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Abstract— Information graphics (line graphs, bar charts,
etc.) often appear in popular media such as newspapers
and magazines. Such graphics generally have a message that
they are intended to convey. Our overall project goal is to
extract this message. For a line graph, the first step is to
segment the graph into a series of visually distinguishable
trends. This paper presents our methodology for identifying
this segmentation. We use a support vector machine to produce
a learned model of when to split a segment of the graph into
subsegments; the support vector machine considers a variety
of features, including statistical tests, other characteristics
of the segment under consideration, and global features of
the graphic. The paper presents three evaluations of our
graph segmentation model, which show the effectiveness of
our system.

Index Terms— line graph, graph segmentation, trends

1. Introduction
Information graphics (line graphs, bar charts, etc.) are

widely used in popular media such as newspapers and maga-
zines. Such graphics generally have a message that the graph
designers intended to convey and which captures the high-
level knowledge contained in the graphic. For example, the
line graph in Figure 1 ostensibly is intended to convey a
changing trend in ocean levels from relatively stable between
1900 and 1930 to rising thereafter. Our goal is the reverse
of graphic design. We want to develop a system that uses
the communicative signals in a graphic (such as coloring or
annotations) to recognize the graphic’s message and thereby
extract its high-level content.

In order to recognize the high-level message conveyed by
a line graph, we must treat it as a sequence of visually
distinguishable trends rather than as a large set of data points
connected by short line segments. For example, Figure 1
shows two visually distinguishable trends for ocean levels —
a relatively stable trend from 1900 to 1930 and a rising trend
from 1930 to 2003 (both with high variance).

This paper presents our model for segmenting a line graph
into a set of visually apparent trends. The model is constructed
by a support vector machine that takes into account both
local and global attributes. The advantage of using machine
learning to produce the graph segmentation model is that the
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Fig. 1: A line graph from USA Today

machine learning algorithm can consider a variety of candidate
attributes and emphasize those that are important in producing
a segmentation that captures trends which are visually apparent
to humans, as opposed to using an algorithm that comes from
the perspective of error minimization. Our model of graph
segmentation will be used in a Bayesian network that reasons
about the communicative signals in the graphic (such as a point
being annotated with its value) to hypothesize the graphic’s
high-level message.

To our knowledge, our work is the first approach to graph
segmentation that 1) captures trends that are visually apparent
to humans, 2) uses both global and local information, and
3) uses machine learning to produce a learned graph segmen-
tation model.

Section 2 describes our approach to building a model of
graph segmentation. Section 3 presents several examples of
segmentations produced by our system, and Section 4 presents
our evaluation experiments, including a cross-validation of our
decision module that determines whether to split a segment, a
comparative evaluation with another method, and an evaluation
of the quality of our segmentations. Section 5 discusses related
work and Section 6 is our conclusion.



2. Problem Formulation and Algorithms
2.1 General framework

Given a series of sampled data points from a line graph, we
need to segment this data set into one or several sequences
where each sequence of sample points can be represented
by either piecewise linear interpolation or piecewise linear
approximation[1] to show a visually distinguishable trend.

The future application of our research requires that we use
a method which can accomplish three goals:

1) A fast algorithm so that it can be used in a real-time
system to do the graph segmentation.

2) Some line graphs can be very smooth, but others can be
very jagged with large variance, as in Figure 1. Rather
than having a set number of segments or threshold of
error, our algorithm must deal with a wide variety of
line graphs and determine the number of segments as it
produces the segmentation for a particular graphic.

3) The existing algorithms for time series segmentation
are mainly based on error reduction methods. Since
our goal is to identify a segmentation that captures
human perception of visually apparent trends, we must
use machine learning to consider a variety of different
attributes and produce a learned model that emphasizes
the most important attributes in identifying visually
distinguishable trends.

We have chosen a top-down approach for our segmentation
task[1]. An advantage of the top-down approach for our
purpose is, as the segmentation moves from the whole graph to
individual segments, it is possible to record global information
about the larger graphic and pass it for consideration when
analyzing the subsegments and deciding whether to divide
them further.

Our segmentation algorithm is a recursive algorithm that
starts from the whole line graph as one segment. Given a
segment as input, the decision module makes a split/no-split
decision. If a split decision is made, the splitting module
will determine the splitting point, split this segment into
two subsegments, and call the decision module on each new
subsegment. Recursion stops when the decision module makes
a no-split decision on a segment.

