What is Statistical Learning?

Shown are Sales vs TV, Radio and Newspaper, with a blue linear-regression line fit separately to each.
Can we predict Sales using these three? Perhaps we can do better using a model Sales ≈ f(TV, Radio, Newspaper)
In general, assuming we have

- Observation of quantitative (numerical) response Y
- Observation of p different predictors $\{X_1, X_2, \ldots, X_p\}$
- A relationship between Y and X
- We can write this in the very general form:

$$Y = f(X) + \varepsilon$$
Statistical Learning – General Form

\[Y = f(X) + \varepsilon \]

- \(Y \) is the target or response (in previous example: Sales)
- \(f \) is unknown function of \(X = \{X_1, X_2, \ldots, X_p\} \)
 - \(f \) may involve more than one input variable (in previous example: Radio, TV, Newspaper)
- \(\varepsilon \) is a random error term
 - Independent of \(X \)
 - Has mean equal zero
- \(f \) represents information that \(X \) provides about \(Y \)
- **Statistical learning** refers to a set of approaches for estimating \(f \)
Why estimate f?

- Two usual objectives:
 1. Prediction:
 - With a good f we can make predictions of Y at new points $X = x$
 2. Inference / Descriptive:
 - We can understand which components of $X = (X_1, X_2, \ldots, X_p)$ are important in explaining Y, and which are irrelevant. e.g. Seniority and Years of Education have a big impact on Income, but Marital Status typically does not.
Estimating f - Prediction

- In many situations, a set of X inputs are readily available, but Y is not easily obtained.

$$Y = f(X) + \varepsilon$$

- Since error term averages to zero, we can predict Y using,

$$\hat{Y} = \hat{f}(X)$$

\hat{f} represents estimate for f

\hat{Y} represents prediction for Y
Estimating f - Prediction

$$\hat{Y} = \hat{f}(X)$$

- \hat{f} often treated as a black box
 - Not typically concerned with the exact form of f
 - linear, quadratic, etc.
 - We only care that our predictions are “near accurate”
Is there an ideal \(f(X) \)? In particular, what is a good value for \(f(X) \) at any selected value of \(X \), say \(X = 4 \)? There can be many \(Y \) values at \(X = 4 \). A good value is

\[
f(4) = E(Y \mid X = 4)
\]

\(E(Y \mid X = 4) \) means *expected value* (average) of \(Y \) given \(X = 4 \). This ideal \(f(x) = E(Y \mid X = x) \) is called the *regression function*.
Estimating f – Types of Error

- The accuracy of \hat{Y} as a prediction for Y depends on:
 1. Reducible error
 2. Irreducible error

- \hat{f} will not be perfect estimate for f
 - reducible, because we can use more appropriate data mining techniques
Estimating f – Irreducible Error

- The accuracy of \hat{Y} as a prediction for Y also depends on:
 - Irreducible error
 \[Y = f(X) + \epsilon \]

- $\epsilon = Y - f(x)$
 - Even if we knew $f(x)$, we would still make errors in prediction since at each $X=x$ there is a distribution of possible Y values
 - Thus, variability associated with ϵ also affects prediction accuracy
- Cannot reduce error introduced by ϵ no matter how well we estimate f
Estimating f – Irreducible Error

- Why is irreducible error larger than zero?

- Quantity ϵ may contain unmeasured variables that are useful in predicting Y
 - If we don’t measure them, f can’t use them for its prediction

- Quantity ϵ may also contain unmeasurable variation
Estimating f —

- Focus in this course is on techniques for estimating f with the aim of minimizing reducible error.
- The irreducible error will always provide an upper bound on the accuracy of our predictions.
 - In practice, the upper bound because of irreducible error is almost always unknown.
Estimating f - Inference

- Rather than predicting Y based on observations of X,
- Goal is to understand the way that Y is affected as $X = \{X_1, X_2, \ldots, X_p\}$ changes
 - Understand the relationship between X and Y
- \hat{f} not treated as “black box” anymore, we need to know its exact form
May be interested in answering the following questions:

“Which predictors are associated with the response?”

