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Abstract. Information graphics (bar charts, line graphs, etc.) in popu-
lar media generally have a high-level message that they are intended to
convey. These messages are seldom repeated in the document’s text yet
contribute to understanding the overall document. The relative percep-
tual effort required to recognize a particular message is a communicative
signal that serves as a clue about whether that message is the one in-
tended by the graph designer. This paper presents a model of relative
effort by a viewer for recognizing different messages from grouped bar
charts. The model is implemented within the ACT-R cognitive frame-
work and has been validated by human subjects experiments. We also
present a statistical analysis of the contribution of effort in recognizing
the intended message of a grouped bar chart.

1 Introduction

Information graphics are non-pictorial visual devices, such as simple bar charts,
line graphs, pie charts, and grouped bar charts. They are incorporated into a mul-
timodal document in order to achieve one or more communicative goals [12,11].
In the case of scientific documents, the communicative goal might be to present
data or to help the reader visualize information. However, when information
graphics appear in popular media such as periodicals (USA Today, Wall Street
Journal) and magazines (The Economist, Time), they generally have a high-level
message that they are intended to convey. For example, consider the graphics in
Figures 1 and 2 which ostensibly convey that “Women are more likely than men
to delay medical treatment” and that “food prices are lower in Iraq than in the
United States”. Although the caption in Figure 1 explicitly states the graphic’s
message, the caption in Figure 2 does not help recognize the message of that
graphic. A study by Carberry et al. [5] found that a graphic’s message is of-
ten not contained in the graphic’s caption or in the article accompanying the
graphic. Yet the graphic’s message is integral to understanding the full content
of a multimodal document.

We are developing systems for recognizing the intended message of an infor-
mation graphic in popular media. Our work has several applications. The first
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Fig. 2. Graphic from USA Today, “Markets’ prices
shelve thrill of new selections”, March 10, 2005

is a system that provides alternative access to information graphics for sight-
impaired individuals by conveying their high-level content to the user via speech
[8]. The second is the retrieval of information graphics from a digital library
where the graphic’s message is used to capture its high-level content [5]. The
third application is the summarization of multimodal documents that takes into
account their information graphics rather than ignoring them or merely consid-
ering only their captions [21].

Previous work has focused on message recognition for simple bar charts [9]
and line graphs [22]. Grouped bar charts are another type of information graphic.
Although grouped bar charts and simple bar charts both display bars that depict
quantifiable relationships among the values of entities, grouped bar charts also
contain a grouping dimension. For example, Figures 1, 2, and 5 respectively con-
tain two groups of two bars each, seven groups of two bars each, and three groups
of four bars each. Consequently, grouped bar charts convey a much wider variety
of messages than simple bar charts or line graphs, and thus the recognition of
their messages is much more complex.

The overall objective of our research is a system for recognizing the high-level
messages conveyed by a grouped bar chart [4]. An important component of the
system is a model that estimates the relative effort that a graph viewer would
have to expend in order to recognize a particular message for a given grouped
bar chart. Consider the graphic in Figure 4 which depicts the same data as
is displayed in Figure 3. Although the graphic in Figure 3 facilitates an easy
comparison of Internet usage between the United States and China for each year
from 2002 to 2008, such a comparison is more difficult in Figure 4 due to the
different organization. Thus while the primary message conveyed by the graphic
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in Figure 4 is the rising trend in Internet usage in both countries1, the primary
message of the graphic in Figure 3 is that the gap in Internet usage between the
two countries has decreased and in fact reversed (with China now having higher
usage than the United States). This correlates with an observation by Larkin
and Simon [13] that graphics that are informationally equivalent (that is, they
convey the same data) are not necessarily computationally equivalent (it can
be more difficult to extract certain information from one graphic than from the
other). The AutoBrief project [11] hypothesized that graph designers construct
graphics that enable the easy performance of tasks that are needed to recognize
the graphic’s communicative goal. Thus we view the relative effort needed to
recognize a particular message from a graphic as evidence of whether that was
the message intended by the graph designer — that is, the more effort required
to recognize a particular message relative to other messages, the less likely that
was the message that the graph designer intended to convey.

This paper presents our model of the relative effort that is required for a
viewer to recognize messages from grouped bar charts and its effect on our overall
system. Our model is implemented in the ACT-R cognitive framework [2] and
is based on research in the area of graph comprehension as well as our own
motivating eye-tracking experiments. Validation experiments quantitatively and
qualitatively support our model.

