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Outline

▪ Audience: Application programmers
▪ Goal: Modern Concurrency Constructs
▪ Executors and Futures
▪ Asynchronous Processing with CompletableFuture
▪ Parallel Streams
▪ Safe Handoff
▪ Threadsafe Data Structures

• And how to use them safely

▪ Cancelation
▪ What Not to Do



Old School Concurrency

▪ Given a Set<Path> of file paths and a string word, find all files that
contain the word.

▪ Make a thread for each task.
▪ Use a lock around the result collection.

▪ Set<Path> results = new HashSet<>();
for (Path p : paths)

new Thread(() -> {
if (word occurs in p)

synchronized (results) { results.add(p); }
}).start();

▪ That could be a lot of threads.
• Thread creation and context switches are not free.

▪ Are you sure the hash set won't be corrupted?
▪ When is it all done?



Tasks, Not Threads

▪ Use an executor to execute tasks.
▪ A task can be a Runnable (presumably with a side effect):

Runnable task = () -> { ... };
ExecutorService exec = ...;
exec.execute(task);

▪ Or better, make the task compute a result:

Callable<Long> task = () -> { ...; return count; }
Future<Long> result = exec.submit(task);

▪ The result is a future—an object that represents a computation whose
result will be available at some future time.



Executor Services

▪ The Executors has factory methods for making executor services:

ExecutorService exec = Executors.newCachedThreadPool();
// Good for many tasks that are short-lived or mostly block

int processors = Runtime.getRuntime().availableProcessors();
int nthreads = processors - 2;
ExecutorService exec = Executors.newFixedThreadPool(nthreads);

// Good for computationally intensive tasks

▪ The ForkJoinPool has a set of tasks queues (typically one per processor)
• Idle processors “steal” tasks from busy ones
• Good for workloads that recursively divide tasks into smaller ones
• Bad for blocking tasks

▪ Java EE has ManagedExecutorService, ScheduledExecutorService
• Access to contextual services
• Transactions, security, etc.



Futures

▪ Submitting a Callable to an Executor yields a Future:

Callable<Long> task = () -> { ...; return count; }
Future<Long> resultFuture = exec.submit(task);

▪ A call to get blocks until the result is available:

Long actualResult = resultFuture.get();

▪ Block until all tasks are done:

Set<Path> paths = ...;
List<Callable<Long>> tasks = new ArrayList<>();
for (Path p : paths) tasks.add(() -> { ...; return count; });
List<Future<Long>> results = executor.invokeAll(tasks);
for (Future<Long> result : results) sum += result.get();



InvokeAny

▪ When searching for a match, want to stop after the first result
becomes available.

▪ Use the invokeAny method:

List<Callable<Path>> tasks = new ArrayList<>();
for (Path p : files) tasks.add(

() -> { if (word occurs in p) return p; else throw ... });
Path found = executor.invokeAny(tasks);

▪ As soon as a result is found, the other tasks are canceled.



Callable Demo



Asynchronous Processing

▪ When a thread waits for a result, it can't do work.
▪ Asynch I/O avoids blocking, using callbacks when results are

available.
▪ Example: Play web framework—a few non-blocking threads serve

many users.
▪ Requires asynchronous programming style.
▪ CompletionStage<T> interface provides many methods for composing

callbacks.
▪ A CompletableFuture<T> is a Future<T> and a CompletionStage<T>



Working with Completable Futures

▪ Turn your processing pipeline into a sequence of methods. When a
method is time-consuming, make it return a CompletableFuture:

public CompletableFuture<String> readPage(URL url)
public List<URL> getImageURLs(String webpage) // Not time-consuming
public CompletableFuture<List<BufferedImage>> getImages(List<URL> urls)
public void saveImages(List<BufferedImage> images)

▪ Now you can compose the operations:

CompletableFuture.completedFuture(urlToProcess)
.thenComposeAsync(this::readPage, executor)
.thenApply(this::getImageURLs)
.thenCompose(this::getImages)
.thenAccept(this::saveImages);

▪ All xxxAsync methods optionally take an Executor argument



Dealing with Errors

▪ When any of the steps in the pipeline throws an exception, processing
terminates with a CompletionException that wraps the original
exception.

