Regular Languages

If we can define a language by RE, then it’s a regular language

Theorem

If L_1 and L_2 are regular languages, then $L_1 + L_2$ (union), L_1L_2 (concatenation), and L_1^* (closure) are also regular languages.

Proof by Regular Expression.

1. There exists REs r_1 and r_2 that define the regular languages L_1 and L_2
2. There exists an RE $(r_1 + r_2)$ that defines the language $L_1 + L_2$
3. There exists an RE r_1r_2 that defines the language L_1L_2
4. There exists an RE r_1^* that defines the language L_1^*
5. All three of these sets of words are definable by RE

The set of regular languages is closed under union, concatenation, and Kleene closure.
Let us assume TG_1 and TG_2 exist that define languages L_1 and L_2 where each TG has a unique start and final state.

$L_1 + L_2$ can be described by:

$L_1 L_2$ can be described by:

L_1^* can be described by:
Proof by Machines

Let us assume TG_1 and TG_2 exist that define languages L_1 and L_2 where each TG has a unique start and final state.

1. $L_1 + L_2$ can be described by:

2. $L_1 L_2$ can be described by:

3. L_1^* can be described by:

Small problem for L_1^* when the start has incoming edges. We must replicate the start state. We could convert to FA-λ then to FA.
Example

\[\Sigma = \{a \ b\} \]

\[L_1 = \text{all words of 2+ letters that begin and end with the same letter} \]

\[L_2 = \text{all words that contain the substring} \ aba \]

\[r_1 = a(a + b)^*a + b(a + b)^*b \]

\[r_2 = (a + b)^*aba(a + b)^* \]

\[r_1 + r_2 = \]

\[r_1 r_2 = \]

\[r_1^* = \]
Example

$$\Sigma = \{a, b\}$$

L_1 = all words of 2+ letters that begin and end with the same letter

L_2 = all words that contain the substring aba

$$r_1 = a(a + b)^*a + b(a + b)^*b$$

$$r_2 = (a + b)^*aba(a + b)^*$$

$$r_1 + r_2 = [a(a + b)^*a + b(a + b)^*b] + [(a + b)^*aba(a + b)^*]$$

$$r_1r_2 =$$

$$r_1^* =$$
Example

\[\Sigma = \{a\ b\} \]

\(L_1 = \) all words of 2+ letters that begin and end with the same letter

\(L_2 = \) all words that contain the substring \(aba\)

\(r_1 = a(a + b)^*a + b(a + b)^*b\)

\(r_2 = (a + b)^*aba(a + b)^*\)

\[r_1 + r_2 = [a(a + b)^*a + b(a + b)^*b] + [(a + b)^*aba(a + b)^*] \]

\[r_1r_2 = [a(a + b)^*a + b(a + b)^*b] [(a + b)^*aba(a + b)^*] \]

\[r_1^* = \]
Example

\[\Sigma = \{a\ b\} \]

\(L_1 = \) all words of 2+ letters that begin and end with the same letter

\(L_2 = \) all words that contain the substring \(aba \)

\(r_1 = a(a + b)^*a + b(a + b)^*b \)

\(r_2 = (a + b)^*aba(a + b)^* \)

\(r_1 + r_2 = [a(a + b)^*a + b(a + b)^*b] + [(a + b)^*aba(a + b)^*] \)

\(r_1r_2 = [a(a + b)^*a + b(a + b)^*b][(a + b)^*aba(a + b)^*] \)

\(r_1^* = [a(a + b)^*a + b(a + b)^*b]^* \)
Example

\[\Sigma = \{a, b\} \]
\[L_1 = \text{all words of 2+ letters that begin and end with the same letter} \]
\[L_2 = \text{all words that contain the substring} \ aba \]
\[r_1 = a(a + b)^*a + b(a + b)^*b \]
\[r_2 = (a + b)^*aba(a + b)^* \]
\[r_1 + r_2 = [a(a + b)^*a + b(a + b)^*b] + [(a + b)^*aba(a + b)^*] \]
\[r_1r_2 = [a(a + b)^*a + b(a + b)^*b][(a + b)^*aba(a + b)^*] \]
\[r_1^* = [a(a + b)^*a + b(a + b)^*b]^* \]

Show the TGs that accept \(L_1 \) and \(L_2 \)
Show \(TG_1 + TG_2 \), \(TG_1 TG_2 \), and \(TG_1^* \)
Complements and Intersections

Definition

If L is a language over alphabet Σ, we define its complement, L' to be the language of all strings of letters from Σ that are not words in L.

Example

If L is the language over the alphabet $\Sigma = \{a, b\}$ of all words that have a double a in them, then L' is the language of all words that do not have a double a.

