Regular Grammars

Some of the languages we’ve been defining with CFGs are *regular*

We have three possibilities:

1. All possible languages can be generated by CFGs
2. All regular languages can be generated by CFGs, and so can some nonregular languages but not all possible languages
3. Some regular languages can be generated by CFGs (and some cannot). Some nonregular languages can be generated by CFGs (and maybe some cannot)

Which one is true?
Taking FAs and converting them to CFGs

Definition

A **semiword** is a string of terminals (maybe none) ending in a single non-terminal

(terminal) (terminal) (terminal) . . . (terminal)(Nonterminal)

Theorem

Given any FA, there is a CFG that generates exactly the language accepted by the FA.

Alternatively, all regular languages are context-free languages
Proof by constructive algorithm

Proof.

1. The nonterminals in the CFG will be all the names of the states in the FA with the start state renamed to S.
2. For every edge $Q_x \xrightarrow{a} Q_y$, create the production:
 $$Q_x \rightarrow aQ_y$$
 Repeat for b edges.
3. For every final state X create the production
 $$X \rightarrow \Lambda$$

□
showing a CFG is regular

Theorem

If all of the productions in a given CFG fits one of the two forms:

Nonterminal → semiword or Nonterminal → word

where word may be Λ, then the language generated by this CFG is regular

How can we prove this? Generate a transition graph!

Example

\[
S \rightarrow aaS \mid bbS \mid abX \mid baX \mid \Lambda \\
X \rightarrow aaX \mid bbX \mid abS \mid baS
\]
Killing Λ-Productions

Quote from the book:

“We have not yet committed ourselves to a definite stand on the social acceptability of Λ-productions (productions of the form $N \rightarrow \Lambda$). We have employed them, but we do not pay them equal wages. They make our lives very difficult in later discussions, so we must ask ourselves, Do we need them at all?”

Answer: No
Bar-Hillel, Perles, and Shamir Theorems

Theorem

If L is a context-free language generated by a CFG that includes Λ-productions, then there is a different CFG that has no Λ-productions that generates either the whole language L (if L doesn’t include λ) or generates all the words in L that are not λ)

Definition

In a given CFG, we call a nonterminal N **nullable** if
- There is a production $N \rightarrow \Lambda$ or
- There is a derivation that starts at N and leads to Λ

\[N \Rightarrow \ldots \Rightarrow \Lambda \]

Goal

Fix all nullable nonterminals while removing all Λ-productions
Replacement Rules and Example

1. Delete all Λ-productions
2. Add the following productions: For every production $X \rightarrow \text{old string}$

 add new productions of the form $X \rightarrow \ldots$ where the right side will account for any modification of the old string that can be formed by deleting all possible subsets of nullable non-terminals.

Example

\[
S \rightarrow a \mid Xb \mid aYa \\
X \rightarrow Y \mid \Lambda \\
Y \rightarrow b \mid X
\]
Example

\[S \rightarrow a | Xb | aYa \]
\[X \rightarrow Y | \Lambda \]
\[Y \rightarrow b | X \]

<table>
<thead>
<tr>
<th>Old Production</th>
<th>Newly-formed Productions</th>
</tr>
</thead>
<tbody>
<tr>
<td>[X \rightarrow Y]</td>
<td>Nothing</td>
</tr>
<tr>
<td>[X \rightarrow \Lambda]</td>
<td>Nothing</td>
</tr>
<tr>
<td>[Y \rightarrow X]</td>
<td>Nothing</td>
</tr>
<tr>
<td>[S \rightarrow Xb]</td>
<td>[S \rightarrow b]</td>
</tr>
<tr>
<td>[S \rightarrow aYa]</td>
<td>[S \rightarrow aa]</td>
</tr>
</tbody>
</table>

New CFG:

\[S \rightarrow a | Xb | aYa | b | aa \]
\[X \rightarrow Y \]
\[Y \rightarrow b | X \]
Chalkboard Examples

Example

\[
\begin{align*}
S & \rightarrow \ Xa & S & \rightarrow \ a \\
X & \rightarrow \ aX \mid bX \mid \Lambda & X & \rightarrow \ a \mid b
\end{align*}
\]

Example

\[
\begin{align*}
S & \rightarrow \ XY \\
X & \rightarrow \ Zb & X & \rightarrow \ b \\
Y & \rightarrow \ bW & Y & \rightarrow \ b \\
Z & \rightarrow \ AB & Z & \rightarrow \ A \mid B \\
W & \rightarrow \ Z & \text{nothing new} \\
A & \rightarrow \ aA \mid bA \mid \Lambda & A & \rightarrow \ a \mid b \\
B & \rightarrow \ Ba \mid Bb \mid \Lambda & B & \rightarrow \ a \mid b
\end{align*}
\]
Killing Unit Productions

Theorem

If there is a CFG for the language L that has no Λ-productions, then there is also a CFG for L with no Λ-productions and no unit productions.

