
Games and adversarial search 

(Chapter 5) 

World Champion chess player Garry 

Kasparov is defeated by IBM’s Deep 

Blue chess-playing computer in a  

six-game match in May, 1997 

(link) 

© Telegraph Group Unlimited 1997 

http://www.computerhistory.org/chess/full_record.php?iid=stl-431e1a07b22e1&mainImage=1


Why study games? 

• Games are a traditional hallmark of intelligence 

• Games are easy to formalize 

• Games can be a good model of real-world 

competitive or cooperative activities 

– Military confrontations, negotiation, auctions, etc. 



Types of game environments 

Deterministic Stochastic 

Perfect information 

(fully observable) 

Imperfect information 

(partially observable) 

Chess, checkers, go Backgammon, 

monopoly 

Battleships Scrabble, poker, 

bridge 



Alternating two-player zero-sum 

games 
• Players take turns 

• Each game outcome or terminal state has a 

utility for each player (e.g., 1 for win, 0 for loss) 

• The sum of both players’ utilities is a constant 

 



Games vs. single-agent search 

• We don’t know how the opponent will act 

– The solution is not a fixed sequence of actions from  

start state to goal state, but a strategy or policy  

(a mapping from state to best move in that state) 

• Efficiency is critical to playing well 

– The time to make a move is limited 

– The branching factor, search depth, and number of 

terminal configurations are huge 

• In chess, branching factor ≈ 35 and depth ≈ 100, giving  

a search tree of 10154 nodes 

– Number of atoms in the observable universe ≈ 1080 

– This rules out searching all the way to the end of the game 



Game tree 
• A game of tic-tac-toe between two players, “max” and “min” 



 

http://xkcd.com/832/ 

http://xkcd.com/832/


 

http://xkcd.com/832/ 

http://xkcd.com/832/


A more abstract game tree 

Terminal utilities (for MAX) 

A two-ply game 



Game tree search 

• Minimax value of a node: the utility (for MAX) of being in 

the corresponding state, assuming perfect play on both sides 

• Minimax strategy: Choose the move that gives the best 

worst-case payoff 

 

3 2 2 

3 



Computing the minimax value of a node 

• Minimax(node) =  

 Utility(node) if node is terminal 

 maxaction Minimax(Succ(node, action)) if player = MAX 

 minaction  Minimax(Succ(node, action)) if player = MIN 

3 2 2 

3 



Optimality of minimax 

• The minimax strategy is optimal 

against an optimal opponent 

• What if your opponent is 

suboptimal? 

– Your utility can only be higher than if 

you were playing an optimal opponent! 

– A different strategy may work better for 

a sub-optimal opponent, but it will 

necessarily be worse against an 

optimal opponent 

 

11 

Example from D. Klein and P. Abbeel 



More general games 

• More than two players, non-zero-sum 

• Utilities are now tuples 

• Each player maximizes their own utility at their node 

• Utilities get propagated (backed up) from children to parents 

4,3,2 7,4,1 

4,3,2 

1,5,2 7,7,1 

1,5,2 

4,3,2 



Alpha-beta pruning 

• It is possible to compute the exact minimax decision 

without expanding every node in the game tree 



Alpha-beta pruning 

• It is possible to compute the exact minimax decision 

without expanding every node in the game tree 

3 

3 



Alpha-beta pruning 

• It is possible to compute the exact minimax decision 

without expanding every node in the game tree 

3 

3 

2 



Alpha-beta pruning 

• It is possible to compute the exact minimax decision 

without expanding every node in the game tree 

3 

3 

2 14 



Alpha-beta pruning 

• It is possible to compute the exact minimax decision 

without expanding every node in the game tree 

3 

3 

2 5 



Alpha-beta pruning 

• It is possible to compute the exact minimax decision 

without expanding every node in the game tree 

3 

3 

2 2  



Alpha-beta pruning 

• α is the value of the best choice 
for the MAX player found so far  
at any choice point above node n 

