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Support Vector Machines (SVM)
¨ What are they?

¤ Developed in the 1990s
¤ Computer Science community
¤ Very popular

¨ Performance:
¤ Often considered one of the best “out of the box” classifiers
¤ Applications: handwritten digit recognition, text 

categorization



Support Vector Machines (SVM)
¨ Comparing to other statistical learning methods:

¤ SVMs work well with high-dimensional data

¨ Unique:
¤ Represents “decision boundary” using a subset of 

training examples



Terminology
1. Maximal Margin Classifier
2. Support Vector Classifier
3. Support Vector Machine

¨ Often all three are referred to as “Support Vector 
Machine”



The Path Ahead
1. Maximal Margin Classifier
2. Support Vector Classifier

¤ Generalization of Maximal Margin Classifier

3. Support Vector Machine
¤ Generalization of Support Vector Classifier



Maximal Margin Classifier
¨ First, need to define a hyperplane

¨ What is a hyperplane?
¤ Hyperplane has p-1 dimensions in a p dimensional 

space
¤ Example: in 2 dimension space, a hyperplane has 1 

dimension (and thus, is a line)



Hyperplane Mathematical Definition
¨ For two dimensions, hyperplane defined as:

B0 +B1X1 +B2X2 = 0

¨ Note that this equation is a line:
¤ Hyperplane is in one-dimension

B0, B1, B2 are parameters.
X1, X2 are variables.

B0 +B1X1 +B2Y = 0
B2Y = −B1X1 −B0

Y = −B1X1 −B0
B2



Hyperplane Mathematical Definition

¨ We’re going to “find” values for B0, B1, B2.
¨ Then, for any values X1 and X2:

1. if B0 + B1X1 + B2X2 = 0
n Point is on the line.

B0 +B1X1 +B2X2 = 0



Hyperplane Mathematical Definition

¨ We’re going to “find” values for B0, B1, B2.
¨ Then, for any values X1 and X2:

2. if B0 + B1X1 + B2X2 > 0
n Point is not on the line. On one side of the line.

3. if B0 + B1X1 + B2X2 < 0
n Point is on the other side of the line.

B0 +B1X1 +B2X2 = 0



Hyperplane
¨ … is dividing 2-dimensional space into two halves 

by a line.



Dataset with two classes:
1. Squares
2. circles

Can find a separating 
hyperplane with all 
squares on one side and 
all circles on the other.

Infinitely many such 
hyperplanes possible.

Separating Hyperplane
Note: a separating 
hyperplane means 
zero training errors.



Classification Using a Separating 
Hyperplane

¨ For a new test 
instance, which side of 
the line is it on?

¨ B0 + B1X1 + B2X2 > 0
¨ B0 + B1X1 + B2X2 < 0



Classification Using a Separating 
Hyperplane

¨ Standard SVM approach:
¤ Label class data as either +1 or -1, depending on which 

class an instance belongs to.
¤ Prediction:

yi =
1,     if B0 +B1x1 +B2x2 +...+Bnxn > 0
−1,    if B0 +B1x1 +B2x2 +...+Bnxn < 0
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Classification Using a Separating 
Hyperplane

¨ For a new test instance, which side of the line is it on?

¨ B0 + B1X1 + B2X2 > 0
¨ B0 + B1X1 + B2X2 < 0

¨ Can also look at the magnitude.
¤ How far from zero?
¤ Greater magnitude means more confident prediction.



Some Concerns with this Approach:
¨ Datasets with more than 2 target classes
¨ What if a “separating hyperplane” can’t be formed
¨ Data is more than two dimensions
¨ Regression instead of classification

SVMs can deal with each of these.



What if Data is more than 2-Dimensions?

¨ Mathematical definition of hyperplane generalizes 
to n-dimensions:

B0 +B1X1 +B2X2 = 0
B0 +B1X1 +B2X2 +...+BnXn = 0

B0 +B1X1 +B2X2 +...+BnXn > 0
B0 +B1X1 +B2X2 +...+BnXn < 0



Maximum Margin Hyperplane
¨ What’s the best separating hyperplane?

Intuition: the one that is farthest from 
the training observations.

Called the maximum margin 
hyperplane.



The Margin
¨ B1 and B2 are each 

separating hyperplanes
¤ B1 is better

¨ Margin: the smallest 
distance from the 
hyperplane to the 
training data



Maximal Margin Hyperplane
¨ We want the 

hyperplane that has the 
greatest margin.
¤ That is, B1 instead of B2

or any of the other 
infinitely many 
separating hyperplanes

Represents the mid-line of the widest “slab” that can be inserted between the two classes.



Maximal Margin Hyperplane
¨ Support Vectors: the 

points in the data, that 
if moved, the maximal 
margin hyperplane
would move as well.

Moving any of the other data points 
would not affect the model.



