3. Loop through the following steps to produce a

plan
(next slide)

21

Reasoning Loop
If the top item on the goal stack is:

• empty (the goal stack is empty), return the actions executed
– they form the plan to achieve the goal

• a goal, and it is satisfied in the current state, remove it
from the stack (no replacement necessary)

• a complex goal, break it into subgoals, placing all subgoals
on the goal stack (the original goal is pushed down in the
goal stack)

• a predicate, find an action that will make it true, then place
that action (with variables bound appropriately) and its
preconditions on the goal stack (preconditions first)

• an action and its preconditions are satisfied, perform the
action, updating the world state using the delete and add
lists of the action (if the pre-conditions are not satisfied,
add them to the goal list without removing the action). Add
this action to the partial plan

22

STRIPS in action

STATE DESCRIPTION GOAL STACK
CLEAR(B)
CLEAR(C)
ON(C,A)
ONTABLE(A)
ONTABLE(B)
ARMEMPTY

C
ON(C,B) & ON(A,C)

C
A

BB BAA

A

STATE DESCRIPTION GOAL STACK

CLEAR(B)
CLEAR(C)
ON(C,A)
ONTABLE(A)
ONTABLE(B)
ARMEMPTY

ON(A,C)
ON(C,B)
ON(C,B) & ON(A,C)

STATE DESCRIPTION GOAL STACK

CLEAR(B)
CLEAR(C)
ON(C,A)
ONTABLE(A)
ONTABLE(B)
ARMEMPTY

B

ON(C,B)
ON(A,C)
ON(C,B) &
ON(A,C)

goal decomposition

not promising
(why is this?)

goal decomposition

B

B

C
AA

C
AA

23

STRIPS in action

STATE DESCRIPTION GOAL STACK
CLEAR(B)
CLEAR(C)
ON(C,A)
ONTABLE(A)
ONTABLE(B)
ARMEMPTYB

ON(C,B)
ON(A,C)
ON(C,B) & ON(A,C)

stack(x,y)
P&D: HOLDING(x),

CLEAR()

B
C
AA

STATE DESCRIPTION GOAL STACK
CLEAR(B)
CLEAR(C)
ON(C,A)
ONTABLE(A)
ONTABLE(B)
ARMEMPTY

B

CLEAR(B) & HOLDING(C)
stack(C,B)
ON(A,C)
ON(C,B) & ON(A,C)

production rule

F-rule

Solution = {}

CLEAR(y)
A: ARMEMPTY, ON(x,y),

CLEAR(x)

B
C
AA

24

STRIPS in action

STATE DESCRIPTION GOAL STACK
CLEAR(B)
CLEAR(C)
ON(C,A)
ONTABLE(A)
ONTABLE(B)
ARMEMPTY

B

CLEAR(B) & HOLDING(C)
stack(C,B)
ON(AC,)
ON(C,B) & ON(A,C)

production rule

B
C
AA

STATE DESCRIPTION GOAL STACK
CLEAR(B)
CLEAR(C)
ON(C,A)
ONTABLE(A)
ONTABLE(B)
ARMEMPTY

B

HOLDING(C)
CLEAR(B)
CLEAR(B) & HOLDING(C)
stack(C,B)
ON(AC,)
ON(C,B) & ON(A,C)

Solution = {}

goal decomposition

B
C
AA

The Blocks World

5

25

STRIPS in action

STATE DESCRIPTION GOAL STACK
CLEAR(B)
CLEAR(C)
ON(C,A)
ONTABLE(A)
ONTABLE(B)
ARMEMPTY

B

HOLDING(C)
CLEAR(B)
CLEAR(B) & HOLDING(C)
stack(C,B)
ON(AC,)
ON(C,B) & ON(A,C)

B
C
AA

STATE DESCRIPTION GOAL STACK
CLEAR(B)
CLEAR(C)
ON(C,A)
ONTABLE(A)
ONTABLE(B)
ARMEMPTY

B

HANDEMPTY & CLEAR(C) &
ON(C, y)

unstack(C, y)
CLEAR(B)
CLEAR(B) & HOLDING(C))
stack(C,B)
ON(AC,)
ON(C,B) & ON(A,C)

production rule

Solution = {}

unstack(x,y)
P&D:

HANDEMPTY,
CLEAR(x), ON(x,y)

A: HOLDING(x),
CLEAR(y)

B
C
AA

26

STRIPS in action

STATE DESCRIPTION GOAL STACK

CLEAR(B)
CLEAR(C)
ON(C,A)
ONTABLE(A)
ONTABLE(B)
ARMEMPTY

B

HANDEMPTY & CLEAR(C) &
ON(C, y)

unstack(C, y)
CLEAR(B)
CLEAR(B) & HOLDING(C)
stack(C,B)
ON(AC,)

unstack(x,y)
P&D: ARMEMPTY,

CLEAR(x), ON(x,y)
A: HOLDING(x),

B
C
AA

STATE DESCRIPTION GOAL STACK

CLEAR(C)
CLEAR(A)
ON(C,B)
ONTABLE(A)
ONTABLE(B)
ARMEMPTY

C

B

ON(A,C)
ON(C,B) & ON(A,C)

Substitute {A/y}, then apply
unstack(C,A) then stack(C,B)

ON(C,B) & ON(A,C)

A

Solution = {unstack(C,A), stack(C,B)}

(),
CLEAR(y)

stack(x,y)
P&D: HOLDING(x),

CLEAR(y)
A: ARMEMPTY,

ON(x,y), CLEAR(x)

B

27

STRIPS in action

ON(A,C)
ON(C,B) & ON(A,C)

