
Java Concurrency For Humans

▪ Cay Horstmann
▪ Author of Core Java (10 editions since 1996)

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Outline

▪ Audience: Application programmers
▪ Goal: Modern Concurrency Constructs
▪ Executors and Futures
▪ Asynchronous Processing with CompletableFuture
▪ Parallel Streams
▪ Safe Handoff
▪ Threadsafe Data Structures

• And how to use them safely

▪ Cancelation
▪ What Not to Do



Old School Concurrency

▪ Given a Set<Path> of file paths and a string word, find all files that
contain the word.

▪ Make a thread for each task.
▪ Use a lock around the result collection.

▪ Set<Path> results = new HashSet<>();
for (Path p : paths)

new Thread(() -> {
if (word occurs in p)

synchronized (results) { results.add(p); }
}).start();

▪ That could be a lot of threads.
• Thread creation and context switches are not free.

▪ Are you sure the hash set won't be corrupted?
▪ When is it all done?



Tasks, Not Threads

▪ Use an executor to execute tasks.
▪ A task can be a Runnable (presumably with a side effect):

Runnable task = () -> { ... };
ExecutorService exec = ...;
exec.execute(task);

▪ Or better, make the task compute a result:

Callable<Long> task = () -> { ...; return count; }
Future<Long> result = exec.submit(task);

▪ The result is a future—an object that represents a computation whose
result will be available at some future time.



Executor Services

▪ The Executors has factory methods for making executor services:

ExecutorService exec = Executors.newCachedThreadPool();
// Good for many tasks that are short-lived or mostly block

int processors = Runtime.getRuntime().availableProcessors();
int nthreads = processors - 2;
ExecutorService exec = Executors.newFixedThreadPool(nthreads);

// Good for computationally intensive tasks

▪ The ForkJoinPool has a set of tasks queues (typically one per processor)
• Idle processors “steal” tasks from busy ones
• Good for workloads that recursively divide tasks into smaller ones
• Bad for blocking tasks

▪ Java EE has ManagedExecutorService, ScheduledExecutorService
• Access to contextual services
• Transactions, security, etc.



Futures

▪ Submitting a Callable to an Executor yields a Future:

Callable<Long> task = () -> { ...; return count; }
Future<Long> resultFuture = exec.submit(task);

▪ A call to get blocks until the result is available:

Long actualResult = resultFuture.get();

▪ Block until all tasks are done:

Set<Path> paths = ...;
List<Callable<Long>> tasks = new ArrayList<>();
for (Path p : paths) tasks.add(() -> { ...; return count; });
List<Future<Long>> results = executor.invokeAll(tasks);
for (Future<Long> result : results) sum += result.get();



InvokeAny

▪ When searching for a match, want to stop after the first result
becomes available.

▪ Use the invokeAny method:

List<Callable<Path>> tasks = new ArrayList<>();
for (Path p : files) tasks.add(

() -> { if (word occurs in p) return p; else throw ... });
Path found = executor.invokeAny(tasks);

▪ As soon as a result is found, the other tasks are canceled.



Callable Demo



Asynchronous Processing

▪ When a thread waits for a result, it can't do work.
▪ Asynch I/O avoids blocking, using callbacks when results are

available.
▪ Example: Play web framework—a few non-blocking threads serve

many users.
▪ Requires asynchronous programming style.
▪ CompletionStage<T> interface provides many methods for composing

callbacks.
▪ A CompletableFuture<T> is a Future<T> and a CompletionStage<T>



Working with Completable Futures

▪ Turn your processing pipeline into a sequence of methods. When a
method is time-consuming, make it return a CompletableFuture:

public CompletableFuture<String> readPage(URL url)
public List<URL> getImageURLs(String webpage) // Not time-consuming
public CompletableFuture<List<BufferedImage>> getImages(List<URL> urls)
public void saveImages(List<BufferedImage> images)

▪ Now you can compose the operations:

CompletableFuture.completedFuture(urlToProcess)
.thenComposeAsync(this::readPage, executor)
.thenApply(this::getImageURLs)
.thenCompose(this::getImages)
.thenAccept(this::saveImages);

▪ All xxxAsync methods optionally take an Executor argument



Dealing with Errors

▪ When any of the steps in the pipeline throws an exception, processing
terminates with a CompletionException that wraps the original
exception.

