Games and adversarial search
(Chapter 5)

World Champion chess player Garry
Kasparov is defeated by IBM’s Deep
Blue chess-playing computer in a
six-game match in May, 1997
(link)
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http://www.computerhistory.org/chess/full_record.php?iid=stl-431e1a07b22e1&mainImage=1

Why study games?

« Games are a traditional hallmark of intelligence
« Games are easy to formalize

 Games can be a good model of real-world
competitive or cooperative activities

— Military confrontations, negotiation, auctions, etc.



Types of game environments

Perfect information
(fully observable)

Imperfect information
(partially observable)

Deterministic

Chess, checkers, go

Battleships

Stochastic

Backgammon,
monopoly

Scrabble, poker,
bridge



Alternating two-player zero-sum
games

Players take turns

« Each game outcome or terminal state has a
utility for each player (e.g., 1 for win, O for loss)

* The sum of both players’ utilities is a constant




Games Vvs. single-agent search

 We don’t know how the opponent will act

— The solution is not a fixed sequence of actions from
start state to goal state, but a strategy or policy
(a mapping from state to best move in that state)

 Efficiency is critical to playing well
— The time to make a move is limited
— The branching factor, search depth, and number of

terminal configurations are huge

* In chess, branching factor = 35 and depth = 100, giving
a search tree of 10* nodes
— Number of atoms in the observable universe = 1080

— This rules out searching all the way to the end of the game



Game tree

« A game of tic-tac-toe between two players, “max” and “min”
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COMPLETE MAP OF OFPTIMAL TIC-TAC-TOE MOVES

YOLR MONVE 15 GVEN BY THE FOSITION OF THE LARGEST RED SYMBOL
ON THE GRID. WHEN YOUR OPPONENT PICKS A MOVE, ZOOM IN ON

THE REGION OF THE GRID WHERE. THEY WENT. REPEAT. http://xkcd.com/832/
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http://xkcd.com/832/
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http://xkcd.com/832/

A more abstract game tree

MAX

MIN

3 12 8 2 4 6 14 S 2

Terminal utilities (for MAX)

A two-ply game



Game tree search

MAX

MIN

 Minimax value of a node: the utility (for MAX) of being in
the corresponding state, assuming perfect play on both sides

 Minimax strategy: Choose the move that gives the best
worst-case payoff



Computing the minimax value of a node

MAX

MIN

* Minimax(node) =
= Utility(node) if node is terminal
" max,.,, Minimax(Succ(node, action)) if player = MAX
" min_..,, Minimax(Succ(node, action)) if player = MIN



Optimality of minimax

The minimax strategy is optimal
against an optimal opponent

What if your opponent is
suboptimal?
— Your utility can only be higher than if
you were playing an optimal opponent!

— A different strategy may work better for
a sub-optimal opponent, but it will
necessarily be worse against an
optimal opponent

max

min

10

11 9 100

Example from D. Klein and P. Abbeel



More general games

4,3,2

1,2,6 || 4,3,2 6,1,2 || 7,4, 5,1,1 1,5,2 7,7,1 5,4,5

More than two players, non-zero-sum

Utilities are now tuples

Each player maximizes their own utility at their node

Utilities get propagated (backed up) from children to parents



Alpha-beta pruning

 |tis possible to compute the exact minimax decision
without expanding every node in the game tree

MAX

MIN \/ \/




Alpha-beta pruning
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MAX >3

MIN 3
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Alpha-beta pruning

 |tis possible to compute the exact minimax decision
without expanding every node in the game tree

MAX

MIN




Alpha-beta pruning

 |tis possible to compute the exact minimax decision
without expanding every node in the game tree

MAX 3

MIN 3 \/ <2 \/ 2



Alpha-beta pruning

a IS the value of the best choice
for the MAX player found so far MAX
at any choice point above node n

We want to compute the
MIN-value at n MIN

As we loop over n’s children,
the MIN-value decreases

If it drops below o, MAX will never
choose n, so we can ignore n’'s MAX
remaining children

Analogously, B is the value of the
lowest-utility choice found so far
for the MIN player

MIN



Alpha-beta pruning

Function action = Alpha-Beta-Search(node)

. node
v = Min-Value(node, —«, «)
return the action from node with value v
a: best alternative available to the Max player action
(3: best alternative available to the Min player
Function v = Min-Value(node, a, 3)
if Terminal(node) return Utility(node) Succ(node, action)

V =+

for each action from node
v = Min(v, Max-Value(Succ(node, action), a, B))
ifv<areturnv
B = Min(B, v)

end for

return v



Alpha-beta pruning

Function action = Alpha-Beta-Search(node)

node
v = Max-Value(node, —«, «)
return the action from node with value v
a: best alternative available to the Max player action
(3: best alternative available to the Min player
Function v = Max-Value(node, a, B)
if Terminal(node) return Utility(node) Succ(node, action)

V = —0
for each action from node
v = Max(v, Min-Value(Succ(node, action), a, ))
ifv=pgreturnv
a = Max(a, v)
end for
return v



Alpha-beta pruning

* Pruning does not affect final result

« Amount of pruning depends on move ordering

— Should start with the “best” moves (highest-value for
MAX or lowest-value for MIN)

— For chess, can try captures first, then threats, then
forward moves, then backward moves

— Can also try to remember “killer moves” from other
branches of the tree
« With perfect ordering, the time to find the best
move is reduced to O(b™?) from O(b™)

— Depth of search is effectively doubled



Evaluation function

« Cut off search at a certain depth and compute the value of an
evaluation function for a state instead of its minimax value

— The evaluation function may be thought of as the probability of winning
from a given state or the expected value of that state

« A common evaluation function is a weighted sum of features:
Eval(s) =w, f,(s) + w,f)(s) +... +w_ f_(S)

— For chess, w, may be the material value of a piece (pawn =1,
knight = 3, rook = 5, queen = 9) and f,(s) may be the advantage in
terms of that piece
« Evaluation functions may be learned from game databases or

by having the program play many games against itself



Cutting off search

 Horizon effect: you may incorrectly estimate the
value of a state by overlooking an event that is
just beyond the depth limit
— For example, a damaging move by the opponent that
can be delayed but not avoided
« Possible remedies

— Quiescence search: do not cut off search at
positions that are unstable — for example, are you
about to lose an important piece?

— Singular extension: a strong move that should be
tried when the normal depth limit is reached



Advanced techniques

Transposition table to store previously expanded
states

Forward pruning to avoid considering all possible
moves

Lookup tables for opening moves and endgames



Chess playing systems

Baseline system: 200 million node evalutions per move
(3 min), minimax with a decent evaluation function and
guiescence search

—  5-ply = human novice
Add alpha-beta pruning
— 10-ply = typical PC, experienced player
Deep Blue: 30 billion evaluations per move, singular

extensions, evaluation function with 8000 features,
large databases of opening and endgame moves

— 14-ply = Garry Kasparov
More recent state of the art (Hydra, ca. 2006): 36 billion
evaluations per second, advanced pruning techniques

— 18-ply = better than any human alive?


http://en.wikipedia.org/wiki/Hydra_(chess)
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