The splitting module and decision module are covered in
Section 2.2 and Section 2.3 respectively.

2.2 Splitting Module
The splitting module is responsible for selecting the splitting

point for each segment once the decision module determines
that the segment should be split. Fu-lai Chung et. al.[2]
introduced a simple method which uses the PIP (perceptual
important point) as the split point in a segment. The idea can
be simply described as finding the point which has the largest
perpendicular distance from the straight line which connects
the two endpoints of the segment.

Choosing the PIP as the splitting point is only complexity
O(n), as opposed to choosing a split point that minimizes the
sum of squared errors which would be O(n2). However, hu-
man perception is sometimes more sensitive to the maximum
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Fig. 2: Relationship between PPIP and PM

or minimum point than to the PIP. If two points are close to
one another, with one being the PIP PPIP and the other being
the maximum/minimum point PM , people usually choose the
maximum/minimum point as the end of one trend segment
and the start of the next trend segment. Thus we consider
both the PIP and the maximum/minimum points as candidate
splitting points. To choose between them, we examine how
much one data point stands out against the other with respect
to its own direction (perpendicular or vertical), by comparing
1) the difference Dp in their perpendicular distances from the
straight line connecting the two end points of the segment
against 2) the difference Dv in their vertical locations (or y-
values), as shown in Figure 2. If Dp ≥ Dv , we choose PPIP

as the split point; otherwise, we choose PM .

2.3 Decision Module
The Decision Module is responsible for analyzing a segment

and making a decision about whether it should be split
into two subsegments. In our project, we use 18 local and
global attributes and a support vector machine with SMO
(Sequential Minimal Optimization)[3] implementation to build
the decision module.

2.3.1 Local features
The local feature base is composed of various statistical

tests on the segment and other attributes which represent
characteristics of the segment. The following are several of
the local features that are considered by the SVM in building
the decision module for graph segmentation.

a) Correlation Coefficient: A trend can be viewed as a linear
relation between the X and Y variables. The Pearson product-
moment correlation coefficient measures the tendency of the
dependent variable to have a rising or falling linear relationship
with the independent variable. It is obtained by dividing the
covariance of two random variables X ,Y by the product of
their standard deviation.
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The correlation is 1 in the case of an increasing linear
relationship, -1 in the case of a decreasing linear relationship,
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Fig. 3: An example line graph with high correlation coefficient
but which should be split into two subsegments, as indicated
by the dark circles. The light colored circles are the sampled
data points, the three dark circles are the splitting points, and
the solid lines are the regression lines for the two subsegments.

and some value in between for all other cases. The closer the
coefficient is to either 1 or -1, the stronger the correlation
between the variables, thereby suggesting that the segment
should not be split. We use the absolute value of the correlation
coefficient as a feature in our classifier.

b) Q-test and F-test: Although the correlation coefficient is
useful in detecting when a segment should be viewed as a
single trend (and thus not split further), it is not sufficient
by itself. A flat portion of a line graph may be followed by
a very steep rise, resulting in a high correlation coefficient
even though the graph should be split into two segments, as
in Figure 3. Similarly, a relatively flat but jagged segment will
have a low correlation coefficient, even though it should not
be split into subsegments, as in the portion of the line graph
from 1900 to 1930 in Figure 1.

To address this, we make use of the Q-test[4] and F-test[5],
[6] which are measures of change point detection; both test
whether a two-segment regression is significantly different
from a one-segment regression based on the differences in
their respective residuals. The null hypothesis is that no
change point has occurred so the two regression models are
equal, suggesting that the segment need not be split further
into subsegments. The Q-test is specifically designed for this
purpose. But as analyzed in [4], the Q-test has less power when
the change point is closer to the two endpoints. And according
to [7], the Q-test is sensitive to the change in sample size –
the larger the sample size, the better its performance. On the
other hand, the F-test was designed as a general model fitting
test but has been adapted to the two-phase regression problem.
The F-test may compensate for problems with the Q-test since
it empirically works better when the change point is towards
one of the two endpoints.