Section 2 of this paper discusses related work. Section 3 of the paper describes
the types of messages that grouped bar chart information graphics convey in
popular media. Section 4 then presents our model that estimates the relative
effort required for a user to recognize a particular message given a graphic. It
presents the cognitive research underlying the model, describes its implementa-
tion, and presents the results of an experiment validating the model. Section 5

1 And perhaps that it is rising faster in China.
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very briefly describes how the model, along with other communicative signals,
is incorporated into a Bayesian message recognition system.

2 Related Work

Elzer [9] and Wu [22] have implemented intended message recognition systems
for simple bar charts and line graphs, respectively. Their systems are similar
to our grouped bar chart system in that they also use Bayesian networks to
probabilistically capture the relationships between high-level intended messages
and communicative signals. However, grouped bar charts are more complex than
simple bar charts and they convey a much richer set of messages. The system
for simple bar charts modeled relative effort [10], but it followed the GOMS
paradigm [6] in which perceptual tasks were decomposed into primitive tasks
whose effort estimates were summed. However, grouped bar charts require more
complex reasoning that also takes into account peripheral vision, high-level vi-
sual patterns, the re-encoding of graph objects, and other aspects of perceptual
processing that were not considered in the effort model for simple bar charts.
Consequently, our effort model for grouped bar charts is implemented within
the ACT-R cognitive modeling framework [2] which facilitates such complex
reasoning.

3 Messages Conveyed in Grouped Bar Charts

We collected 330 grouped bar charts from a variety of popular media sources and
assembled them into a corpus that is available online.2 In analyzing the corpus,
we identified 25 different message categories that capture the kinds of messages
conveyed by grouped bar charts [4]. Parameters in the message categories become
instantiated to fully capture the intended messages. Each graph in the collected
corpus was examined by a team of annotators who identified the graphic’s high-
level primary message and secondary message3, based on our generalization of
message categories, terminology, and parameters.4 Consensus-based annotation
[3] was performed to resolve cases of disagreement to enable the inclusion of
difficult examples where the message was not obvious and there was not complete
agreement amongst the annotators [14]. The final consensus for the intended
messages in the corpus is also published online.5 In this section, we briefly present
some of the most commonly occurring message categories.6

Trend Messages. Trend messages convey a general trend that is either rising,
falling, or steady. The trend exists over a set of ordinal data points. Trend mes-
sages can be within-groups in which case each group of bars comprises a graph

2 Accessible at: http://www.cis.udel.edu/~burns/corpus
3 A second intended message that is not as apparent.
4 The full terminology is presented in [4].
5 Available at: http://www.cis.udel.edu/~burns/corpus/view-consensus.php
6 Space limitations preclude the description of all identified message categories.

http://www.cis.udel.edu/~burns/corpus
http://www.cis.udel.edu/~burns/corpus/view-consensus.php
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group entity or across-groups in which case the ith bar from each group forms
a graph series entity. For example, the grouped bar chart in Figure 5 ostensibly
conveys the primary message that “China increased spending on education, social
security, military, and rural support from 2004 to 2006”; it is an across-groups
message since the ith bar from each of the three groups comprises the ith trend.
We generalize this and similar messages into the Rising-Trend message category.

Relationship Messages. Relationship messages capture the consistency of rel-
ative values for a set of graphed entities, or the inconsistency of one set of relative
values with respect to the other sets. For example, the graphic in Figure 7 osten-
sibly conveys the message that “the increased funding to the area of Life Sciences
is in contrast to the steady or decreased funding to the other areas”. This messages
contrasts Life Sciences with the other entities, and the comparison with respect
to research funding is within-groups. We identify it as an Entity-Relationship-
Contrast message category. Messages that convey the identical relative ordering
of values of a set of graphed entities (that is, there is no contrasting entity)
are generalized into the Same-Relationship-All message category. The Opposite-
Relationship message category captures messages that convey two entities with
a different relative ordering of bar values.

Gap Messages. The gap message category captures high-level messages involv-
ing either one gap, or a trend in the size of multiple gaps, where a gap is the
approximate absolute difference between two values within the same entity. Gap
messages can refer to gaps within-groups or to gaps across-groups. There are
several interesting types of gap messages that occur in grouped bar charts.

Figure 6 displays a graphic whose message falls into the Gap-Increasing mes-
sage category, where the graph is intended to convey that the trending of the
gaps (gaps within-groups) is increasing. Ostensibly, the graph conveys that the
“gap between the number of patents filed and issued increased over the period
from 1994 to 2003”.
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The Gap-Crossover message category cap-
tures messages conveying that the trending of
one entity surpasses the trending of another
entity. For example, the grouped bar chart in
Figure 3 conveys that “the gap between the
number of Internet users in the US and China
has steadily decreased until now China has
more Internet users than the US”.

