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ABSTRACT
Artificial  neural  networks  are  biologically
influenced models which serve as a common tool
for data analysis.  They produce state-of-the-art
results  in  machine  learning  fields  such  as
computer  vision  and  speech  recognition.
Artificial  Neural  Networks  are  complex
probabilistic  models.  Training  them  is
computationally  expensive.  Consequently,
optimization  and  trade-off  management  are
paramount. Optimization methods can generally
be  arranged  into  two  groups,  algorithmic
advantage  and  computing  power  or  hardware
advantage.  This  paper  presents  data  associated
with  simple  optimization  methods  from  both
groups  for  a  multinomial  logistic  regression
network.  GPU utilization provides  hardware  or
computing  power  advantage  and  parameter
tuning  methods  provide  algorithmic  advantage.
Learning is conducted on the MNIST data set. Its
assessment  is  meant  to  provide  intuition  for
novice network optimization and training.
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1.  Introduction

The origins of artificial neural networks (ANN)
date  back  to  1943  when  McCulloch  and  Pitts
developed  a  computational  model  based  on
neurons and their  connections in the brain [1].
Their  invention shortly  followed the  advent  of
digital computers. At the time, even the world's
best  super  computer  lacked  the  power  and
memory  necessary  to  train  artificial  networks.
Consequently,  ANNs  remained  a  theoretical
concept, unable to be implemented or tested until
computational power evolved sufficiently.

Today,  even  personal  machines  can  achieve
reasonable  performance  training  smaller  scale
networks.  High  performance  machines  are
capable of  massive scale data computation and
are  maintained  by  companies  like  Google,
Amazon  and  Facebook.  In  fact,  Facebook  has
promised to open sourced their GPU run server
design  for  anyone  to  use.  Their  strategy  is  to

drive  algorithmic  innovation  by  providing  top
performance machines to as many data scientists
as possible [16]. 

Despite  growing  availability  of  high
performance  machines,  the  problem  of
optimization  remains.  The  scale  or  size  of
networks  is  typically  quantifiable  through
parameter  or  input  volume since  it  provides  a
robust  measure.  Consider  today's  largest,  most
complex convolutional networks and the systems
in which they're  trained. In  2013, Coates et  al.
developed  a  system  capable  of  training  a
network with as many as 11 billion parameters
[2].  Their record was shattered in 2015 when a
group  of  researchers  at  Digital  Reasoning
developed  a  system  which  utilized  parallel
training methods in order to train a 160 billion
parameter network [3]. Networks of this size are
most  effective  for  AI  problems  but  at  an
overwhelming  cost.  The  greater  the  size,  the
greater the complexity, the greater the time spent
training them. Many days can be spent waiting
for a computer to churn out a trained model. Our
problem grows as we multiply this time across
the  number  of  iterations  necessary  for
minimizing error rates. As a result, a sequence of
trial  and  error  on  one  type  of  network  can  be
drawn out over many weeks or months. We see
that despite our relatively new ability to utilize
ANNs  within  AI,  original  limitations  have
persisted  and  will  continue  into  the
unforeseeable future. For this reason, much focus
within AI research  is  spent  on optimization of
neural networks and the systems in which they
are trained.
 
This  paper  focuses  on  baseline  methods  for
machine  learning  optimization.  Ultimately  it
quantifies  the  performance  gains  attained  by
tuning two parameters and leveraging a GPU.

For  clarity  in  experimentation  we  optimize  on
one of the simplest ANNs. Learning is conducted
on the famous MNIST handwritten digit data set.
Theano, a Python compiler and library,  is used
for  optimizing  mathematical  expressions  on
CPUs and GPUs [6][7].
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To  start,  the  paper  will  introduce  the  MNIST
classification problem. In following, it provides
context  by  describing  each  component  of  the
multiclass  perceptron  and  the  classification
problems it is meant for. Finally, it presents our
generated data showing the affect  of parameter
tuning and GPU utilization on performance for
our model.

2.  MNIST Classification

The famous MNIST data set  used for  machine
learning  was  developed  by  Yann  Lecun  and
previously Corinna Cortes and Chris Burges. It is
composed  of  28x28  pixel  images  of  size-
normalized hand written digits. Its two partitions
include a training set of 60,000 labelled patterns
and  a  test  set  of  10,000  non-labelled  patterns.
Approximately 250 writers were used to develop
the training set [8]. Since 1998 it has been used
as  a  benchmark  data  set  for  a  wide  variety of
machine learning algorithms.

The nature  of  the  problem associated  with the
MNIST data set is one of classification. The goal
is to train a model to classify unseen test images
as  1  of  10  classes,  the  digits  contained  in  the
interval [0, 9]. 

