Normalization and Other Data Modeling Methods

There are many paths to the top of the mountain but the view is always the same

Chinese proverb
Normalization

- An alternative database design tool to data modeling
- A theoretical foundation for the relational model
- Application of a series of rules that gradually improve the design
Functional dependency

- A relationship between attributes in an entity
 - One or more attributes determine the value of another attribute
- An identifier functionally determines all the attributes of an entity
 - stock code \rightarrow firm name, stock price, stock quantity, stock dividend
 - If we know stock code we know the value of firm name, etc.

Multivalued dependency

- Formulae
 - (stock dividend, stock price) \rightarrow yield
Full functional dependency

Yield is fully functionally dependent on stock dividend and stock price because both of these attributes are required to determine the value of yield

\[(\text{stock dividend, stock price}) \rightarrow \text{yield}\]

Determinant

- An attribute that fully functionally determines another attribute
 - e.g., stock code determines stock PE
Multidetermination

A given value can determine multiple values

- A multidetermines B
- A $\rightarrow \rightarrow$ B
- e.g., Department multidetermines course

Multivalued dependency means functional dependencies are multivalued
Attribute relationships

One-to-one

 Emblem: A value of an attribute determines the value of another attribute and vice versa

- A \rightarrow B and B \rightarrow A

- e.g.,
 - CH \rightarrow Switzerland
 - Switzerland \rightarrow CH
Attribute relationships

One-to-many

A value of one attribute determines the value of another attribute but **not** vice versa

- country name → currency unit
- currency unit not → country name
Attribute relationships

Many-to-many

- Neither attribute determines the other
- A not \rightarrow B
- B not \rightarrow A
 - country name not \rightarrow language
 - language not \rightarrow country name
 - French and Flemish is spoken in Belgium
 - French is spoken in many countries
Normal forms

- A classification of relations
- Stacked like a set of Russian dolls
 - Innermost is first normal form
First normal form (1NF)

- All rows must have the same number of columns
- Single valued attributes only
Second normal form (2NF)

- Violated when a nonkey column is a fact about part of the primary key
- A column is not fully functionally dependent on the primary key

- `customer-credit` in this case

<table>
<thead>
<tr>
<th>order</th>
<th>itemno</th>
<th>customerid</th>
<th>quantity</th>
<th>customer-credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12</td>
<td>57</td>
<td>25</td>
<td>OK</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>679</td>
<td>3</td>
<td>POOR</td>
</tr>
</tbody>
</table>

![Entity relationship diagram](image)
Third normal form (3NF)

- Violated when a nonkey column is a fact about another nonkey column
- A column is not fully functionally dependent on the primary key

- exchange rate in this case

<table>
<thead>
<tr>
<th>stock</th>
<th>stock code</th>
<th>nation</th>
<th>exchange rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>stock code</td>
<td>nation</td>
<td>exchange rate</td>
<td></td>
</tr>
<tr>
<td>MG</td>
<td>USA</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>IR</td>
<td>AUS</td>
<td>0.46</td>
<td></td>
</tr>
</tbody>
</table>
Fourth normal form (4NF)

A row should not contain two or more multivalued independent facts
Fifth normal form (5NF)

- A table can be reconstructed from other tables
- There exists some rule that enables a relation to be inferred
- Base case
 - Consultants provide skills to one or more firms and firms can use many consultants; a consultant has many skills and a skill can be used by many firms; and a firm can have a need for many skills and the same skill can be required by many firms.
The rule

If a consultant has a certain skill (e.g., database) and has a contract with the firm that requires that skill (e.g., IBM), then the consultant advises the firm on that skill (i.e., he advises IBM on database)
Data modeling and normalization

- Data modeling is often an easier path to good database design.
- A high-fidelity data model will be of high normal form.
- 5NF is likely to create the most problems.
 - Check for special rules.
Goal

Learn to think like a data modeler

Different dialects and greater precision (e.g., cardinality) come easily once the basics are mastered
Key points

- Normalization is one approach to data modeling
- There are multiple representations for data model
- Learning to model is difficult
- Learning to represent a model is easy