Syntax as a Method for Defining Languages

Originally needed a way to write complicated expressions on one line

\[
\frac{\frac{1}{2} + 9}{4 + \frac{8}{21} + \frac{5}{3 + \frac{1}{2}}} \]

vs.

\(((1/2)+9)/(4+(8/21)+(5/(3+(1/2))))\)
Syntax to Machine Executable Code

• Conversion from high-level language to machine-executable code is done by a compiler
• Must determine the order of instructions executed
• Must determine the underlying meaning

Example: Arithmetic Expressions

1. Any number is in the set AE
2. If x and y are in the set AE, then so are:

 $\begin{align*}
 & (x) \quad -(x) \quad (x + y) \quad (x - y) \quad (x \times y) \quad (x/y) \quad (x**y) \\
 \end{align*}$

Sample Input:

$$(((3 + 4) \times (6 + 7)))$$
\((3 + 4) \times (6 + 7)\)

Rule Expansion:

3 is in \(AE\)
4 is in \(AE\)
\((3 + 4)\) is in \(AE\)
6 is in \(AE\)
7 is in \(AE\)
\((6 + 7)\) is in \(AE\)
\(((3 + 4) \times (6 + 7))\) is in \(AE\)

Algorithmic Conversion:

LOAD 3 into R1
LOAD 4 into R2
ADD contents of R1 and R2 into R3
LOAD 6 into R4
LOAD 7 into R5
ADD contents of R4 and R5 into R6
MUL contents of R3 and R6 into R7

In order to do any of this, we need to parse the expression. In the case of \(AE\), this is a generative grammar.
Syntax-Defining Languages – English?

1. A *sentence* can be a *subject* followed by a *predicate*
2. A *subject* can be a *noun-phrase*
3. A *noun-phrase* can be an *adjective* followed by a *noun-phrase*
4. A *noun-phrase* can be an *article* followed by a *noun-phrase*
5. A *noun-phrase* can be a *noun*
6. A *predicate* can be a *verb* followed by a *noun-phrase*
7. A *noun* can be
 apple bear cat dog
8. A *verb* can be
 eats follows gets hugs
9. An *adjective* can be
 itchy jumpy
10. An *article* can be
 a an the
The itchy bear hugs the jumpy dog

(sentence
 subject predicate
 noun-phrase predicate
 noun-phrase verb noun-phrase
 article noun-phrase verb noun-phrase
 article adjective noun verb noun-phrase
 article adjective noun verb article noun-phrase
 article adjective noun verb article adjective noun-phrase
 article adjective noun verb article adjective noun
 the adjective noun verb article adjective noun
 the itchy noun verb article adjective noun
 the itchy bear verb article adjective noun
 the itchy bear hugs article adjective noun
 the itchy bear hugs the adjective noun
 the itchy bear hugs the jumpy noun
 the itchy bear hugs the jumpy dog

Rule 1
Rule 2
Rule 3
Rule 4
Rule 5
Rule 6
Rule 7
Rule 8
Rule 9
Rule 10)
Grammar Nonsense

Given the rules listed, we can construct the following:

itchy itchy itchy itchy bear

This is gross but possible. We could rewrite some of our grammar!

\[\text{noun-phrase} \rightarrow \text{adjective} \star \text{noun} \]

We can also have our own number of dumb sentences, but it’s still \textit{valid}. Because we don’t consider semantics, diction, or any sense – really – we call this a “formal language”
Arithmetic Expression

Start → (AE)
AE → (AE + AE)
AE → (AE − AE)
AE → (AE * AE)
AE → (AE /AE)
AE → (AE **AE)
AE → (AE)
AE → − (AE)
AE → − (ANY-NUMBER)

ANY-NUMBER → FIRST-DIGIT
FIRST-DIGIT → FIRST-DIGIT OTHER-DIGIT
FIRST-DIGIT → 1 2 3 4 5 6 7 8 9
OTHER-DIGIT → 0 1 2 3 4 5 6 7 8 9
Generative Grammars

All substitutions made are always of one of the following two forms:

\[
\text{Non-Terminal} \rightarrow \text{Non-Terminal-1} \ldots \text{Non-Terminal-N}
\]

or

\[
\text{Non-Terminal} \rightarrow \text{Terminal-1} \ldots \text{Terminal-N}
\]

• The sequence of repetitive applications of rules is called a derivation or generation of a word.
• The grammatical rules are known as productions.
• There is no guarantee the derivation will be unique

These are known as Context-Free Grammars (or CFGs)
Context-Free Grammars

Definition

A context-free grammar, CFG, is a collection of three things:

1. An alphabet \(\Sigma \) of letters called terminals from which we are going to make strings that will be the words of a language.
2. A set of symbols called non-terminals, one of which is the symbol \(S \), standing for “start here.”
3. A finite set of productions of the form:
 \[NT \rightarrow \text{finite string of terminals and/or } NT \text{'s} \]
 where the strings of terminals and non-terminals can consist:
 - of any mixture of terminals or non-terminals, or
 - the empty string.

One production must have the non-terminal \(S \) as its left side.

Non-terminals are often capitalized; terminals are usually lowercase.
Context-Free Languages

Definition

The **language generated** by a CFG is the set of all strings of terminals that can be produced from the start symbol S using the productions as substitutions. A language generated by a CFG is called a **context-free language**, abbreviated **CFL**.