Figure 1 provides a visual representation of what
images  in  the  data  set  look  like.  Notice
differences in pattern across each class. Lacking
uniformity,  variations  between  images  are  a
result  of  differences  in  writing style,  boldness,
blurriness  and  pixelation.  These  characteristics
are  referred  to  as  noise  in  data.  Such  noise
presents levels of difficulty in training models to
classify  unseen  digits.   The  following  section
describes  the  model  used  to  sort  through  this
noise and classify handwritten digits.

3. Multiclass Perceptron

The multiclass perceptron is a manifestation of
the  binary  perceptron  model  Frank  Rosenblatt
proposed  in  1958  [10].  The  purpose  of  a
perceptron  is  to  classify  data  points  into
respective  categories.  Its  multiclass  extension
generalizes for multiple class problems [11]. As
a  result,  the  multiclass  perceptron  proves  a
natural fit for the MNIST data set.

This  model  is  composed  of  three  parts.
Multinomial logistic regression (MLR) acts as an
activation  function  while  the  negative  log
likelihood  measures  its  cost.  Finally,  the
parameters of our model are updated iteratively
using stochastic gradient descent. 

3.1 Multinomial Logistic Regression

Data  which  can  be  divided into two classes  is
typically separated using a linear equation.

In  figure  2  we  see  a  single  linear  function
separating two classes of data. This line is called
the hyperplane.

The  logistic  regression  function  emulates  this
behaviour while measuring the probability of its
assignments  matching  labels  of  data.  This
sigmoid  activation  function  produces  a  value
between zero and one with 0.5 representing the
case  where  a  data  point  resides  on  the
differentiating hyperplane. If the value produced
is  greater  than  0.5  the  neuron  is  considered
active. The opposite is true for values less than
0.5. 

Figure 1: Example of MNIST data patterns.
A.Burratin, 
http://andrea.burattin.net/stuff/handwritten-
digit-recognition/

Figure 2: Illustrates linear classification on data 
that is binary in nature.

http://sli.ics.uci.edu/Classes-CS178-
Notes/LinearClassify
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The logistic regression model is defined as

where  W  and  b  are  weight  and  bias  vectors
respectively.  The  equation  produces  a  number
between  zero  and  one  with  0.5  being  the
threshold, hence, its binary nature.

It  helps  to  think  about  this  process  using  a
concrete example. Following a metaphor used in
“Learning From Data: A Short Course”, consider
the  task  of  credit  approval.  Many  factors  are
accounted  for  when  assessing  an  individual's
ability  to  pay  off  debt.  These  factors  are
represented by xi in our model. The weights in W
and  biases  in  b  associated  with  each  x  are
adjusted  throughout  training  based  on
historically  labelled  data.  These  adjustments
affect the denominator's linear expression which
dictates the probability output. When an output is
greater than 0.5 the neuron is activated and we
accept an individuals credit request. When below
0.5 we deny them credit [11].

The  classification  problem  associated  with
MNIST demands a model where an output can
take  on  1  of  10  classes.  Conveniently,  the
logistic  regression  function has  been proven to
generalize  well  for  multiclass  problems.  The
commonly used MLR model is defined as 

for  i  ∈{0,  1,  2,...,  9},  where  Wi&j are  weight
matrices  and  bi&j  are  bias  vectors  [12]. The
algorithm measures the probability of a matching
output for each class in a vector where the sum
of probabilities is one. The maximum probability
in the vector is chosen as the single output for
the neuron.  The class,  or in our case,  the digit
associated with the chosen index represents the
activated class. For instance, if the output vector
index with the greatest probability was one, we'd
classify the digit as a 1.

3.2 Negative Log Likelihood

To  maximize  the  probability  of  our  model
representing labelled data we use a loss function
which quantifies the deviation of our model from
the labelled data in our training set. We call this

deviation  the  “cost”  of  the  current  model  and
seek  to  maximize  the  likelihood  of  proper
representation by minimizing the cost [12]. 

We  employ  the  commonly  used  negative  log
likelihood as  our loss  function.  For  MLR it  is
defined as

where  W is  the  weight  matrix,  b  is  the  bias
vector  and  D is  the magnitude or count of  the
entire data set.

In our implementation, the mean of costs across
a batch is used in lieu of  the sum of costs.  In
section  four,  we'll  see  this  is  done  for
consistency in descending our model.

3.3 Mini-Batch Stochastic Gradient Descent

Mini-batch Stochastic gradient descent (MSGD)
is an algorithm for minimizing the cost computed
by  our  loss  function.   Descending  the  loss
function  and  updating  model  parameters  is
accomplished  by  subtracting  from  each
parameter,  the  derivative  of  the  loss  function
with respect to W and b. It is formally defined as

where A is the activation function with weights,
Wk, biases, b, and m being the batch size [7][14].