Comparison Messages. Some grouped bar
chart messages compare either the gap of a
single entity to the gaps of the other enti-
ties, or the entire single entity itself to all
of the other entities. These message cate-
gories are called Gap-Comparison and Entity-
Comparison, respectively.

Consider the grouped bar chart in Figure 8.
Its primary intended message is “that the per-
centage of pirated software is greater in China
than in the World”. However, to a much lesser
degree, the graphic secondarily conveys “that
the decrease in piracy between 1994 and 2002
is less in China than in the World”.The former
message captures the comparison of the size
of piracy in China with the other entity (the
World) and is an Entity-Comparison message,
whereas the latter represents a comparison of
the gap between piracy in 1994 and 2002 for
China with the other entity (the World) and
is a Gap-Comparison message.

4 Effort

From a given graphic, one can extract a num-
ber of different messages, such as a trend
within groups, a relationship across groups, a
comparison of gaps among group entities, etc.
Green et al. [11] hypothesizes that the design
of a graph should facilitate as much as possible
the tasks that the graph viewer will need to
perform in order to understand the graphic’s
intended message. Thus, because our motiva-
tion is an overall intention recognition system that can hypothesize the messages
that are most likely to be the ones intended by the graph designer, the ability to
model which messages in a graphic are relatively easy to recognize in comparison
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with which messages are more difficult to recognize, may be a useful factor for
our overall system. This is the motivation for our relative effort model that we
now present.

4.1 Cognitive Underpinnings

Our implemented cognitive model was motivated by research by cognitive psy-
chologists as well as motivational eye-tracking experiments that we performed.
The following briefly summarizes these principles and observations.

Pinker [15] states that high-level visual patterns, such as straight lines and
“U” shapes, are easily recognized by the human visual system. Shah et al. [17]
notes how graph comprehension utilizes bottom-up visual pattern recognition
for the perception of trends (fixating on adjacent bars to determine whether
the direction is generally increasing, decreasing or steady). In our motivational
experiments, we also observed that subjects were able to quickly identify rela-
tionships conveyed by adjacent bars whose values represented a straight line,
more so than bar patterns which did not capture a familiar perceptual pattern.

Peripheral vision is the ability to visually process objects that are not in
direct line-of-sight. For guided search tasks, Anderson [1] showed how multiple
objects can be processed in parallel through the use of peripheral vision. In our
motivational eye-tracking experiments, we also observed how subjects processed
entities in a graph by using peripheral vision — that is, all of the entities in a
graph were processed without fixating on each individual entity. For example, we
frequently observed instances in which subjects could correctly identify trends
in grouped bar charts without looking at every bar.

We define an exception as one or more bars that do not conform to an overall
trend. From our motivational experiments, we found that exceptions do impact
the overall effort required to recognize a trend. When presented with noisier
graphs with a greater amount of “trend exceptions”, subjects frequently re-
attended to areas around the exception location, and overall, took longer to
perform high-level recognition tasks on the graphic.

We observed that the presence of visual clutter and violations of the proximity
compatibility principle (as defined by Wickens and Carswell [20], that perceptual
proximity of elements is advised if the elements are part of the same task and is
otherwise discouraged) cause an increase in processing time for subjects.

Simkin and Hastie [18] describe superimposition as an elementary spatial rea-
soning graph process where the graph viewer spatially moves objects in the graph
around to ease comparison with other graph objects. Trickett and Trafton [19]
additionally hypothesize that superimposition is used for the mental averaging
within a group for performing the task of comparing the heights of groups in
grouped bar charts.

4.2 ACT-R Model of Effort

We implemented our model of effort in the ACT-R cognitive modeling framework
[2] with the EMMA add-on [16]. Models implemented in ACT-R are intended to
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reflect the ACT-R theory of human cognition. Model accuracy is usually demon-
strated by comparing the model on some task to that of a human performing
the same task. However, it is important to emphasize that our goal is not to
construct a cognitive model that simulates how humans comprehend graphs,
but rather to create a model that estimates the relative difficulty for a user to
recognize one message vs. another in the same graphic.

ACT-R models how the cognitive system uses visual attention, but it is un-
able to automatically recognize that the data points representing the tops of bars
can be encoded to form a visual pattern, unless that relationship is explicitly de-
clared. Therefore to implement pattern recognition, a small preprocessing script
was also implemented. High-level patterns that the script identifies are then de-
clared in model to simulate top-down encoding (recognizing the direction of a
trend with only a few fixations because the bars generally form a straight line,
or quickly recognizing that several groups of bars each form a common visual
pattern such as a “U” shape and thus convey similar relationships).