• We want to compute the  
MIN-value at n 

• As we loop over n’s children,  
the MIN-value decreases 

• If it drops below α, MAX will never 
choose n, so we can ignore n’s 
remaining children 

• Analogously, β is the value of the 
lowest-utility choice found so far 
for the MIN player 



Alpha-beta pruning 

Function action = Alpha-Beta-Search(node)  

 v = Min-Value(node, −∞, ∞) 

 return the action from node with value v 

 

α: best alternative available to the Max player 

β: best alternative available to the Min player 

 

Function v = Min-Value(node, α, β) 

 if Terminal(node) return Utility(node) 

 v = +∞ 

 for each action from node 

  v = Min(v, Max-Value(Succ(node, action), α, β)) 

  if v ≤ α return v 

   β = Min(β, v) 

 end for 

 return v 

 

node 

Succ(node, action) 

action 

… 



Alpha-beta pruning 

Function action = Alpha-Beta-Search(node)  

 v = Max-Value(node, −∞, ∞) 

 return the action from node with value v 

 

α: best alternative available to the Max player 

β: best alternative available to the Min player 

 

Function v = Max-Value(node, α, β) 

 if Terminal(node) return Utility(node) 

 v = −∞ 

 for each action from node 

  v = Max(v, Min-Value(Succ(node, action), α, β)) 

  if v ≥ β return v 

  α = Max(α, v) 

 end for 

 return v 

 

node 

Succ(node, action) 

action 

… 



Alpha-beta pruning 

• Pruning does not affect final result 

• Amount of pruning depends on move ordering 

– Should start with the “best” moves (highest-value for 

MAX or lowest-value for MIN) 

– For chess, can try captures first, then threats, then 

forward moves, then backward moves 

– Can also try to remember “killer moves” from other 

branches of the tree 

• With perfect ordering, the time to find the best 

move is reduced to O(bm/2) from O(bm) 

– Depth of search is effectively doubled 



Evaluation function 

• Cut off search at a certain depth and compute the value of an 

evaluation function for a state instead of its minimax value 

– The evaluation function may be thought of as the probability of winning 

from a given state or the expected value of that state 

• A common evaluation function is a weighted sum of features: 
 

Eval(s) = w1 f1(s) + w2 f2(s) + … + wn fn(s) 
 

– For chess, wk may be the material value of a piece (pawn = 1,  

knight = 3, rook = 5, queen = 9) and fk(s) may be the advantage in 

terms of that piece 

• Evaluation functions may be learned from game databases or 

by having the program play many games against itself 



Cutting off search 

• Horizon effect: you may incorrectly estimate the 

value of a state by overlooking an event that is 

just beyond the depth limit 

– For example, a damaging move by the opponent that 

can be delayed but not avoided 

• Possible remedies 

– Quiescence search: do not cut off search at 

positions that are unstable – for example, are you 

about to lose an important piece? 

– Singular extension: a strong move that should be 

tried when the normal depth limit is reached 

 



Advanced techniques 

• Transposition table to store previously expanded 

states 

• Forward pruning to avoid considering all possible 

moves 

• Lookup tables for opening moves and endgames 



Chess playing systems 

• Baseline system: 200 million node evalutions per move  

(3 min), minimax with a decent evaluation function and 

quiescence search 

– 5-ply ≈ human novice 

• Add alpha-beta pruning 

– 10-ply ≈ typical PC, experienced player 

• Deep Blue: 30 billion evaluations per move, singular 

extensions, evaluation function with 8000 features,  

large databases of opening and endgame moves 

– 14-ply ≈ Garry Kasparov 

• More recent state of the art (Hydra, ca. 2006): 36 billion 

evaluations per second, advanced pruning techniques 

– 18-ply ≈ better than any human alive? 

http://en.wikipedia.org/wiki/Hydra_(chess)


Attribution 

Slides developed by Svetlana Lazebnik 

based on content from Stuart Russell and 

Peter Norvig, Artificial Intelligence: A 

Modern Approach, 3rd edition 

http://aima.cs.berkeley.edu/
http://aima.cs.berkeley.edu/