Our implementation uses  a  sampling technique
called  mini-batching which  reduces  the  sample
space used for updating to a magnitude less than
m.  This  design  decision  alone  provides
algorithmic value to our training process.

Executing  MSGD  descends  the  model  till  the
optimal  minimum  is  reached.  When  this
convergence  occurs,  we  consider  the  model
trained. In this way, we facilitate computational
learning.    Figure  three  illustrates  this  process
nicely.
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3.4 Network Overview

Perceptrons  are  meant  to  classify  data  into
arbitrarily  many  classes.  A  binary  perceptron
differentiates  between  data  of  two  types.  A
multiclass perceptron generalizes differentiation
to  arbitrarily  many  classes.  These  ANNs  are
composed of many cohesive neurons.

In figure four we provide a visual representation
of  the  binary  neuron  present  in  the  normal
perceptron. From left to right we see a sigmoid
function  taking  arbitrarily  many  inputs.  In  the
case  of  credit  approval,  these  inputs  could  be
metrics  such  as  an  individual's  annual  salary,
years  in  residence,  outstanding  loans,  etc.  A
ratio, yi, is calculated by the sigmoid function. If
the  0.5  threshold  is  reached,  the  neuron  is
activated and we accept the credit request. If not,
credit is denied.

Now,  consider  again  our  case  where
classification  across  multiple  categories  is
necessary. The multiclass neuron using MLR is
shown in figure five no the next page.

Notice  the  series  of  sigmoid  functions  at  the
nucleus layer  of the neuron. Each contributes a
probability  for  our  ten  classes  from which  the
maximum probability is chosen as the output. In
our case, 7 nodes would need to be added to the
figure  for  it  to  be  fully  representative  of  our
network.

4. Optimization and Results

A prominent goal within ML is to train networks
faster. Optimization techniques are grouped into
two different categories.  Algorithmic advantage
results from tuning a network's underlying model
while  computing  advantage is  attained  by
leveraging more efficient hardware.

We aim to increase the performance rate of our
model  by  adjusting  parameters  and  leveraging
the  GPU.  To  get  a  sense  of  results  for  each
training  iteration  we  must  be  able  to  quantify
performance.  This  metric  is  defined  as  a  rate
calculated as

where E is the number of epochs or passes over
the entire  training set  and  Te –  Ts denotes  the
real  time spent  training the model  [7][13].  For
example: if it takes our model 70 epochs and 10
seconds  to  sufficiently  train,  our  rate  of

Figure 4: Binary perceptron neuron.

 http://briandolhansky.com/blog/2013/7/11/artificial-neural-networks-linear-classification-part-2

Figure 3: Stochastic gradient descent. 
http://www.yaldex.com/game-development/



performance would be seven  epochs per second
(EPS).

It's important effectiveness remains stable when
implementing  optimization  strategies.  We
quantify  effectiveness  by  calculating  an  error
percentage over an unlabelled test set.  For each
digit  in  our  test  set  the  model's  output  is
compared  to  the  digit's  actual  value.  The
summation of misclassified digits is then divided
by the magnitude of the test set. The result is a
percentage  representing  our  model's
effectiveness.

Our  implementation  achieves  a  minimum  test
error  rate  of  7.073  percent  with  the  top
performing  configuration  yielding  a  GPU
performance rate of 13.213 EPS. 

4.1 Parameter Tuning

The performance of our model can be governed
by the batch size and learning rate parameters of
the  MSGD  algorithm.  To  test  their  effect,  we
train  the  model  using  different  batch  size-
learning rate  configurations.  In  total  the model
was trained 2490 times with performance rates
ranging  from 1.497 EPS  on  a  CPU to  13.213
EPS  on  a  GPU.  The  remainder  of  this  sub-
section  will  use  GPU statistics  for  clarity  and
consistency in reviewing results.

4.1.1 Learning Rate

The  learning  rate,  denoted  as ∝ in  equation
four, is  the  step  size  for  our  SGD  algorithm.
Smaller  values  of  ∝ translate  to  smaller  steps
during  gradient  descent  resulting  in  longer
training  times.  The  opposite  is  true  for  larger
values of  ∝.   During experimentation, we keep

the  learning  rate  constant  for  each  training
sequence  to  more accurately measure its  affect
on performance.

Figure three displays varying step sizes along a
graphed function. The algorithm used to produce
this  figure  used  more  sophisticated  techniques
for adapting the learning rate during the training
process.  Still,  it  clearly illustrates  how varying
learning rates result in different step sizes during
gradient descent.