We implemented 12 different cognitive submodels in our overall model of rel-
ative effort for grouped bar charts. Some submodels estimate the relative effort
for multiple messages categories. For example, the same cognitive submodel can
process both Rising-Trends and Falling-Trends that exist across-groups. The fol-
lowing presents the significant parts of the submodels that estimate the relative
difficulty for a user to recognize the message categories presented in Section 3.7

Trends (within-groups) Model. This model estimates the relative perceptual
effort required for the recognition of trends within-groups. The model attends
to and encodes each group until all groups have been processed. The total pro-
cessing time for the model is dependent on the cost of encoding each group as
well as the number of groups in the graph. The increase in cost as a result of
additional groups was significant in the motivational eye-tracking experiments.

High-level visual patterns may exist in a group and are identified through the
preprocessing. Exceptions are also possible. As expected, because of high-level
visual pattern recognition ability and peripheral vision, the motivational eye-
tracking experiments also showed that the number of bars per group did not
significantly affect recognition time. The model ultimately encodes each group
top-down or bottom-up into a trend representation when a trend exists.

Relationship (Within-Groups) Model. The Relationship model is very sim-
ilar to the Trend model. Each group is encoded until all of the group entities
are processed. Entities with contrasting relationships are re-encoded. Any visual
patterns are identified in preprocessing.

Gap Trend (Gaps Within-Groups) Model. The design of this model follows
observations from the motivational eye-tracking data that high-level visual pat-
terns are utilized in the recognition of the Gap-Increasing (gaps within-groups)
messages and that additional fixations tend to occur around the “crossover

7 Space precludes us from describing all of the submodels in our system.
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point” in a Gap-Crossover (gaps within-groups) message.8 The model repeatedly
alternatives between attending to each series, to simulate the encoding of gaps
between adjacent groups. In addition, high-level visual patterns across groups
are processed by the model which allows some bar entities to be encoded with-
out an explicit attention and ultimately speeds up the overall processing time.
Crossover points are identified by the model as instances of visual clutter that
induce additional attentions.

Entity-Comparison (Group Entity Instantiation) Model. Unlike the pre-
vious models, this model also requires an instantiated parameter: a specific group
entity to compare with the other groups. Thus, the model’s estimate of effort is
dependent on the instantiation.

The Entity-Comparison message category sometimes captures a message of
rank, such as “the instantiated entity is the 2nd tallest group”. The model pro-
cesses the graphic by beginning with an instantiated entity and repeatedly find-
ing the next tallest entity in the grouped bar chart until no more exist. Thus,
the model attends to a subset of entities in the graphic and compares the in-
stantiated entity with all of the entities in that subset. Because it is easier to
recognize the rank of an entity in a grouped bar chart if the entities are sorted by
bar height, preprocessing in the model determines if the entities in the grouped
bar chart are sorted by bar height. If they are, the model will recognize the rank
of the instantiated entity more quickly by following in a straight path all of the
entities that are taller than it.

Gap-Comparison (Gaps Within-Groups Instantiation) Model. This
model requires an instantiation of a gap that exists within a group entity. Intu-
itively, the recognition of the size of a gap is dependent on its similarity to the
size of the gaps in the other group entities; thus, it is important which entity is
instantiated. The model first encodes the gap of the instantiated entity. Then the
model encodes all of the other gaps in the grouped bar chart while re-attending
to any whose gap size is approximately similar to that of the instantiated entity.

4.3 Validation Experiment

Design. We validated our model by comparing the relative effort estimates for
a given set of grouped bar charts against the relative effort required by human
subjects performing the same tasks on the same set of graphics.9 46 human sub-
jects participated in the experiment, each performing graph tasks on 48 grouped
bar charts. Each subject was initially presented with learning and practice slides
that explained the types of tasks that they would be asked to perform. Then the
appropriate task was prompted to the subjects before each graph in the actual
experiment. As an example, a prompt for the Trend graph task was: “In the
following graph, is each country’s revenue generally increasing? are all revenues

8 In Figure 3, the “crossover point” is between the 07 and 08 groups.
9 Graphs and subjects were different than in the motivational experiments.
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increasing except for one country? except for 2 or more countries? or do all of
the revenues first increase and then decrease?”

Quantitative Results. For each grouped bar chart, the average mean timing
for a subject to perform the prompt task was calculated.10 These means were
ranked to produce an ordered set. The times estimated by the model for the
same set of grouped bar charts and graph tasks were also ranked.