We must specify the alphabet Σ or else the complement of L might contain cat, dog, ... (because they are definitely not strings in L).

$$(L')' = L$$

for obvious reasons (theorem in set theory)
Complements and Regular Languages

Theorem

If L is a regular language, then L' is also a regular language. In other words, the set of regular languages is closed under complementation.

Proof.

• If L is a regular language, we know from Kleene’s theorem that there is some FA that accepts L.
• The states of FA are each either final or non-final
• Let us reverse the final status of each state (e.g. final \rightarrow non-final, non-final \rightarrow final)
• This new machine accepts all input strings the original FA rejected (L'). Likewise, the new machine rejects all input strings the original FA accepted (L).
• This new FA can be converted to an RE via Kleene’s theorem □
Complements of Regular Languages Example
Complements of Regular Languages Example
Language Intersection

Theorem

If L_1 and L_2 *are regular languages, then* $L_1 \cap L_2$ *is also a regular language. e.g. the set of regular languages is closed under intersection.*

$\begin{align*}
L_1 & \cap L_2 = L_1' + L_2'
\end{align*}$
From the above, it is obvious how \((L'_1 + L'_2)' = L_1 \cap L_2\)
Algorithm for finding RE accepting $L_1 + L_2$

Algorithm

1. Define r_1 and r_2 which represent L_1 and L_2
2. Convert r_1 and r_2 to FA_1 and FA_2
3. Invert the states of FA_1 and FA_2 resulting in FA'_1 and FA'_2
4. Merge FA'_1 and FA'_2 into TG', then convert TG' into FA'_3
5. Invert the states of FA'_3, resulting in FA_3 (which accepts $L_1 \cap L_2$)

Proof.
Algorithm for finding RE accepting $L_1 + L_2$

Algorithm

1. Define r_1 and r_2 which represent L_1 and L_2
2. Convert r_1 and r_2 to FA_1 and FA_2
3. Invert the states of FA_1 and FA_2 resulting in FA'_1 and FA'_2
4. Merge FA'_1 and FA'_2 into TG', then convert TG' into FA'_3
5. Invert the states of FA'_3, resulting in FA_3 (which accepts $L_1 \cap L_2$)

Proof.

1. For a regular language, there exists a RE
2. Given an RE, there exists an FA (Kleene’s theorem)
3. We can complement an FA by swapping its states
4. We can describe $L'_1 + L'_2$ by merging two TGs
5. We can convert a TG to an RE ☐
Example

$L_1 = \text{all strings with a double } a$

$L_2 = \text{all strings with an even number of } a's$
Example

$L_1 = \text{all strings with a double } a$
$L_2 = \text{all strings with an even number of } a\text{'s}$

We can define L_1 and L_2 by the following REs:

$$r_1 = (a + b)^*aa(a + b)^*$$
$$r_2 = b^*(ab^*ab^*)^*$$
Example

\[L_1 = \text{all strings with a double } a \]
\[L_2 = \text{all strings with an even number of } a \text{'s} \]

We can define \(L_1 \) and \(L_2 \) by the following REs:

\[r_1 = (a + b)^* aa (a + b)^* \]
\[r_2 = b^* (ab^* ab^*)^* \]

Or the following FAs:
Example

Swapping the states:

Merging (Creating the TG):
Example

After converting the TG to FA:
Example

After swapping all of the states:

And converting the FA to RE with the bypass algorithm:

\[(a + ab^*ab)^*a(a + bb^*aab^*a)(a + ab^*a)^*\]
A Better Way...

• Remember creating a machine that accepts $FA_1 + FA_2$ where FA_1 has x-states, FA_2 has y-states, and our new machine has z-states

• We identify all final z-states by x-or-y states being accepted upon the construction of our new machine

• Let’s change the designation for $FA_1 \cap FA_2$ to: All final z-states by x-and-y states being accepted upon the construction of our new machine

• Now the new FA accepts only strings that reach simultaneously on both machines

TL;DR – change the rules of determining a final state of two FAs to be the intersection (\cap) rather than union ($+$)
One Final Example

Our two languages will be:

\[L_1 = \text{all words that begin with an } \alpha \]
\[L_2 = \text{all words that end with an } \alpha \]
\[r_1 = \alpha (\alpha + \beta)^* \]
\[r_2 = (\alpha + \beta)^* \alpha \]

An obvious solution is:

\[\alpha (\alpha + \beta)^* \alpha + \alpha \]

But now we need to prove it...
For each of the following pairs of regular languages, find a RE and FA that define $L_1 \cap L_2$

1. $(a + b)^* a \quad b(a + b)^*$

2. Even-length strings $(b + ab)^* (a + \lambda)$

3. Odd-length strings $a(a + b)^*$

4. Even-length strings Strings with an even number of a’s