▪ You can substitute a value for an exception:

CompletableFuture.completedFuture(urlToProcess)
.thenComposeAsync(this::readPage, executor)
.exceptionally(ex -> "<html></html>")
.thenApply(this::getImageURLs)

▪ Timeout handling:

CompletableFuture.completedFuture(urlToProcess)
.thenComposeAsync(this::readPage, executor)
.completeOnTimeout("<html></html>", 30, TimeUnit.SECONDS)
.thenApply(this::getImageURLs)

▪ Or throw an exception instead:

...orTimeout(30, TimeUnit.SECONDS)



Combining Results

▪ Run two computations in parallel and combine results:

CompletableFuture<T> future1 = ...;
CompletableFuture<U> future2 = ...;
CompletableFuture<V> combined = future1.thenCombine(future2, combiner);

// combiner takes arguments of type T and U, producing a result of type V

▪ CompletableFuture.allOf waits for multiple completable futures to
complete, but it doesn't combine the results.

▪ If you are happy with either of two results, use the applyToEither
method:

CompletableFuture<U> combined = future1.applyToEither(future2, transform);
// transform maps T to U

▪ CompletableFuture.anyOf yields one result for a sequence of futures.
▪ In both cases, no cancellation of the other future(s)



Cancelation

▪ Java uses cooperative interruption mechanism.
▪ Cancelable task must periodically yield or monitor “interrupted” flag of

the thread.
▪ Future<T> interface has a cancel method
▪ Canceling a Future produced by ExecutorService.submit/invokeAny/
invokeAll works as expected.

▪ Canceling a CompletableFuture does not interrupt the underlying
thread (because it has no idea what that might be)

▪ Various third party library implementations of “completable tasks” that
are bound to an executor, such as https://github.com/vsilaev/
tascalate-concurrent

https://github.com/vsilaev/tascalate-concurrent
https://github.com/vsilaev/tascalate-concurrent


CompletableFuture Demo



Parallel Streams

▪ Use parallel streams if you work on in-memory data and do
substantial work:

long result = coll.parallelStream()
.filter(e -> workHardToCheckSomeCondition(e)).count();

▪ The data structure needs to be splittable
• Streams generate by iterate aren't splittable
• Files.lines ok in Java 9, not ok in Java 8

▪ Of course, your lambdas need to be threadsafe

coll.parallelStream().forEach(s -> if (...) counter++; );
// NO!!!—Use filter(...).count()

▪ Blocking in your lambdas might starve the fork-join pool
▪ It is possible to supply own executor:

ForkJoinPool executor = new ForkJoinPool(4);
ComputableFuture<Long> result = CompletableFuture.supplyAsync(() ->

coll.parallelStream().filter(...).count(), executor);



Parallel Streams Demo



Concurrency—What Could Possibly Go Wrong?

▪ Concurrent programming is incredibly hard.
▪ Shared data can be corrupted.
▪ Program deadlocks when no thread can proceed.
▪ Bugs are nondeterministic.

• “But it works on my machine!”

▪ Step 1: Understand what can go wrong.
▪ Step 2: Understand what you can do to avoid problems.



Visibility

▪ Two threads accessing the same variable:

private static boolean done = false;
Runnable hellos = () -> {

doWork();
done = true;

};
Callable goodbye = () -> {

while (!done) sleep(1000);
return doMoreWork(); // May never happen!

};

▪ The effect of done = true; in one thread is not visible to the other thread!
▪ Lack of visibility can be caused by caching.

• RAM is slow, so each processor caches recently accessed variables.

▪ Lack of visibility can be caused by instruction reordering.

while (!done) i++; ⇒ if (!done) while (true) i++;



Race Conditions

▪ Concurrent tasks update a shared counter:

private static volatile int count = 0;
...
count++; // Task 1
...
count++; // Task 2
...

▪ The update count++ is not atomic.

register = count;
Increment register // What if context switch happens here?
count = register;

▪ It's not just counters:

// Add value to linked list queue
Node n = new Node();
if (head == null) head = n;
else tail.next = n;
tail = n; // What if context switch happens here?
tail.value = newValue;



Strategies for Safe Concurrency

▪ Unfortunately, no equivalent to garbage collection for safe
concurrency.

▪ Strategy: confinement.
• Don't share data among tasks.
• Example: Each task has its own result list, and the lists are combined after the tasks

finish.

▪ Strategy: immutability.
• It is safe to share immutable data structures.
• Need special data structures for efficient accumulation.

▪ Strategy: locking.
• Temporarily block other tasks when carrying out updates.
• Can be expensive—other tasks wait idly.
• Can be dangerous—deadlocks and subtle programming errors.
• Best left to experts.



