STATISTICAL ESTIMATION AND PREDICTION
Still to Come Today

- Statistical Estimation and Prediction
- Measuring Standard Error, Confidence Intervals
- Simple Linear Regression
- Evaluating LM using Testing Set
- More R Basics
If estimation and prediction are considered to be data mining tasks, then statistical analysts have been performing data mining for over a century!

These slides:
- Examination of some traditional methods of estimation and prediction based on statistical analysis
Univariate Statistical Analysis

- **Univariate:** analyzing one variable at a time
 - Point estimation for population means
 - Confidence interval estimation for population means
 - ...

- **Multivariate:** analyzing *more than one* variable
Churn Dataset

- From UCI Machine Learning Repository
- In D2L
- 3333 records (customers)
- 20 predictor variables
- 1 target variable: churn (whether or not customer left the company)
Churn variables

- **State:** categorical (50 states + DC)
- **Account Length:** integer (how long account has been active)
- **Area Code:** categorical
- **Phone Number:** (can be used for customer ID)
- **International Plan:** binary (yes or no)
- **Voice Mail Plan:** binary
- **Number of Voice Mail Messages:** integer
- **Total Day Minutes:** continuous (minutes of day calls by customer)
- **Total Day Calls:** integer
- **Total Day Charge:** continuous
Churn variables (cont.)

- Total Evening Minutes
- Total Evening Calls
- Total Evening Charge
- Total Night Minutes
- Total Night Calls
- Total Night Charge
- Total International Minutes
- Total International Calls
- Total International Charge
- Number of Calls to Customer Server: integer
- Churn: binary (whether or not customer has left the company)
Desired Results

- We would like our findings from analyzing the Churn dataset to be applicable to all customers (the population), not just the subset of 3333 customers in the dataset (the sample).

- Sample needs to be representative of the population
 - If not, (sample characteristics deviate systematically from the population characteristics), statistical inference should not be applied.
Vocabulary

- **Parameter**: a characteristic of the population
 - *Example*: mean number of customer service calls, of all phone customers

- **Statistic**: a characteristic of the sample
 - *Example*: mean number of customer service calls, for customers in the sample
 - 3333 customers in Churn sample, mean is 1.563
 - ??? Customers in population, mean is ???

- Values of population parameters are usually *unknown*.
Symbols

<table>
<thead>
<tr>
<th></th>
<th>Sample Statistic</th>
<th>…Estimates…</th>
<th>Population Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>(\bar{X})</td>
<td>➔</td>
<td>(\mu)</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>(s)</td>
<td>➔</td>
<td>(\sigma)</td>
</tr>
<tr>
<td>Proportion</td>
<td>(\rho)</td>
<td>➔</td>
<td>(\pi)</td>
</tr>
</tbody>
</table>

Pronounced “myu”
“sigma”
“pi”
Estimation

- **Point Estimation**: the use of a single known value of a statistic to estimate the population parameter

 - *Examples:*
 - Using sample mean to estimate the population mean
 - Using the sample 27\(^{th}\) percentile to estimate the population 27\(^{th}\) percentile
 - … basically any sample statistic to estimate a population parameter
How confident are we in our estimates?

- Point estimates will “almost always” have some error: **sampling error**
 - *Example:* Distance between the observed sample mean and the unknown population mean
 \[|\bar{x} - \mu| \]

- Since the true value of the parameter are usually unknown, the value of the sampling error is usually unknown.
How close is the point estimate?

- Point estimates have no measure of confidence in their accuracy.
 - Estimate may be close to the value of the target parameter (small sampling error)
 - Estimate may be far from the value of the target parameter (large sampling error)
Confidence Interval Estimation

- **Confidence Interval Estimate**: interval produced from a point estimate, with an associated **confidence level** specifying the probability that the interval contains the parameter.

- **General Form**:
 - *point estimate* ± *margin of error*
 - “margin of error” as a measure of precision for the estimate.
t-interval

- t-interval for the population mean:
 \[\bar{x} \pm t_{\alpha/2} \left(\frac{s}{\sqrt{n}} \right) \]

- t-interval may be used, when either:
 1. Population is normal
 2. Sample size is large
Normal Population Distribution

- Probability Theory
- Normal Distribution also called Gaussian Distribution
 - continuous probability distribution
 - “bell curve” shape

\[
f(x, \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
\]

Different shapes depending on specified \(\mu \) and \(\sigma \)
Normal Population Distribution

“Standard” normal distribution when $\mu=0$ and $\sigma=1$
Notice: value of the normal distribution approaches zero when x is more than a few standard deviations away from the mean.
t-interval

- **t-interval for the population mean:**

 \[\bar{x} \pm t_{\alpha/2} \left(\frac{s}{\sqrt{n}} \right) \]

 - Sample mean
 - Margin of error

- **t-interval may be used, when either:**
 1. Population is normal
 2. Sample size is large

When will margin of error be small?
Standard Error

- **Standard Error**: how much you expect a value averaged from several measurements to vary from the true population value
 - Standard deviation divided by root of sample size \(\frac{s}{\sqrt{n}} \)

- **Standard Deviation**: how much you expect an individual measurement to vary from the average

Can expect small standard error, whenever:
1. Large sample size
2. Variance is small
t-value

$\bar{x} \pm t_{\alpha/2} \left(\frac{s}{\sqrt{n}} \right)$

t-value multiplier

- Dependent on:
 1. sample size
 2. desired confidence level

- Specified by analyst (usually with 95% confidence level)
 - $\alpha = 1 - 0.95 = 0.05$
t-values

- [] http://www.statisticsmentor.com/tables/table_t.htm

- Interested in:
 - Two-tailed $\alpha=.05$ scores
 - Df ("degrees of freedom") = sample size $-$ 1
 - $df = n - 1$
Churn Example 1

95% t-interval for the mean number of customer service calls for all customers:

$$\bar{x} \pm t_{\alpha/2} \left(\frac{s}{\sqrt{n}} \right)$$

1.563 ± 1.96(1.315 / $\sqrt{3333}$)

1.563 ± 0.045

- Reduce sample size to 28
- R

(1.518, 1.608)
Churn in R

- Loading Churn
- Calculating mean, sd
- Looking up t-value
- Performing a one sample t-test
Let’s only select customers who have:
- Enrolled in the International Plan
- Enrolled in the VoiceMail Plan
- >= 200 day minutes

Reduces sample from 3333 to 28 customers
Still large enough to construct the confidence interval

\[
\bar{x} \pm t_{\alpha/2} \left(\frac{s}{\sqrt{n}} \right)
\]

\[
1.607 \pm 2.051(1.892 / \sqrt{28})
\]

\[
1.607 \pm 0.733
\]

\[
(0.874, 2.340)
\]
Churn 2 in R

- Selecting subset of customers
How to Reduce the Margin of Error?

- **Margin of Error** is function of:
 1. t-value (depends on confidence level and sample size)
 2. Sample standard deviation (characteristic of data)
 3. n, the sample size

- To decrease margin of error:
 1. **NO**: decrease confidence level
 2. **YES**: increase sample size
References

- *Data Mining and Business Analytics in R, 1st edition*, Ledolter
- *An Introduction to Statistical Learning, 1st edition*, James et al.
- *Discovering Knowledge in Data, 2nd edition*, Larose et al.