- Often the case that only small fraction of the available predictors are associated with Y
- Identifying the few, important predictors
May be interested in answering the following questions:

“What is the relationship between the response and each predictor?”

- Some predictors may have a positive relationship with Y (or vice versa, a negative relationship)
- Increasing the predictor is associated with increasing values of Y
Estimating f - Inference

- May be interested in answering the following questions:
 - “Can \hat{f} be summarized using a linear equation, or is the relationship more complicated?”
 - Historically, most methods for estimating f have taken a **linear** form
 - But often true relationship is more complicated
 - Linear model may not accurately represent relationship between input and output variables
How do we estimate \(f \)?

- Most statistical learning methods classified as:
 1. Parametric
 2. Non-parametric
Parametric Methods

- Assume that the functional form, or shape, of f is linear in X

\[f(X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p \]

- This is a linear model, for p predictors $X = \{X_1, X_2, \ldots, X_p\}$
- Model fitting involves estimating the parameters $\beta_0, \beta_1, \ldots, \beta_p$
- Only need to estimate $p+1$ coefficients,
 - Rather than an entirely arbitrary p-dimensional function $f(X)$
- **Parametric:** reduces the problem of estimating f down to estimating a set of parameters
Non-parametric Methods

- Do not make explicit assumptions about the functional form of f (such that it is \textit{linear})
Assumption of form of model (perhaps linear)

- Possible that functional estimate is very different from the true f
 - If so, won’t fit data well

- Only need to estimate set of parameters

Potential to accurately fit a wider range of possible shapes for f

- Many, many more observations needed
- Complex models can lead to overfitting
Trade-Off Between Model Flexibility and Model Interpretability

- Some statistical models (e.g. linear models) are less flexible and more restrictive.
- Q: Why would you ever choose to use a more restrictive method instead of a very flexible approach?
- A: When inference is the goal, the restrictive models are much more interpretable.
 - In linear model, it is easy to understand relationship between Y and X_1, X_2, \ldots
- For prediction, we might only be interested in accuracy and not the interpretability of the model
Trade-Off Between Model Flexibility and Model Interpretability

- **Linear Models**: Low flexibility, high interpretability
- **Decision Trees**: Moderate flexibility, moderate interpretability
- **Support Vector Machines**: High flexibility, low interpretability
Trade-Off Between Model Flexibility and Model Interpretability

- Even for *prediction*, where we might only care about accuracy, more accurate predictions are sometimes made from the less flexible methods
 - Reason: *overfitting* in more complex models
Classification vs. Regression

- Given a dataset: instances with X set of predictors/attributes, and single Y target attribute

- **Classification:**
 - Y Class label is discrete (usually categorical/nominal or binary) attribute

- **Regression:**
 - Y Class label is continuous
 - Numeric prediction
Supervised Learning Approach to Classification or Regression Problems

- Given a collection of records (training set)
 - Each record contains predictor attributes as well as target attribute
- Learn a model (function f) that predicts the class value (category or numeric value) based on the predictor attributes
- Goal: “previously unseen” instances should be assigned a class as accurately as possible
 - A test set is used to evaluate the model’s accuracy.
Training Set vs. Test Set