A unit production is a production of the form:

Nonterminal \rightarrow one Nonterminal

For every pair of nonterminals A and B, if the CFG has a unit production $A \rightarrow B$ or if there is a chain of unit productions leading from A to B, such as

$$A \Rightarrow X_1 \Rightarrow X_2 \Rightarrow \ldots \Rightarrow B$$

where $X_1 \ldots X_n$ are some nonterminals introduce new productions!

If the non unit productions (from B) are $B \rightarrow s_1 \mid s_2 \mid s_3 \mid \ldots$ create the productions $A \rightarrow s_1 \mid s_2 \mid s_3 \mid \ldots$

Do this for all pairs A and B
Example

\[S \rightarrow A \mid bb \]
\[A \rightarrow B \mid b \]
\[B \rightarrow S \mid a \]

We can first split the productions into two groups:

<table>
<thead>
<tr>
<th>Unit Productions</th>
<th>Decent Folks</th>
</tr>
</thead>
<tbody>
<tr>
<td>[S \rightarrow A]</td>
<td>[S \rightarrow bb]</td>
</tr>
<tr>
<td>[A \rightarrow B]</td>
<td>[A \rightarrow b]</td>
</tr>
<tr>
<td>[B \rightarrow S]</td>
<td>[B \rightarrow a]</td>
</tr>
</tbody>
</table>
Example (continued)

Now we can list all unit productions and sequences of unit productions

\[
\begin{align*}
S & \rightarrow A & \text{gives} & S & \rightarrow b \\
S & \rightarrow A \rightarrow B & \text{gives} & S & \rightarrow a \\
A & \rightarrow B & \text{gives} & A & \rightarrow a \\
A & \rightarrow B \rightarrow S & \text{gives} & A & \rightarrow bb \\
B & \rightarrow S & \text{gives} & B & \rightarrow bb \\
B & \rightarrow S \rightarrow A & \text{gives} & B & \rightarrow b
\end{align*}
\]

The new CFG for this language is:

\[
\begin{align*}
S & \rightarrow bb \mid b \mid a \\
A & \rightarrow b \mid a \mid bb \\
B & \rightarrow a \mid bb \mid b
\end{align*}
\]
Chomsky Normal Form

Separating terminals and non-terminal production rules seemed nice!

Theorem

If L is a language generated by some CFG, then there is another CFG that generates all the non-λ words of L, all of whose productions are of one of two basic forms:

1. Nonterminal \rightarrow string of only Nonterminals
2. Nonterminal \rightarrow one terminal

Form 2: Create a “capitalized” Nonterminal for each terminal:

- $A \rightarrow a, B \rightarrow b$

Form 1: Replace terminals with Nonterminal created for Form 2 if they are on the right-hand side

- Before: $S \rightarrow aSa$
- After: $S \rightarrow ASA$

Note: “If it ain’t broke, don’t fix it” (Forms 1 and 2 may already exist)
CNF Example

\[S \rightarrow X \mid YaY \mid aSb \mid b \]
\[X \rightarrow YY \mid b \]
\[Y \rightarrow aY \mid aaX \]

New Nonterminal states for terminals:

\[A \rightarrow a \]
\[B \rightarrow b \]

After replacement of \(a \) with \(A \) and \(b \) with \(B \):

\[S \rightarrow X \mid YAY \mid ASB \mid B \]
\[X \rightarrow YY \mid B \]
\[Y \rightarrow AY \mid AAX \]
\[A \rightarrow a \]
\[B \rightarrow b \]
Chomsky Normal Form

Definition

If a CFG has only productions of the following two forms, it is said to be in Chomsky Normal Form or CNF

1. Nonterminal → string of exactly two Nonterminals
2. Nonterminal → one terminal

Theorem

For any context-free language L, the non-\(\lambda\) words of L can be generated by a grammar in which all productions are in CNF.

Note: if \(L\) contained \(\lambda\), then \(\lambda\) will be “dropped” from the resulting CFL once converted to CNF.
Chomsky Normal Form

Proof.

1. Assume we start with a CFG with no unit productions or Λ-productions

2. Create Non-terminals for each terminal and replace in the productions
 - $A \rightarrow a$
 - $B \rightarrow b$

3. Split all sequences of Non-terminals into productions with only two Non-terminals on the right-hand side
 - $S \rightarrow ABCDE$
 - $S \rightarrow AR_1, R_1 \rightarrow BR_2, R_2 \rightarrow CR_3, R_3 \rightarrow DE$
 - Note that these R states are only used internally

4. The effect of our productions are the same. All R-states are in CNF. All created Non-terminals from encapsulating terminals are in CNF. The new grammar generates the same language as the old grammar.
Converting to CNF Example

Non-null palindrome is defined as:
\[S \rightarrow aSa \mid bSb \mid a \mid b \mid aa \mid bb \]

Separate Terminals from Nonterminals:
\[S \rightarrow ASA \mid BSB \mid A \mid B \mid AA \mid BB \]
\[A \rightarrow a \]
\[B \rightarrow b \]

Introduce \(R \) states:
\[S \rightarrow AR_1 \mid BR_2 \mid A \mid B \mid AA \mid BB \]
\[R_1 \rightarrow SA \]
\[R_2 \rightarrow SB \]
\[A \rightarrow a \]
\[B \rightarrow b \]