
SUPPORT VECTOR
MACHINES
CSCI 450: AI

slides originally by
Dr. Richard Burns,
modified by
Dr. Stephanie Schwartz

Support Vector Machines (SVM)
¨ What are they?

¤ Developed in the 1990s
¤ Computer Science community
¤ Very popular

¨ Performance:
¤ Often considered one of the best “out of the box” classifiers
¤ Applications: handwritten digit recognition, text

categorization

Support Vector Machines (SVM)
¨ Comparing to other statistical learning methods:

¤ SVMs work well with high-dimensional data

¨ Unique:
¤ Represents “decision boundary” using a subset of

training examples

Terminology
1. Maximal Margin Classifier
2. Support Vector Classifier
3. Support Vector Machine

¨ Often all three are referred to as “Support Vector
Machine”

The Path Ahead
1. Maximal Margin Classifier
2. Support Vector Classifier

¤ Generalization of Maximal Margin Classifier

3. Support Vector Machine
¤ Generalization of Support Vector Classifier

Maximal Margin Classifier
¨ First, need to define a hyperplane

¨ What is a hyperplane?
¤ Hyperplane has p-1 dimensions in a p dimensional

space
¤ Example: in 2 dimension space, a hyperplane has 1

dimension (and thus, is a line)

Hyperplane Mathematical Definition
¨ For two dimensions, hyperplane defined as:

B0 +B1X1 +B2X2 = 0

¨ Note that this equation is a line:
¤ Hyperplane is in one-dimension

B0, B1, B2 are parameters.
X1, X2 are variables.

B0 +B1X1 +B2Y = 0
B2Y = −B1X1 −B0

Y = −B1X1 −B0
B2

Hyperplane Mathematical Definition

¨ We’re going to “find” values for B0, B1, B2.
¨ Then, for any values X1 and X2:

1. if B0 + B1X1 + B2X2 = 0
n Point is on the line.

B0 +B1X1 +B2X2 = 0

Hyperplane Mathematical Definition

¨ We’re going to “find” values for B0, B1, B2.
¨ Then, for any values X1 and X2:

2. if B0 + B1X1 + B2X2 > 0
n Point is not on the line. On one side of the line.

3. if B0 + B1X1 + B2X2 < 0
n Point is on the other side of the line.

B0 +B1X1 +B2X2 = 0

Hyperplane
¨ … is dividing 2-dimensional space into two halves

by a line.

Dataset with two classes:
1. Squares
2. circles

Can find a separating
hyperplane with all
squares on one side and
all circles on the other.

Infinitely many such
hyperplanes possible.

Separating Hyperplane
Note: a separating
hyperplane means
zero training errors.

Classification Using a Separating
Hyperplane

¨ For a new test
instance, which side of
the line is it on?

¨ B0 + B1X1 + B2X2 > 0
¨ B0 + B1X1 + B2X2 < 0

Classification Using a Separating
Hyperplane

¨ Standard SVM approach:
¤ Label class data as either +1 or -1, depending on which

class an instance belongs to.
¤ Prediction:

yi =
1, if B0 +B1x1 +B2x2 +...+Bnxn > 0
−1, if B0 +B1x1 +B2x2 +...+Bnxn < 0

"
#
$

%$

Classification Using a Separating
Hyperplane

¨ For a new test instance, which side of the line is it on?

¨ B0 + B1X1 + B2X2 > 0
¨ B0 + B1X1 + B2X2 < 0

¨ Can also look at the magnitude.
¤ How far from zero?
¤ Greater magnitude means more confident prediction.

Some Concerns with this Approach:
¨ Datasets with more than 2 target classes
¨ What if a “separating hyperplane” can’t be formed
¨ Data is more than two dimensions
¨ Regression instead of classification

SVMs can deal with each of these.

What if Data is more than 2-Dimensions?

¨ Mathematical definition of hyperplane generalizes
to n-dimensions:

B0 +B1X1 +B2X2 = 0
B0 +B1X1 +B2X2 +...+BnXn = 0

B0 +B1X1 +B2X2 +...+BnXn > 0
B0 +B1X1 +B2X2 +...+BnXn < 0

Maximum Margin Hyperplane
¨ What’s the best separating hyperplane?

Intuition: the one that is farthest from
the training observations.

Called the maximum margin
hyperplane.

The Margin
¨ B1 and B2 are each

separating hyperplanes
¤ B1 is better

¨ Margin: the smallest
distance from the
hyperplane to the
training data

Maximal Margin Hyperplane
¨ We want the

hyperplane that has the
greatest margin.
¤ That is, B1 instead of B2

or any of the other
infinitely many
separating hyperplanes

Represents the mid-line of the widest “slab” that can be inserted between the two classes.

Maximal Margin Hyperplane
¨ Support Vectors: the

points in the data, that
if moved, the maximal
margin hyperplane
would move as well.

Moving any of the other data points
would not affect the model.

Maximal Margin Hyperplane
B1

b11

b12

0=+• bxw
!!

1-=+• bxw
!! 1+=+• bxw

!!

î
í
ì

-£+•-
³+•

=
1bxw if1

1bxw if1
)(!!