Maximal Margin Hyperplane
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Figuring Out the Maximal Margin Classifier

¨ We want to maximize:                
¨ Which is equivalent to minimizing: 
¨ But subjected to the following constraints:

n This is a constrained optimization problem
n Numerical approaches to solve it (e.g., quadratic programming)
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Support Vector Classifier
¨ Maximum Margin Classifier is natural way to perform 

classification if a separating hyperplane exists.
¤ Perfect segmentation between two classes

¨ In many cases, no separating hyperplane will exist
¤ Find a hyperplane that almost perfectly segments the classes
¤ This generalization is called: support vector classifier



Support Vector Classifier
¨ Maximal Margin Classifier: no training errors 

allowed
¨ Support Margin Classifier: tolerate training errors

¤ Approach: Soft margin
¤ Will allow construction of linear decision boundary 

even when classes are not linearly separable



Support Vector Classifier
Additional motivation:

Maximum margin classifier.
Perfectly segments training data.

New data point added.

Dramatic shift in maximal margin 
hyperplane.
Model has high variance when trying to 
maintain perfect segmentation.



Support Vector Classifier
¨ So, interested in:

¤ Greater robustness to individual data instances
¤ Better classification of most of the training data

¨ Some misclassifications permitted:
¤ “Soft” margin: because margin can be violated by 

some of the instances
¤ Introduce “slack” variables

î
í
ì

+-£+•-
³+•

=
ii

ii

1bxw if1
-1bxw if1

)(
x
x

!!
!!

!
ixf



Red Instances:
• 3 4 5 6 on correct side of margin
• 2 is on the margin
• 1 is on the wrong side of the margin

Red Instances:
• 3 4 5 6 on correct side of margin
• 2 is on the margin
• 1 is on the wrong side of the margin
• 11 is on the wrong side of the hyperplane



Slack variables
¨ How to interpret – we can’t allow unlimited 

violations that all fall within the allowance or we’ll 
end up with margins that don’t mean anything

¨ Need to minimize with C and k being parameters –
can assume k = 1 to simplify the problem:
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Using Support Vector Classifier for 
Classification

¨ Same as before.
¨ Which side of the line is the test instance on?



Constructing the Support Vector Classifier
¨ More interesting.
¨ How much “softness” (misclassifications) in the soft margin is 

ideal?
¨ Specification of nonnegative tuning parameter C

¤ Generally chosen by analyst following cross-validation
¤ Large C: wider margin; more instances violate margin
¤ Small C: narrower margin; less tolerance for instances that violate 

margin



Same data points.

Larger C to Smaller C

Lower variance. Higher variance.



Support Vector Machines
¨ What if a non-linear decision boundary is needed?

Poor performance using 
this decision boundary.



Support Vector Machines
¨ Idea: transform the data from its original coordinate 

space in X into a new space Φ(X) so that a linear 
decision boundary can separate the two classes
¤ Φ: nonlinear transformation

¨ Huh?
Instead of fitting a support vector classifier using n
features:

X1, X2, …, Xn
… use 2n features:

X1, X1
2, X2, X2

2, …, Xn, Xn
2



• Linearly separable dataset in 1D:

• Non-separable dataset in 1D:

• We can map the data to a higher-dimensional space:

0 x

0 x

0 x

x2

Nonlinear SVMs

Slide credit: Andrew Moore



Attribute Transformation
Φ : (x1, x2 )→ (x1

2, x2
2, 2x1, 2x2,1)



Support Vector Machines
¨ Enlarged “feature space” compared to original 

“feature space”
¨ Can even extend to higher-order polynomial terms.

¨ Downside: can easily end up with huge number of 
features
¤ overfitting



The Kernel “Trick”
¨ It’s hard to know what transformations to apply, so maybe we can 

do this another way with the original feature set…
¨ Essentially, we need to expand our definition of “distance” from 

strict Euclidean
¨ Properties

¤ Non-negative
¤ Symmetry (distance between a and b = to distance between b and a)
¤ Identity (distance between a and a is 0)
¤ Triangle inequality (sum of distances between a and b and b and c <= 

distance between a and c)



Kernels
¨ These generalized distances are called metrics
¨ Metrics are defined using special mathematical 

functions that satisfy the distance definition 
conditions. These functions are known as kernels.

¨ Kernels take in two inputs and output a similarity 
(distance) measure

¨ Kernels correspond to dot products of transformed 
feature vectors (Mercer’s Theorem)



Why Use Kernels?
¨ Often, computing the kernel is easy, but computing the 

feature vector corresponding to the kernel is really 
hard. 

¨ The feature vector for even simple kernels can blow up 
in size, and sometimes the corresponding feature vector 
is infinite dimensional. 

¨ Kernel trick not limited to SVMs, other machine learning 
algorithms can work with dot products



Kernel Examples
¨ Linear
¨ Polynomial
¨ Sigmoid
¨ Gaussian RBF



Other extensions to SVMs:
¨ Regression instead of classification
¨ Multiclass problems instead of binary
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