Confinement

▪ Example: Word count in multiple files.
▪ Updating a shared map is hard.
▪ Have each task compute a separate map.
▪ Safe handover to combining task:

• Have each task return a map: Callable<Map<String, Long>>
• Or put results into blocking queue.

▪ The data structure is never accessed by more than one task.



Concurrent Hash Maps

▪ The java.util.concurrent package supplies ConcurrentHashMap and
other concurrent data structures.

▪ Safe to mutate concurrently.
▪ Clever implementations allow simultaneous updates in different parts

of the hash table.
• Don't try implementing this at home!

▪ Iterators are “weaky consistent”.
• Elements present at the onset of the iteration are presented.
• Later modifications may or may not be reflected.
• No ConcurrentModificationException



Working with Concurrent Hash Maps

▪ ConcurrentHashMap won't be damaged by concurrent mutations.
▪ That doesn't mean that your algorithms are threadsafe:

Long oldValue = map.get(word);
Long newValue = oldValue == null ? 1 : oldValue + 1;
map.put(word, newValue); // NO!!!—might not replace oldValue

▪ Use methods for atomic updates:

map.compute(word, (k, v) -> v == null ? 1 : v + 1);
// Or simply map.merge(word, 1L, Long::sum);

▪ Lambdas should complete quickly and not mutate the map!
▪ computeIfPresent, computeIfAbsent, putIfAbsent
▪ Bulk operations addAll, forEach, reduce, search, replaceAll



ConcurrentHashMap Demo



Immutable Classes

▪ Class is immutable if instance can't change after construction.
▪ Examples: String, java.time.ZonedDateTime
▪ But how do you collect results?.
▪ Using HashSet for aggregating results is dangerous:

results.add(newResult); // What if another thread accesses results?

▪ With a “persistent” set (not in the Java API), you can update like this:

results2 = results.add(newResult);

▪ Inexpensive—results and results2 share most structure.
▪ Check out PCollections, Vavr, Cyclops, Paguro
▪ Not a silver bullet:

results = results.add(newResult); // Still a mutation



What About ...

▪ Atomics?
▪ Intrinsic locks?

synchronized (hashTable) {
for (K key : hashTable.keySet()) ...

}

synchronized ("LOCK") { // ?
for (K key : hashTable.keySet()) ...

}

▪ Synchronized methods, wait, notify, notifyAll?
• Per Brinch Hansen: “It is astounding to me that Java’s insecure parallelism is taken

seriously by the programming community, a quarter of a century after the invention of
monitors and Concurrent Pascal. It has no merit.” [Java’s Insecure Parallelism, ACM
SIGPLAN Notices 34:38–45, April 1999.]

▪ Semaphore, CountDownLatch, CyclicBarrier, Phaser?



A Glimpse into the Future

▪ Concurrent programming model is awkward
▪ Mismatch between OS threads and tasks pushes APIs towards async
▪ Other languages have syntactic sugar for continuation passing:

async function getStuff() {
const a = await getFirst();
const b = await getSecond();
return combine(a, b);

}

▪ A future version of Java may get “fibers”
• Lightweight threads, like the “green threads” from Java 1.0
• Blocking operation “parks” the fiber—very inexpensive

▪ May also get continuations:
generator() {

while (...) {
n = next(n);
yield(n);

}
}

main() {
c = continuation(generator);
x = c.continue();
y = c.continue();

}



Summary

▪ Think tasks, not threads
▪ Pick the right executor service
▪ Use completable futures for asynchronous computation
▪ API has some rough edges—third party libraries may help
▪ Use parallel streams when appropriate (large in-memory data)
▪ Confinement, immutability, threadsafe data structures
▪ Don't use exotic stuff (phasers, cyclic barriers)
▪ Don't use what they taught you in school (locks and conditions)



Where to Learn More

▪ Java Concurrency in Practice
▪ Core Java for the Impatient
▪ The Art of Multiprocessor Programming
▪ Tomasz Nurkiewicz' blog http://www.nurkiewicz.com
▪ Heinz Kabutz' newsletter http://www.javaspecialists.eu
▪ IBM Developerworks JVM Concurrency series
▪ Doug Schmidt's LiveLessons

http://www.nurkiewicz.com
http://www.javaspecialists.eu
https://www.ibm.com/developerworks/library/j-jvmc1/index.html
http://www.dre.vanderbilt.edu/~schmidt/LiveLessons/CPiJava/
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