The Q-test analyzes the likelihoods of the first k data
points and the following n − k data points from a Gaussian

distribution and takes the logarithm of the likelihood ratio λ:

λ =
l(k)

l(n)
=

σ̂1
k σ̂2

n−k

σ̂n

where σ̂1 and σ̂2 are the estimates of the standard errors of the
two regression lines, and σ̂ is the estimate of the standard error
of the overall regression line for all data points in the segment.
According to Quandt[8], the statistic −log(λ) follows the
distribution listed in [8].

The F-test statistic is computed as

F =
(RSSL−RSS) /2

RSS/ (n− 4)

where RSSL is the residual sum of squares of the overall
regression line, and RSS is the residual sum of squares of
the two-phase piecewise regression lines. The value F here
is distributed as an F-distribution with (2, n − 4) degrees of
freedom as given in [6].

For each sample point Pk in a segment, where 1 < k < n−1
and n is the total number of data points in the segment, we
build the two-phase linear regression models for the data points
from P1 to Pk, and from Pk+1 to Pn respectively. We consider
three significance levels α = 0.05, α = 0.01, and α = 0.005
for the Q-test, and two significance levels α = 0.1 and α =
0.05 for the F-test in the feature base. Thus we consider a total
of five attributes based on the two tests. If a statistic calculated
from any k where 1 < k < n−1 generates a significant result
corresponding to one of the significance levels of the Q-test
or the F-test, we set the value of the corresponding attribute to
1; otherwise, if no 1 < k < n−1 in the given segment makes
the statistic significant for the corresponding significance level,
the attribute is set to 0.

c) Runs Test: Although the two-phase Q-test and F-test
may help address the problem of recognizing segments that
represent a sequence of two trends, they can give a wrong
prediction in some situations where the segment consists of
more than two trends. However, computational complexity
prevents us from calculating more than a two phase F-test to
fit the data points since O(nd) combination of points would
need to be considered for a d − 1 phase F-test. Failing to
reject the null hypothesis for the one-phase regression model
doesn’t mean the one-phase regression line necessarily fits the
data points well since the data points may be better captured
by a k-phase regression model where k > 2. Therefore, we
need a more general statistic to test the goodness of fit between
the piecewise linear regression model and the data points.

We make recourse to the Runs Test[9]. The Runs Test
detects if a model fits the data points well. For each data point,
we calculate its residual from the regression line and categorize
it as +1 or −1, according to whether the residual is positive or
negative. Then the number of runs is calculated, where a run is
a continuous sequence of residuals which belong to the same
category, such as consecutive +1 or −1. If N+ is the number
of positive residual points and N− is the number of negative
residual points, the mean and standard deviation of the number



of runs suggested by the data points are approximated as

Rmean =
2N+ N−

N+ + N−
+ 1

RSD =

√
2N+ N− (2N+ N− − N+ − N−)

(N+ + N−)2 (N+ + N− − 1)

We use the Runs Test to check how well the least squared
linear regression for a given segment fits the data points in
the segment. If the actual number of runs R is larger than
Rmean −RSD, it suggests the least squared linear regression
line is a good fit to the segment. We include five features
from the Runs Test: the result of the Runs Test, the actual
runs R, mean runs Rmean, standard deviation of runs RSD

for a segment, and the ratio difference between actual runs
and mean runs calculated as |R−Rmean|/Rmean.

d) Outlier detection: A line graph may have one or more
points that significantly diverge from the overall trend; such
points perhaps should be viewed as outliers and not cause
a segment to be split further. Thus we employ an outlier
detection test based on residuals[10]. To detect the presence
of outliers, we assume that the trend can be represented as a
regression line; thus all the points within the segment can be
represented as yi = b+a xi+ ei where a and b are calculated
from least squared regression. The residual is ei = yi−b−a xi

and the estimated standard deviation of ei is

si = σ̂

√
1− 1

n
− (xi − x̄)

2∑
(xi − x̄)

2

where σ̂ =
√∑

e2i /(n− 2). If σ̂ equals 0, there are no
outliers; otherwise, the standardized residuals ri = ei/si are
computed and Rm = max|ei/si| is used as a test statistic for
outlier detection. We use a significance level of α = 0.01 and
the critical value given in [10]. If Rm is greater than the critical
value, outlier detection suggests the presence of an outlier in
the sampled data points. If there are multiple ri that exceed
the critical value, then multiple outliers are suggested. We use
two features – the result of the outlier test and the number of
outliers detected – in our feature base.

e) Other local features: Besides the statistical tests and their
corresponding results, other features which help describe the
characteristics of the segment are also recorded and passed to
the classifier to make a decision. They include:

• Number of data points in the current segment. Hypothesis
tests such as the Q-test are sensitive to the number of
data points. So this feature is used by the classifier to
incorporate the consideration of sample size.