- Overall dataset can be divided into:
 1. Training set — used to build model
 2. Test set — evaluates model
```
<table>
<thead>
<tr>
<th>Tid</th>
<th>Attr1</th>
<th>Attr2</th>
<th>Attr3</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Large</td>
<td>125K</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Medium</td>
<td>100K</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Small</td>
<td>70K</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>Medium</td>
<td>120K</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Large</td>
<td>95K</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>Medium</td>
<td>60K</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>Large</td>
<td>220K</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>No</td>
<td>Small</td>
<td>85K</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>No</td>
<td>Medium</td>
<td>75K</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>Small</td>
<td>90K</td>
<td>Yes</td>
</tr>
<tr>
<td>11</td>
<td>No</td>
<td>Small</td>
<td>55K</td>
<td>?</td>
</tr>
<tr>
<td>12</td>
<td>Yes</td>
<td>Medium</td>
<td>80K</td>
<td>?</td>
</tr>
<tr>
<td>13</td>
<td>Yes</td>
<td>Large</td>
<td>110K</td>
<td>?</td>
</tr>
<tr>
<td>14</td>
<td>No</td>
<td>Small</td>
<td>95K</td>
<td>?</td>
</tr>
<tr>
<td>15</td>
<td>No</td>
<td>Large</td>
<td>67K</td>
<td>?</td>
</tr>
</tbody>
</table>
```
Model Evaluation on Test Set (Classification) – Error Rate

- **Error Rate**: proportion of mistakes that are made by applying our \(\hat{f} \) model to the testing observations:

\[
\frac{1}{n} \sum_{i=1}^{n} I(y_i \neq \hat{y}_i)
\]

Observations in test set: \{\((x_1,y_1), \ldots, (x_n,y_n)\)\}

\(\hat{y}_i\) is the predicted class for the \(i\)th record

\(I(y_i \neq \hat{y}_i)\) is an indicator variable: equals 1 if \(y_i \neq \hat{y}_i\) and 0 if \(y_i = \hat{y}_i\)
Confusion Matrix: tabulation of counts of test records correctly and incorrectly predicted by model

<table>
<thead>
<tr>
<th>Actual Class</th>
<th>Predicted Class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class = 1</td>
</tr>
<tr>
<td>Class = 1</td>
<td>(f_{11})</td>
</tr>
<tr>
<td>Class = 0</td>
<td>(f_{01})</td>
</tr>
</tbody>
</table>

(Confusion matrix for a 2-class problem.)
Model Evaluation on Test Set (Classification) – Confusion Matrix

<table>
<thead>
<tr>
<th>Actual Class</th>
<th>Predicted Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class = 1</td>
<td></td>
</tr>
<tr>
<td>Class = 1</td>
<td>f_{11}</td>
</tr>
<tr>
<td>Class = 0</td>
<td>f_{01}</td>
</tr>
</tbody>
</table>

Accuracy = \[
\frac{\text{Number of correct predictions}}{\text{Total number of predictions}} = \frac{f_{11} + f_{00}}{f_{11} + f_{10} + f_{01} + f_{00}}
\]

Error rate = \[
\frac{\text{Number of wrong predictions}}{\text{Total number of predictions}} = \frac{f_{10} + f_{01}}{f_{11} + f_{10} + f_{01} + f_{00}}
\]

Most classification tasks seek models that attain the highest accuracy when applied to the test set.
Model Evaluation on Test Set
(Regression) – Mean Squared Error

- **Mean Squared Error:** measuring the “quality of fit”
 - will be small if the predicted responses are very close to the true responses

\[
MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2
\]

Observations in test set: \{(x_1, y_1), ..., (x_n, y_n)\}

\(\hat{f}(x_i)\) is the predicted value for the \(i^{th}\) record
A Problem

- We already know that there is no one “best” data mining method or statistical learning method.
 - Depends on the characteristics of the data

- We’ve introduced evaluation:
 - We can quantify error (classification error, mean squared error) in hopes of comparing accuracy of different models

- We have datasets partitioned:
 - Training set – model learns on this data
 - Test set – model evaluated on this data

How well the model works on new data is what we really care about!
A Problem

- Error rates on training set vs. testing set might be drastically different.
- There is no guarantee that the method with the smallest training error rate will have the smallest testing error rate.
- Why?
 - Statistical methods specifically estimate coefficients so as to minimize the training set error
Overfitting

- **Overfitting**: occurs when statistical model “memorizes” the training set data
 - very low error rate on training data
 - higher error rate on test data
- Model *does not generalize* to the overall problem
- This is bad! We wish to avoid overfitting.
Learning Method Bias

- **Bias**: the error introduced by modeling a real-life problem (usually extremely complicated) by a much simpler problem.
 - *Example*: linear regression assumes a linear relationship between the target variable Y and the predictor variables X.
 - It’s unlikely that the relationship is exactly linear, so some bias will be present in the model.