!!
!
xf 2||||

2 Margin
w!

=

Figuring Out the Maximal Margin Classifier

¨ We want to maximize:
¨ Which is equivalent to minimizing:
¨ But subjected to the following constraints:

n This is a constrained optimization problem
n Numerical approaches to solve it (e.g., quadratic programming)

î
í
ì

-£+•-
³+•

=
1bxw if1

1bxw if1
)(

i

i
!!
!!

!
ixf

2||||
2 Margin
w!

=

2
||||)(
2wwL

!
=

Support Vector Classifier
¨ Maximum Margin Classifier is natural way to perform

classification if a separating hyperplane exists.
¤ Perfect segmentation between two classes

¨ In many cases, no separating hyperplane will exist
¤ Find a hyperplane that almost perfectly segments the classes
¤ This generalization is called: support vector classifier

Support Vector Classifier
¨ Maximal Margin Classifier: no training errors

allowed
¨ Support Margin Classifier: tolerate training errors

¤ Approach: Soft margin
¤ Will allow construction of linear decision boundary

even when classes are not linearly separable

Support Vector Classifier
Additional motivation:

Maximum margin classifier.
Perfectly segments training data.

New data point added.

Dramatic shift in maximal margin
hyperplane.
Model has high variance when trying to
maintain perfect segmentation.

Support Vector Classifier
¨ So, interested in:

¤ Greater robustness to individual data instances
¤ Better classification of most of the training data

¨ Some misclassifications permitted:
¤ “Soft” margin: because margin can be violated by

some of the instances
¤ Introduce “slack” variables

î
í
ì

+-£+•-
³+•

=
ii

ii

1bxw if1
-1bxw if1

)(
x
x

!!
!!

!
ixf

Red Instances:
• 3 4 5 6 on correct side of margin
• 2 is on the margin
• 1 is on the wrong side of the margin

Red Instances:
• 3 4 5 6 on correct side of margin
• 2 is on the margin
• 1 is on the wrong side of the margin
• 11 is on the wrong side of the hyperplane

Slack variables
¨ How to interpret – we can’t allow unlimited

violations that all fall within the allowance or we’ll
end up with margins that don’t mean anything

¨ Need to minimize with C and k being parameters –
can assume k = 1 to simplify the problem:

÷
ø

ö
ç
è

æ
+= å

=

N

i

k
iCwwL

1

2

2
||||)(x
!

Using Support Vector Classifier for
Classification

¨ Same as before.
¨ Which side of the line is the test instance on?

Constructing the Support Vector Classifier
¨ More interesting.
¨ How much “softness” (misclassifications) in the soft margin is

ideal?
¨ Specification of nonnegative tuning parameter C

¤ Generally chosen by analyst following cross-validation
¤ Large C: wider margin; more instances violate margin
¤ Small C: narrower margin; less tolerance for instances that violate

margin

Same data points.

Larger C to Smaller C

Lower variance. Higher variance.

Support Vector Machines
¨ What if a non-linear decision boundary is needed?

Poor performance using
this decision boundary.

Support Vector Machines
¨ Idea: transform the data from its original coordinate

space in X into a new space Φ(X) so that a linear
decision boundary can separate the two classes
¤ Φ: nonlinear transformation

¨ Huh?
Instead of fitting a support vector classifier using n
features:

X1, X2, …, Xn
… use 2n features:

X1, X1
2, X2, X2

2, …, Xn, Xn
2

• Linearly separable dataset in 1D:

• Non-separable dataset in 1D:

• We can map the data to a higher-dimensional space:

0 x

0 x

0 x

x2

Nonlinear SVMs

Slide credit: Andrew Moore

Attribute Transformation
Φ : (x1, x2)→ (x1

2, x2
2, 2x1, 2x2,1)

Support Vector Machines
¨ Enlarged “feature space” compared to original

“feature space”
¨ Can even extend to higher-order polynomial terms.

¨ Downside: can easily end up with huge number of
features
¤ overfitting

The Kernel “Trick”
¨ It’s hard to know what transformations to apply, so maybe we can

do this another way with the original feature set…
¨ Essentially, we need to expand our definition of “distance” from

strict Euclidean
¨ Properties

¤ Non-negative
¤ Symmetry (distance between a and b = to distance between b and a)
¤ Identity (distance between a and a is 0)
¤ Triangle inequality (sum of distances between a and b and b and c <=

distance between a and c)

Kernels
¨ These generalized distances are called metrics
¨ Metrics are defined using special mathematical

functions that satisfy the distance definition
conditions. These functions are known as kernels.

¨ Kernels take in two inputs and output a similarity
(distance) measure

¨ Kernels correspond to dot products of transformed
feature vectors (Mercer’s Theorem)

Why Use Kernels?
¨ Often, computing the kernel is easy, but computing the

feature vector corresponding to the kernel is really
hard.

¨ The feature vector for even simple kernels can blow up
in size, and sometimes the corresponding feature vector
is infinite dimensional.

¨ Kernel trick not limited to SVMs, other machine learning
algorithms can work with dot products

Kernel Examples
¨ Linear
¨ Polynomial
¨ Sigmoid
¨ Gaussian RBF

Other extensions to SVMs:
¨ Regression instead of classification
¨ Multiclass problems instead of binary

References
¨ Introduction to Data Mining, 1st edition, Tan et al.
¨ An Introduction to Statistical Learning, 1st edition,

James et al.