▪ You can substitute a value for an exception:

CompletableFuture.completedFuture(urlToProcess)
.thenComposeAsync(this::readPage, executor)
.exceptionally(ex -> "<html></html>")
.thenApply(this::getImageURLs)

▪ Timeout handling:

CompletableFuture.completedFuture(urlToProcess)
.thenComposeAsync(this::readPage, executor)
.completeOnTimeout("<html></html>", 30, TimeUnit.SECONDS)
.thenApply(this::getImageURLs)

▪ Or throw an exception instead:

...orTimeout(30, TimeUnit.SECONDS)



Combining Results

▪ Run two computations in parallel and combine results:

CompletableFuture<T> future1 = ...;
CompletableFuture<U> future2 = ...;
CompletableFuture<V> combined = future1.thenCombine(future2, combiner);

// combiner takes arguments of type T and U, producing a result of type V

▪ CompletableFuture.allOf waits for multiple completable futures to
complete, but it doesn't combine the results.

▪ If you are happy with either of two results, use the applyToEither
method:

CompletableFuture<U> combined = future1.applyToEither(future2, transform);
// transform maps T to U

▪ CompletableFuture.anyOf yields one result for a sequence of futures.
▪ In both cases, no cancellation of the other future(s)



Cancelation

▪ Java uses cooperative interruption mechanism.
▪ Cancelable task must periodically yield or monitor “interrupted” flag of

the thread.
▪ Future<T> interface has a cancel method
▪ Canceling a Future produced by ExecutorService.submit/invokeAny/
invokeAll works as expected.

▪ Canceling a CompletableFuture does not interrupt the underlying
thread (because it has no idea what that might be)

▪ Various third party library implementations of “completable tasks” that
are bound to an executor, such as https://github.com/vsilaev/
tascalate-concurrent

https://github.com/vsilaev/tascalate-concurrent
https://github.com/vsilaev/tascalate-concurrent


CompletableFuture Demo



Parallel Streams

▪ Use parallel streams if you work on in-memory data and do
substantial work:

long result = coll.parallelStream()
.filter(e -> workHardToCheckSomeCondition(e)).count();

▪ The data structure needs to be splittable
• Streams generate by iterate aren't splittable
• Files.lines ok in Java 9, not ok in Java 8

▪ Of course, your lambdas need to be threadsafe

coll.parallelStream().forEach(s -> if (...) counter++; );
// NO!!!—Use filter(...).count()

▪ Blocking in your lambdas might starve the fork-join pool
▪ It is possible to supply own executor:

ForkJoinPool executor = new ForkJoinPool(4);
ComputableFuture<Long> result = CompletableFuture.supplyAsync(() ->

coll.parallelStream().filter(...).count(), executor);



Parallel Streams Demo



Concurrency—What Could Possibly Go Wrong?

▪ Concurrent programming is incredibly hard.
▪ Shared data can be corrupted.
▪ Program deadlocks when no thread can proceed.
▪ Bugs are nondeterministic.

• “But it works on my machine!”

▪ Step 1: Understand what can go wrong.
▪ Step 2: Understand what you can do to avoid problems.



Visibility

▪ Two threads accessing the same variable:

private static boolean done = false;
Runnable hellos = () -> {

doWork();
done = true;

};
Callable goodbye = () -> {

while (!done) sleep(1000);
return doMoreWork(); // May never happen!

};

▪ The effect of done = true; in one thread is not visible to the other thread!
▪ Lack of visibility can be caused by caching.

• RAM is slow, so each processor caches recently accessed variables.

▪ Lack of visibility can be caused by instruction reordering.

while (!done) i++; ⇒ if (!done) while (true) i++;



Race Conditions

▪ Concurrent tasks update a shared counter:

private static volatile int count = 0;
...
count++; // Task 1
...
count++; // Task 2
...

▪ The update count++ is not atomic.

register = count;
Increment register // What if context switch happens here?
count = register;

▪ It's not just counters:

// Add value to linked list queue
Node n = new Node();
if (head == null) head = n;
else tail.next = n;
tail = n; // What if context switch happens here?
tail.value = newValue;



Strategies for Safe Concurrency

▪ Unfortunately, no equivalent to garbage collection for safe
concurrency.

▪ Strategy: confinement.
• Don't share data among tasks.
• Example: Each task has its own result list, and the lists are combined after the tasks

finish.

▪ Strategy: immutability.
• It is safe to share immutable data structures.
• Need special data structures for efficient accumulation.

▪ Strategy: locking.
• Temporarily block other tasks when carrying out updates.
• Can be expensive—other tasks wait idly.
• Can be dangerous—deadlocks and subtle programming errors.
• Best left to experts.



Confinement

▪ Example: Word count in multiple files.
▪ Updating a shared map is hard.
▪ Have each task compute a separate map.
▪ Safe handover to combining task:

• Have each task return a map: Callable<Map<String, Long>>
• Or put results into blocking queue.

▪ The data structure is never accessed by more than one task.



Concurrent Hash Maps

▪ The java.util.concurrent package supplies ConcurrentHashMap and
other concurrent data structures.