• We hypothesize that the variance in the segment may
influence human perception on the split/no-split decision,
so we consider the standard deviation of residuals in the
segment rescaled by the horizontal length of the segment.

• Standard deviation of the perpendicular distance between
the data points and the regression line for the segment,
rescaled by the length of the regression line between the
two end points of the segment. This feature captures

the rescaled deviation existing in the segment from a
perpendicular perspective.

2.3.2 Global features
As opposed to other segmentation algorithms which only

consider local information obtained solely from the segment
under consideration, we also include global features that
enable the classifier to consider the individual segment within
a larger environment. Our global features include:

• The total number of data points in the whole line graph.
• The relative length of the current segment as a percentage

of the whole graph. This feature is included to capture
a global view of the segment with respect to the whole
graph.

2.3.3 Support Vector Machine as classifier
To produce a training set, each graph in our corpus must be

collected from popular media, scanned and sampled, and the
ideal segmentation identified by human viewers.1 These are
very time-consuming tasks. Therefore the size of the training
set is limited. There are 18 features associated with each
training instance, so the feature space is an 18 dimensional
space. For our segmentation problem, we chose a support
vector machine as classifier because it works very well with
high-dimensional data and a relatively small training set and
avoids the curse of dimensionality problem[11]. SVM also
lessens the chance of overfitting by using the maximum
margin separating hyperplane which minimizes the worst-case
generalization errors[12], [11]. Furthermore, as opposed to
local methods such as nearest neighbor which require locating
a small neighborhood for each new test instance, the SVM can
build the global hyperplane once from the training set and
apply it to test cases with little computation.

The support vector machine provides a maximum margin
hyperplane to divide the 18 dimensional space into two parts.
In our project, the feature vector is first normalized, and the
linear kernel is applied to the feature space to generate a linear
hyperplane. We use a linear kernel because an inappropriately
chosen degree of polynomial kernel which generates a nonlin-
ear hyperplane might induce overfitting.

We collected a corpus of 234 line graphs and built our
training set from this corpus. Each line graph was entered
as one instance in the training set along with the appropriate
split or no-split decision. In the case of a split decision, each
resulting segment is entered as an instance in the training
corpus, along with their respective split or no-split decisions,
and the process is recursively repeated. This produced a corpus
of 649 segments which were used to train our decision module.

3. Examples
Figure 4 displays three examples of segmentations produced

by our graph segmentation system. The three line graphs come
from three different sources, USA Today, BusinessWeek, and a

1In our message recognition system, a Visual Extraction Module is respon-
sible for using computer vision techniques to analyze an electronic image of a
graphic and construct its XML representation, including sampled data points.



local newspaper, and differ from one another with respect to
the number of trends and the amount of variance in each trend.
The original line graphs are plotted with solid black lines.
The split points identified by our segmentation algorithm are
shown as circles. The high-level trends are located between
each adjacent pair of splitting points, represented by dashed
regression lines. We can see from the results that our segmen-
tation algorithm accurately segmented the line graphs with
different variances into visually apparent high-level trends.

4. Evaluation
To evaluate our graph segmentation methodology, we per-

formed three evaluation experiments: cross-validation of the
learned decision module which is responsible for making a
split/no-split decision, and two human subjects experiments
which evaluated the entire segmentation algorithm incorporat-
ing both the splitting module and the decision module.

4.1 Evaluation of the Decision Module
Since our corpus is small, we use leave-one-out cross

validation to test the accuracy of the decision module, where
each instance is used once as a test case and all the other
648 instances are used as training cases. The results of all
649 experiments are averaged together to obtain the accuracy
of the model. The accuracy obtained from leave-one-out cross
validation is 88.3%, compared with the 67.2% accuracy of the
baseline decision of no-split (the decision for the majority of
instances in the training set). Thus our algorithm has a 31.4%
improvement from the baseline.