Other terms used:

- language defined by the CFG
- language derived from the CFG
- language produced by the CFG
Example

Let the only terminal be a and the productions be:

1. $S \rightarrow aS$
2. $S \rightarrow \lambda$

Apply Prod-1 six times and then apply Prod-2:

$\Rightarrow aS$
$\Rightarrow aaS$
$\Rightarrow aaaS$
$\Rightarrow aaaaS$
$\Rightarrow aaaaaS$
$\Rightarrow aaaaaaS$
$\Rightarrow aaaaaaa\lambda$
$= aaaaaa$

What language does this define?
More examples

Example \((\lambda \neq \Lambda)\)

1. \(S \rightarrow SS\)
2. \(S \rightarrow a\)
3. \(S \rightarrow \Lambda\)

Here, \(\Lambda\) represents it can be removed from the final string, but it is neither terminal nor non-terminal

Example

1. \(S \rightarrow aS\)
2. \(S \rightarrow bS\)
3. \(S \rightarrow a\)
4. \(S \rightarrow b\)
Two more Examples

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $S \rightarrow X$</td>
</tr>
<tr>
<td>2. $S \rightarrow Y$</td>
</tr>
<tr>
<td>3. $X \rightarrow \Lambda$</td>
</tr>
<tr>
<td>4. $Y \rightarrow aY$</td>
</tr>
<tr>
<td>5. $Y \rightarrow bY$</td>
</tr>
<tr>
<td>6. $Y \rightarrow a$</td>
</tr>
<tr>
<td>7. $Y \rightarrow b$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $S \rightarrow aS$</td>
</tr>
<tr>
<td>2. $S \rightarrow bS$</td>
</tr>
<tr>
<td>3. $S \rightarrow \Lambda$</td>
</tr>
</tbody>
</table>
Perhaps a useful grammar?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$S \to XaaX$</td>
</tr>
<tr>
<td>2</td>
<td>$X \to aX$</td>
</tr>
<tr>
<td>3</td>
<td>$X \to bX$</td>
</tr>
<tr>
<td>4</td>
<td>$X \to \Lambda$</td>
</tr>
</tbody>
</table>
Perhaps a useful grammar?

Example

1. $S \rightarrow XaaX$
2. $X \rightarrow aX$
3. $X \rightarrow bX$
4. $X \rightarrow \Lambda$

$(a + b)^*aa(a + b)^*$
Defining a “complicated” regular language

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $S \rightarrow SS$</td>
</tr>
<tr>
<td>2. $S \rightarrow BS$</td>
</tr>
<tr>
<td>3. $S \rightarrow SB$</td>
</tr>
<tr>
<td>4. $S \rightarrow \Lambda$</td>
</tr>
<tr>
<td>5. $S \rightarrow USU$</td>
</tr>
<tr>
<td>6. $B \rightarrow aa$</td>
</tr>
<tr>
<td>7. $B \rightarrow bb$</td>
</tr>
<tr>
<td>8. $U \rightarrow ab$</td>
</tr>
<tr>
<td>9. $U \rightarrow ba$</td>
</tr>
</tbody>
</table>
Defining non-regular languages

Example

1. $S \rightarrow aSb$
2. $S \rightarrow \Lambda$

Example

1. $S \rightarrow aSa$
2. $S \rightarrow bSb$
3. $S \rightarrow \Lambda$

Example

1. $S \rightarrow aSa$
2. $S \rightarrow b$
Example

<table>
<thead>
<tr>
<th></th>
<th>Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$S \rightarrow aB$</td>
</tr>
<tr>
<td>2</td>
<td>$S \rightarrow bA$</td>
</tr>
<tr>
<td>3</td>
<td>$A \rightarrow a$</td>
</tr>
<tr>
<td>4</td>
<td>$A \rightarrow aS$</td>
</tr>
<tr>
<td>5</td>
<td>$A \rightarrow bAA$</td>
</tr>
<tr>
<td>6</td>
<td>$B \rightarrow b$</td>
</tr>
<tr>
<td>7</td>
<td>$B \rightarrow bS$</td>
</tr>
<tr>
<td>8</td>
<td>$B \rightarrow aBB$</td>
</tr>
</tbody>
</table>

Why does this work?
Compression of Syntax

It is common for the same non-terminal to be the left side of more than one production. We introduce the symbol “ | ”, a vertical line, to mean disjunction (or).

\[
S \rightarrow aS \\
S \rightarrow \Lambda \\
S \rightarrow X \\
S \rightarrow Y \\
X \rightarrow \Lambda \\
Y \rightarrow aY \\
Y \rightarrow bY \\
Y \rightarrow a \\
Y \rightarrow b
\]

\[
S \rightarrow aS | \Lambda \\
S \rightarrow X | Y \\
X \rightarrow \Lambda \\
Y \rightarrow aY | bY | a | b
\]
Ambiguity

Definition
A CFG is called **ambiguous** if for at least one word in the language that it generates there are two possible derivations of the word that correspond to different *syntax trees*. If a CFG is not ambiguous, it is called **unambiguous**.

Example
\[S \rightarrow aSa \mid bSb \mid a \mid b \mid \Lambda \]

Example
\[S \rightarrow aS \mid Sa \mid a \]