▪ Safe to mutate concurrently.
▪ Clever implementations allow simultaneous updates in different parts

of the hash table.
• Don't try implementing this at home!

▪ Iterators are “weaky consistent”.
• Elements present at the onset of the iteration are presented.
• Later modifications may or may not be reflected.
• No ConcurrentModificationException



Working with Concurrent Hash Maps

▪ ConcurrentHashMap won't be damaged by concurrent mutations.
▪ That doesn't mean that your algorithms are threadsafe:

Long oldValue = map.get(word);
Long newValue = oldValue == null ? 1 : oldValue + 1;
map.put(word, newValue); // NO!!!—might not replace oldValue

▪ Use methods for atomic updates:

map.compute(word, (k, v) -> v == null ? 1 : v + 1);
// Or simply map.merge(word, 1L, Long::sum);

▪ Lambdas should complete quickly and not mutate the map!
▪ computeIfPresent, computeIfAbsent, putIfAbsent
▪ Bulk operations addAll, forEach, reduce, search, replaceAll



ConcurrentHashMap Demo



Immutable Classes

▪ Class is immutable if instance can't change after construction.
▪ Examples: String, java.time.ZonedDateTime
▪ But how do you collect results?.
▪ Using HashSet for aggregating results is dangerous:

results.add(newResult); // What if another thread accesses results?

▪ With a “persistent” set (not in the Java API), you can update like this:

results2 = results.add(newResult);

▪ Inexpensive—results and results2 share most structure.
▪ Check out PCollections, Vavr, Cyclops, Paguro
▪ Not a silver bullet:

results = results.add(newResult); // Still a mutation



What About ...

▪ Atomics?
▪ Intrinsic locks?

synchronized (hashTable) {
for (K key : hashTable.keySet()) ...

}

synchronized ("LOCK") { // ?
for (K key : hashTable.keySet()) ...

}

▪ Synchronized methods, wait, notify, notifyAll?
• Per Brinch Hansen: “It is astounding to me that Java’s insecure parallelism is taken

seriously by the programming community, a quarter of a century after the invention of
monitors and Concurrent Pascal. It has no merit.” [Java’s Insecure Parallelism, ACM
SIGPLAN Notices 34:38–45, April 1999.]

▪ Semaphore, CountDownLatch, CyclicBarrier, Phaser?



A Glimpse into the Future

▪ Concurrent programming model is awkward
▪ Mismatch between OS threads and tasks pushes APIs towards async
▪ Other languages have syntactic sugar for continuation passing:

async function getStuff() {
const a = await getFirst();
const b = await getSecond();
return combine(a, b);

}

▪ A future version of Java may get “fibers”
• Lightweight threads, like the “green threads” from Java 1.0
• Blocking operation “parks” the fiber—very inexpensive

▪ May also get continuations:
generator() {

while (...) {
n = next(n);
yield(n);

}
}

main() {
c = continuation(generator);
x = c.continue();
y = c.continue();

}



Summary

▪ Think tasks, not threads
▪ Pick the right executor service
▪ Use completable futures for asynchronous computation
▪ API has some rough edges—third party libraries may help
▪ Use parallel streams when appropriate (large in-memory data)
▪ Confinement, immutability, threadsafe data structures
▪ Don't use exotic stuff (phasers, cyclic barriers)
▪ Don't use what they taught you in school (locks and conditions)



Where to Learn More

▪ Java Concurrency in Practice
▪ Core Java for the Impatient
▪ The Art of Multiprocessor Programming
▪ Tomasz Nurkiewicz' blog http://www.nurkiewicz.com
▪ Heinz Kabutz' newsletter http://www.javaspecialists.eu
▪ IBM Developerworks JVM Concurrency series
▪ Doug Schmidt's LiveLessons

http://www.nurkiewicz.com
http://www.javaspecialists.eu
https://www.ibm.com/developerworks/library/j-jvmc1/index.html
http://www.dre.vanderbilt.edu/~schmidt/LiveLessons/CPiJava/

	Java Concurrency For Humans
	Outline
	Old School Concurrency
	Tasks, Not Threads
	Executor Services
	Futures
	InvokeAny
	Callable Demo
	Asynchronous Processing
	Working with Completable Futures
	Dealing with Errors
	Combining Results
	Cancelation
	CompletableFuture Demo
	Parallel Streams
	Parallel Streams Demo
	Concurrency—What Could Possibly Go Wrong?
	Visibility
	Race Conditions
	Strategies for Safe Concurrency
	Confinement
	Concurrent Hash Maps
	Working with Concurrent Hash Maps
	ConcurrentHashMap Demo
	Immutable Classes
	What About ...
	A Glimpse into the Future
	Summary
	Where to Learn More