STATE DESCRIPTION GOAL STACK

CLEAR(C)
CLEAR(A)
ON(C,B)
ONTABLE(A)
ONTABLE(B)
ARMEMPTY

C
BA
C
B

STATE DESCRIPTION GOAL STACK

CLEAR(C)
CLEAR(A)
ON(C,B)
ONTABLE(A)
ONTABLE(B)
ARMEMPTY

C
A

ARMEMPTY

CLEAR(C) & HOLDING(A)
stack(A,C)
ON(C,B) & ON(A,C)

Solution = {unstack(C,A), stack(C,B)}

stack(x,y)
P&D: HOLDING(x),

CLEAR(y)
A: ARMEMPTY,

ON(x,y), CLEAR(x)

production rule

C

BB

28

STRIPS in action

STATE DESCRIPTION GOAL STACK

CLEAR(C)
CLEAR(A)
ON(C,B)
ONTABLE(A)
ONTABLE(B)
ARMEMPTY

A

CLEAR(C)
HOLDING(A)
CLEAR(C) & HOLDING(A)
stack(A,C)
ON(C,B) & ON(A,C)

goal decompositionC

BB

STATE DESCRIPTION GOAL STACK

CLEAR(C)
CLEAR(A)
ON(C,B)
ONTABLE(A)
ONTABLE(B)
ARMEMPTY

C
A

ONTABLE(A) & CLEAR(A) &
ARMEMPTY

pickup(A)
CLEAR(C) & HOLDING(A)
stack(A,C)
ON(C,B) & ON(A,C)

Solution = {unstack(C,A), stack(C,B)}

pickup(x)
P&D: ONTABLE(x),

CLEAR(x), ARMEMPTY
A: HOLDING(x)

production rule

C
B

29

STRIPS in action
ONTABLE(A) & CLEAR(A) &

ARMEMPTY
pickup(A)
CLEAR(C) & HOLDING(A)
stack(A,C)
ON(C,B) & ON(A,C)

STATE DESCRIPTION GOAL STACK

CLEAR(C)
CLEAR(A)
ON(C,B)
ONTABLE(A)
ONTABLE(B)
ARMEMPTY

A

Apply pickup(A)
and then
stack(A,C)

pickup(x)
P&D: ONTABLE(x),

CLEAR(x) HANDEMPTY

C

BB

STATE DESCRIPTION GOAL STACK

ON(A,C)
ON(C,B)
CLEAR(A)
ONTABLE(B)
ARMEMPTY

C
B

A NIL

Solution plan = {unstack(C,A), stack(C,B),
pickup(A), stack(A,C)}

CLEAR(x), HANDEMPTY
A: HOLDING(x)

stack(x,y)
P&D: HOLDING(x),

CLEAR(y)
A: HANDEMPTY,

ON(x,y), CLEAR(x)

C

BB

30

Typical BW Planning Problem
Initial state:

clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b) A plan:ontable(b)
ontable(c)
handempty

Goal:
on(b,c)
on(a,b)
ontable(c)

A BC

A
B

C

A plan:
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

The Blocks World

6

31

Another BW Planning Problem
Initial state:

clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)

A plan:
pickup(a)
stack(a,b)

ontable(b)
ontable(c)
handempty

Goal:
on(a,b)
on(b,c)
ontable(c)

A BC

A
B
C

unstack(a,b)
putdown(a)
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

32

Goal Interaction
Simple planning algorithms assume that the goals to be achieved are independent

• Each can be solved separately and then the solutions
concatenated

This planning problem, called the “Sussman Anomaly,” is the classic example of the
goal interaction problem:

• Solving on(A,B) first (by doing unstack(C,A), stack(A,B) will be undone when solving the
second goal on(B,C) (by doing unstack(A,B), stack(B,C)). g (,) (y g (,), (,))

• Solving on(B,C) first will be undone when solving on(A,B)
Classic STRIPS could not handle this, although minor modifications can get it to do
simple cases

A B
C

Initial state

A
B
C

Goal state

33

Sussman
Anomaly A B

C

Achieve on(a,b) via stack(a,b) with preconds: [holding(a),clear(b)]

|Achieve holding(a) via pickup(a) with preconds:
[ontable(a),clear(a),handempty]

||Achieve clear(a) via unstack(_1584,a) with preconds:
[on(_1584,a),clear(_1584),handempty]

||Applying unstack(c,a)

||Achieve handempty via putdown(_2691) with preconds:
[holding(_2691)]

||Applying putdown(c)

|Applying pickup(a)

Applying stack(a,b)

Achieve on(b,c) via stack(b,c) with preconds: [holding(b),clear(c)]

|Achieve holding(b) via pickup(b) with preconds:
[ontable(b) clear(b) handempty]

From [clear(b),clear(c),
ontable(a),ontable(b),on(c,a),handempty]

To [on(a,b),on(b,c),ontable(c)]

Do: unstack(c,a)

putdown(c)

pickup(a)

Initial state

Goal state

[ontable(b),clear(b),handempty]

||Achieve clear(b) via unstack(_5625,b) with preconds:
[on(_5625,b),clear(_5625),handempty]

||Applying unstack(a,b)

||Achieve handempty via putdown(_6648) with preconds:
[holding(_6648)]

||Applying putdown(a)

|Applying pickup(b)

Applying stack(b,c)

Achieve on(a,b) via stack(a,b) with preconds: [holding(a),clear(b)]

|Achieve holding(a) via pickup(a) with preconds:
[ontable(a),clear(a),handempty]

|Applying pickup(a)

Applying stack(a,b)

pickup(a)

stack(a,b)

unstack(a,b)

putdown(a)

pickup(b)

stack(b,c)

pickup(a)

stack(a,b) A
B
C

34

Questions