To identify the importance of the 18 features used by
our support vector machine, we applied the recursive feature
elimination(RFE) algorithm introduced by Guyon et. al.[13].
It measures the discriminating ability of the attributes by
comparing their weights for the corresponding dimension of
the hyperplane. It first calculates the weight vector of the SVM
which produces the hyperplane that maximizes the margin, and
recursively 1) eliminates the feature with the lowest absolute
weight in the representation of the hyperplane and 2) rebuilds
the hyperplane, until all attributes have been removed one by
one. The earlier an attribute is removed, the less discriminating
it is and thus the lower its rank. Table 1 lists the features in
rank order from most significant to least significant.

Let us examine the top ranked features. The first and fourth
features measure the standard deviation in the segment in unit
length, either from a perpendicular or a vertical perspective.
The rank of these two features indicates that the rescaled
standard deviations within a segment play a very important
role in making a split decision. The second feature captures
global information by measuring the relative length of the
current segment; it reveals the fact that when a split/no-split
decision is made, features based on local information in the
segment are not enough. For identifying trends that are visually
apparent to humans, we must consider the segment in a larger
context. Although we only have one global feature among
the top ten features, it plays an important role in the model,
and this global information is ignored by other time series

Rank Feature name
1 rescaled standard deviation of perpendicular distance
2 relative length of current segment
3 difference between actual runs and mean runs
4 rescaled standard deviation of vertical distance
5 correlation coefficient
6 number of points in current segment
7 Q-test in 995 significance level
8 Q-test in 95 significance level
9 runs test
10 standard deviation of runs
11 outlier detection
12 Q-test in 99 significance level
13 F-test in 95 significance level
14 mean runs
15 total number of points
16 number of outliers
17 actual runs
18 F-test in 90 significance level

Table 1: Features listed in rank order

segmentation algorithms. In future work, we will consider
other global features, such as the relative location of the
segment. In addition to the two standard deviations and the
relative length of the segment, the correlation coefficient, Q-
test, Runs Test, and number of points in the segment all rank
among the top ten features and thus play a significant role in
the model.

It is interesting to note that the features coming from the
F-test and outlier detection are not ranked in the top ten.
This indicates that although the F-test is also a change point
detection statistic, it is not as powerful as the Q-test for our
segmentation task.

4.2 Evaluation of the entire segmentation algo-
rithm

Recall that our leave-one-out cross validation tested our
decision module’s ability to make split/no-split decisions on
individual segments. To test how well our segmentation al-
gorithm segments entire line graphs into visually apparent
trends (both deciding when to split segments and where to
split them), we used seven human evaluators. The human
subject evaluation had two parts. The first part compared the
segmentations produced by our system with those produced by
another segmentation method from the literature. The second
part was a qualitative evaluation of our graph segmentations.
In both experiments, our segmentation for each graph was
produced by a model constructed from the other 233 graphs,
thus avoiding the problem of biasing the results by including
the test graphic in the corpus used to train the model.

4.2.1 Comparative experiment
In this comparative experiment, seven human evaluators

were each given 234 line graphs with two segmentations,
one produced by our segmentation algorithm and the other
produced by the comparative segmentation algorithm.

The comparative algorithm reflects existing approaches to
time-series segmentation based on error minimization [1] and
looks for a predefined k number of segments to minimize the
residual sum of squares of the piecewise linear regression. This
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Fig. 4: Three examples of segmentations produced by our graph segmentation system. The solid lines are the original line
graphs, the small circles are the split points, and the dashed lines are the regression lines for the resulting trend segments.
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Fig. 5: A plot of segmentation errors against number of
segments

error reduction algorithm can be implemented top-down or
bottom-up. To be comparable with our top-down segmentation
approach, we used the top-down one.

A critical aspect of this method is how to define the number
of segments k since the same k for all line graphs is not ap-
propriate. Salvador et. al.[14] suggest a method for identifying
the appropriate k for a given line graph by locating the knee
of the plot of residual sum of squares against the number of
segments, as in Figure 5, which is called an evaluation graph
and is generated by a top-down iterative process in which one
splitting point (i.e. one segment) is added in each iteration.
The knee is the splitting location which generates a two-phase
regression in the evaluation graph and minimizes the residual
sum of squares of the evaluation graph.

For each line graph, the human evaluator was given two
segmentations, one produced by our segmentation algorithm
and one produced by the above comparative algorithm. The or-
der of the appearance of the two segmentations was randomly
assigned, to avoid bias resulting from the order of presentation.
The evaluators had three options: “The segmentation on the

left is better”, “The segmentation on the right is better”, and
“I have no preference”.