- The more flexible (complex) a method is, the less bias it will generally have.
Variance: how much the learned model would change if the training set was different

Does changing a few observations in the training set, dramatically affect the model? Ideally, answer is no.

Generally, the more flexible (complex) a method is, the more variance it has.
Bias-Variance Trade-Off

- Math proof! \textit{(beyond scope of this course)}
- Expected test set error can be decomposed into the sum of the model’s variance, its squared bias, and the variance of its error terms.

\[E(y_0 - \hat{f}(x_0))^2 = \text{Variance}(\hat{f}(x_0)) + [\text{Bias}(f(x_0))]^2 + \text{Variance}(\epsilon) \]

- As a statistical method gets more complex, the bias will decrease and the variance will increase.
- Expected error on the test set may go up or down.
Figure 5.2

The optimal level of model complexity is at the minimum error rate on the validation set.

Training set continues to fall in a monotone fashion. However, as the model complexity increases, the validation set error rate soon begins to flatten out and increase because the provisional model has memorized the training set rather than leaving room for generalizing to unseen data. The point where the minimal error rate on the validation set is encountered is the optimal level of model complexity, as indicated in Figure 5.2.

Complexity greater than this is considered to be overfitting; complexity less than this is considered to be underfitting.

Suppose that we have the scatter plot in Figure 5.3 and are interested in constructing the optimal curve (or straight line) that will separate the dark gray points from the light gray points. The straight line in has the benefit of low complexity but suffers from some classification errors (points ending up on the wrong side of the line).

In Figure 5.4 we have reduced the classification error to zero but at the cost of a much more complex separation function (the curvy line). One might be tempted to adopt the greater complexity in order to reduce the error rate. However, one should be careful not to depend on the idiosyncrasies of the training set. For example, suppose that we now add more data points to the scatter plot, giving us the graph in Figure 5.5.

Note that the low-complexity separator (the straight line) need not change very much to accommodate the new data points. This means that this low-complexity separator has low variance. However, the high-complexity separator, the curvy line, must alter considerably if it is to maintain its pristine error rate. This high degree of change indicates that the high-complexity separator has a high variance.
Example: we wish to build a model that separates the dark-colored points from the light-colored points.

Data Point Observations created by: $Y = f(X) + \varepsilon$

Black line is simple, linear model \hat{f}

Currently, some classification error

- Low variance
- Bias present
More complex model (curvy line instead of linear)

Zero classification error for these data points

- No linear model bias
- Higher Variance?
More data has been added

Re-train both models (linear line, and curvy line) in order to minimize error rate

Variance:
• Linear model doesn’t change much
• Curvy line significantly changes

Which model is better?
Now that we know the definitions of “training set” and “testing set”,

A more complete view of the Data Mining process...
Data Mining Process

1. Engage in efficient data storage and data preprocessing
2. Select appropriate response variables
 - Decide on the number of variables that should be investigated
3. Screen data for outliers
 - Address issues of missing values
4. Partition datasets into training and testing sets
 - Sample large datasets that cannot easily be analyzed as a whole
Data Mining Process (cont.)

5. Visualize data
 - Box plots, histograms, etc.

6. Summarize data
 - Mean, median, sd, etc.

7. Apply appropriate data mining methods (decision trees)

8. Evaluate model on test set

9. Analyze, interpret results
 - Act on findings
References

- *Introduction to Data Mining*, 1st edition, Tan et al.
- *Data Mining and Business Analytics in R*, 1st edition, Ledolter
- *An Introduction to Statistical Learning*, 1st edition, James et al.
- *Discovering Knowledge in Data*, 2nd edition, Larose et al.