Since the length of time is the denominator of
our  performance  rate  calculation,  we  expected
larger values of  ∝ to produce shorter times and
larger  performance  rates.  Our  generated  data
showed this intuition to be incorrect. Figure six
displays  performance  rates  based  on  learning
rates per batch size. Notice each line maintains a
constant overall trend suggesting that our model
elicits no relationship between the learning rate
and performance. 

Hindsight research leads us to suspect this was
due to the averaging done over the cost function.
Since the data set is never shuffled and the math
from  training  sequence  to  training  sequence
remains the same, taking the average, rather than
the sum of equation three, effectively normalizes
the stepping behaviour across batch tests. 

4.1.2 Batch Size

The  batch size,  denoted  as  m in equation four
defines  the  sample  size  on  which  we  run  the
MSGD model. From the start, using this form of
stochastic gradient descent provides algorithmic
gains  during  the  training  process.  Instead  of
updating  weights  at  each  point  over  the  entire
data set (as is done in SGD), we update weights

Figure 5: Multiclass perceptron neuron. 

http://briandolhansky.com/blog/2013/9/23/artificial-neural-nets-linear-multiclass-part-3
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over sporadic partitions within the set. The effect
is a drastic reduction in the number of gradient
computations performed.

Increasing  the  mini-batch  size  typically
decreases  a  model's  rate  of  convergence  since
greater  numbers  of  gradient  computations  are
needed [15]. This results in a greater number of
epochs.  On  the  other  hand,  opportunities  for
parallelization  increase  with  greater  mini-batch
sizes[14].  When  parallelilized,  the  machine  is
able to process gradient computations at a faster
rate. This relationship is shown in figure six. As
the batch size increases, so does the performance
rate for the GPU and CPU. 

Despite  increasing  the  overall  time  it  takes  to
converge, the rate of passes over the data or the
epoch rate increases. 

Notice the plateauing behaviour of both curves.
We can expect this trend to continue because at
some  point  the  increasing  convergence  rate
would outweigh the performance gains attained
through parallelization. Tuning parameters is an
act of trial and error.

4.2 GPU Utilization

In  4.1.2 we saw that  increasing the mini-batch
size  gave  opportunity  for  parallelization  of
gradient  computations  on  both  machines.  This
parallelization is especially effective on the GPU
where  the  number  of  cores  is  exponentially

Figure 5: Shows the relationship between learning rate and performance per batch size.

Note: To visually differentiate learning rate sequences per batch size, we use color within and line style variations within this figure.

Generated using plot.ly.

Figure 6: Illustrates the increase in GPU performance with respect to the batch size while contrasting performance rates shown by 
the CPU.

Generated using plot.ly.
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greater  than  on  the  CPU.  Parallelization  takes
place  on  a  much  greater  scale.  Figure  six
illustrates this relationship.

We can conclude from our experimentation that
leveraging Theano's use of the GPU can increase
performance rates by 4.286X that of the CPU.

5.  Conclusion

Given the advanced state of  the ML field,  this
paper  provided  an  assessment  of  baseline
methods  for  optimizing  ANNs.  Specifically  it
focused  on  tuning  the  learning  rate  and  batch
size parameters of the MSGD algorithm on both
the  CPU and  GPU.  Training  was  done on  the
MNIST data set using a test set of 60,000 hand
written digits. We generated data by running our
model  2490  times  using  distinct  learning  rate-
batch size configurations.

Our  experimentation  showed  that  GPU
utilization is key to optimization in systems for
training ANNs. The GPU's ability to parallelilize
multiplication  in  dimensions  greater  than  one
produce significant  performance gains  over the
CPU. For us, using the GPU yielded a maximum
performance increase of 4.286X that of the CPU.

We  had  hypothesized  that  performance  rates
would increase with the size of the learning rate
since this parameter helps dictate the size of step
during MSGD.  After generating data, we found
our  implementation  did  not  present  this
relationship. We suspect this was a result of step
size  normalization  through  averaging  costs.  In
the future, we wish to continue experimentation
to validate our assumption.

Increasing the batch size up to a  batch size of
1000  increased  performance  due  to
parallelilization  opportunities.  The  plateauing
behaviour  observed  suggests  further  training
sequences  would  be  necessary  to  measure  the
upper  limit  of  performance  attainable  by  our
model and system.

There  exist  more  sophisticated  algorithms  for
adapting  the  learning  rate  throughout  training
and  for  increasing  mini-batch  size  without
decreasing convergence rates. These algorithmic
designs  are  of  particular  interest  for  future
research.

Despite  deep  convolutional  neural  networks
(CNN/DNN), the field's newest family of neural
networks,  yielding  state-of-the-art  performance
on MNIST achieving error rates as low as 0.23

percent [9], the simplicity of our implementation
provided clarity with empirical measurements.

Finally, we hope that our observations serve as a
baseline  guide  for  developing  intuition  behind
novice network training!
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