For 218 of the 234 line graphs, a majority of the evaluators
had the same response; on only 16 line graphs was there no
majority decision, indicating that these line graphs had differ-
ences that made it difficult to identify the better segmentation.
For the 218 line graphs where there was a majority decision,
the segmentation produced by our system was preferred for
76.1% of the graphs, there was no preference for 8.8% of the
graphs, and the segmentation produced by the comparative
algorithm was preferred for 15.1% of the graphs. Thus we see
that the segmentations produced by our system were preferred
five times more often than the segmentations produced by the
comparative algorithm.

We also computed how often each evaluator preferred our
segmentation, had no preference, or preferred the segmenta-
tion produced by the comparative algorithm. All evaluators
preferred our segmentation more often than they preferred
the other segmentation. Averaging the results for the seven
evaluators, we find that our system performed better than or
equal to the comparative algorithm 79% of the time.

These results show that our learned graph segmentation
algorithm produces better segmentations of line graphs into
visually apparent trends than does a traditional algorithm based
on error minimization.

4.2.2 Qualitative evaluation of segmentations

Seven human evaluators were given 254 line graphs along
with candidate segmentations; 234 of the line graphs were the
ones in our corpus with the segmentations produced by our
system and 20 were additional line graphs with bad segmen-
tations. The latter were scattered throughout the evaluation set
and were included to avoid bias by the evaluators. The evalua-
tors were not told that intentionally bad segmentation examples
had been included in the evaluation set. The evaluators were
asked to assign a score between 1 and 5 to each segmentation:
5=ideal, 4=very good, 3=acceptable, 2=poor, 1=terrible.

The average rating for the segmentations produced by our



system was 4.25 with 0.55 standard deviation across the 234
line graphs, showing the performance of our segmentation
algorithm is between “Very good” and “Ideal”. The 20 extra
graphs with bad segmentations received an average rating of
1.57 ± 0.44 which is between “Terrible” and “Poor”. These
results verify that our graph segmentation algorithm success-
fully segments line graphs into visually apparent trends. This
good performance is a result of the learned model generated
by our machine learning framework.

5. Related Work
Our line graph segmentation task is related to research on

time series segmentation such as [1], [15]. Most of these
projects focused on splitting a given time series into a number
of segments by finding the piecewise linear approximation
or piecewise aggregate approximation which provides the
smallest total error or conforms to a maximum error bound
within each segment. These research efforts either ask for a
fixed number of segments or place a fixed upper bound on
errors, which requires prior knowledge about the time series
data.

As opposed to the above piecewise approximation approach,
another set of time series segmentation research focuses on
detecting change point or anomalies in the data. The ARIMA
(autoregressive integrated moving average) [16] or ARMA
(autoregressive moving average)[17] models fit a formula to
the existing data points and predict the range of the incoming
data point. Some other regression models[18] fit the time series
data using regression methods and calculate the confidence in-
terval of the incoming data point. Change points are identified
at those data points outside the predicted upper/lower bound
or the defined confidence interval. These methods face the
problem of determining a priori how many past data points
should be used in their prediction model. Furthermore, the
change point detection procedure is very susceptible to the
chosen model and distribution.

Similar to our project, some time series segmentation
methods[19] rely on statistical tests. However, they use only
one or two statistical tests to determine if a segment should
be split into subsegments.

These research efforts differ from our work in several ways.
They are not concerned with extracting visually identifiable
trends but are instead concerned with segmenting based on
error minimization, or with pattern detection, prediction, or
anomaly detection. In addition, they do not use machine
learning to consider a wide variety of features and construct
a learned model.

6. Conclusion
This paper has presented our methodology for segmenting

a line graph into visually distinguishable trends. Although a
number of researchers have addressed the time series segmen-
tation task, to our knowledge our work is the first to attempt
to extract trends that are visually apparent to humans, to use
both local and global information, and to use machine learning

to produce a learned model of graph segmentation. Our leave-
one-out cross validation of the module for making a split/no-
split decision and our two human subject evaluation exper-
iments of the entire graph segmentation system verify that
our graph segmentation algorithm has very good performance.
Our graph segmentation algorithm is being incorporated into
a Bayesian network that can utilize communicative signals in
the line graph (such as a point being annotated with its value)
to extract the overall intended messages of line graphs that
appear in popular media.
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