The Spearman rank-order correlation measures the relation between two sets
of rank-ordered data. Values approaching 1.0 indicate a strong correlation be-
tween the ranking of two sets. The overall Spearman correlation for the ranking
of all 48 tasks and graphics is ρ = .725, p < .001. This strong correlation sug-
gests that the models capture the relative effort for recognizing different messages
from a graphic and thus should serve as a useful piece of evidence in our overall
intention recognition system (Section 5).

Qualitative Results. Additionally, the subject data from the validation ex-
periment was qualitatively consistent with many of the intuitions that were
incorporated into the design of the models. For example:

– subjects recognized trends within-groups with less effort when there were
fewer groups and more visual patterns

– additional bars per group increased the effort for within-group relationship
comparisons

– relationship comparisons within-groups were generally less effortful than
across-groups

– additional groups in a graph increased the effort required for recognizing the
group with the largest gap unless that largest gap was extremely salient

– a group was more easily identified in entity comparisons when its bar entities
were each taller than the bars comprising the other groups

– subjects recognized gap trends where the gap was within groups much easier
than when the graph was designed with the gaps across groups

5 Role of Effort in Message Recognition

Our overall system that automatically recognizes the intended message of a
graphic is implemented as a Bayesian network graphical model [4]. Given a
grouped bar chart, a computer vision system [7] first processes the graphic and
extracts its features: the positioning of bars, their bar heights, etc. These features
are passed to the effort models and Bayesian network.

Various pieces of communicative evidence are input into the overall system so
that the Bayesian network can hypothesize the most likely intended message of
a graph. One major piece of evidence is the relative effort required to recognize
a message. For each possible message that might be recognized from a graphic,
effort is discretized into three categories: Easy, Medium, and Hard, capturing how
relatively easy or difficult it would be for a viewer to recognize that message from
10 Incorrect responses by subjects were omitted.
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Table 1. Impact of Evidence in the Bayesian System

Included Evidence in Overall System Accuracy McNemar’s Test
Baseline: None 98 / 330 (29.7%)

χ2 = 15.803, p < .0001Effort Only 153 / 330 (46.4%)

the graphic. Many other types of communicative evidence are also incorporated
into the system, such as if a group entity is much taller than the others. Using
leave-one-out cross-validation, the overall system accuracy for recognizing the
primary intended message of a grouped bar chart is 65.6%, which far exceeds
a baseline accuracy of 18.8% that results from selecting the most commonly
occurring possible message.

It is interesting to consider the impact of effort on our Bayesian recognition
system. As noted earlier, it is common for grouped bar charts to have both a
primary and a secondary message. Our annotators also annotated our corpus for
secondary messages and found that 177 of 330 grouped bar charts had strong
secondary messages. These secondary messages were only identified by the an-
notators when they were quickly apparent and recognizable with minimal effort.

We hypothesize that effort is an important factor for the recognition of mes-
sages. Communicative signals other than effort (coloring, salience by height or
position, salience by mention in a caption, etc.) contribute to the recognition of a
graphic’s primary message, and the absence of one kind of communicative signal
can be compensated for by the presence of other communicative signals. On the
other hand, these other communicative signals may detract from the recognition
of a secondary message that relies mostly on being readily apparent. Thus to see
if our effort model has a positive impact on our recognition of messages, we ran
an experiment that considers both a graph’s primary and secondary message (if
any). We first ran our Bayesian system without any evidence nodes to establish
a baseline, and then ran the system once again with only effort as evidence.
When no evidence was considered (only the a priori probabilities of messages
are present), the system’s baseline for correctly predicting either the primary or
secondary message of a graphic within the top two messages that it hypothesizes
is 29.7%. When we add only effort evidence into the system, this performance
improves to 46.4% — demonstrating that the learned probabilistic relationships
between intended messages and relative effort is a beneficial evidence source for
the overall system. These results are shown in Table 1 along with a statistical
significance measurement as calculated by McNemar’s test, which is used on
nominal, matched-pair data to show the statistical significance of change.

6 Conclusion

Prior work has modeled the relative difficulty for a user to recognize primary
messages in simple bar charts. However, grouped bar charts convey a far richer
set of messages—including secondary messages—that require a richer model of
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relative effort. This paper has presented our model of relative effort for grouped
bar charts, including the cognitive underpinnings of the model and its validation.
It also briefly explored the benefit of a model of relative effort as an evidence
source in our overall intention recognition system that aims to automatically
identify both primary and secondary messages in grouped bar charts.
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