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Background: The overall utility of the Rothman Index (RI), a global measure of inpatient acuity, for
surgical patients is unclear. We evaluate whether RI variability can predict rapid response team (RRT)
activation in surgical patients.
Methods: Surgical patients who underwent RRT activation from 2013 to 2015 were matched to four
control cases. RI variability was gauged by maximum minus minimum RI (MMRI) and RI standard de-
viation (RISD) within a 24-h period before RRT. The primary outcome measured was RRT activation, and
our secondary outcome was in-hospital mortality.
Results: Two hundred seventeen (217) patients underwent RRT. RISD (odds ratio, OR, 1.31, 95% confi-
dence interval, CI, 1.23e1.38, P < 0.001; area under receiver operating characteristic, AUROC, curve 0.74,
95% CI 0.70e0.77) and MMRI (OR 1.10, 95% CI 1.08e1.12, P < 0.001; AUROC 0.76, 95% CI 0.72e0.79)
predicted increased likelihood of RRT.
Conclusions: RISD is predictive of RRT.

© 2017 Elsevier Inc. All rights reserved.
1. Introduction

The Institute for Healthcare Improvement's call for significant
reduction in hospital mortality during the “100,000 Lives
Campaign” motivated the rapid, nationwide adoption of rapid
response teams (RRT) or medical emergency response systems. The
goal of RRT activation is to quickly mobilize a skilled, pre-
determined team of first responders to address potential clinical
deterioration prior to cardiac arrest. Despite significant attention to
outcome following RRT activation, its effect on reducing patient
cardiac arrest and unexpected patient mortality is mixed.1e5

Although there has been near universal adoption of RRT, criteria
for activation are not well defined, and there is significant site-to-
site practice variation in both pediatric and adult hospitals.6,7

In order to aid the identification of general ward patients
experiencing physiologic decline, several early warning scores have
been developed.8e12 Their promise lies in their potential to high-
light patients in need of additional monitoring and deliver
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increased resources in a timely fashion, prior to decompensation.
The downsides of many early warning systems, and physiologic
assessment scores in general, are that they are mostly based on
expert opinion, can overweigh the importance of vital signs, were
developed and validated to predict specific endpoints (cardiac ar-
rest), or apply only in ICU settings (e.g. Sequential Organ Failure
Assessment Score). The recent mandate for electronic medical re-
cords (EMR) resulted in an abundance of patient data offering great
potential to identify patients on the verge of deterioration. One
such measure is the Rothman Index.

The Rothman Index (RI) is a gauge of inpatient acuity incorpo-
rating twenty-six data points (Table 1) readily accessible from EMR,
including vital signs, lab values, cardiac rhythm, and nursing
assessments.13e15 It is a partially heuristic model defined by the
excess contribution of each variable to the risk of one-year mor-
tality. In the original model derivation, variables from among ~500
laboratory values and ~6500 EMR flowsheet inputs were consid-
ered if they directly reflected current inpatient condition, were
regularly collected on all patients, and could be expected to change
over the course of an inpatient staydi.e., the values that would
highlight a patient's most up-to-the-minute clinical status. To this
end, the model ultimately included the most frequently collected
variables with the highest degree of correlation. Laboratory values
are treated on a continuous basis, nursing assessments are
riability predicts clinical deterioration and rapid response activation,
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Table 1
Components of the Rothman Index.15

Vital Signs6 Temperature
Diastolic blood pressure
Systolic blood pressure
Blood oxygen saturation
Respiration rate
Heart rate

Laboratory tests7 Creatinine
Sodium
Chloride
Potassium
Blood urea nitrogen (BUN)
White blood cell count (WBC)
Hemoglobin

Cardiac Rhythm1 Choose one of: asystole, sinus rhythm,
sinus bradycardia, sinus tachycardia,
atrial fibrillation, atrial flutter, heart
block, junctional rhythm, paced,
ventricular fibrillation, ventricular
tachycardia

Nursing assessments12 Cardiac
Respiratory
Gastrointestinal
Genitourinary
Neurological
Skin
Safety
Peripheral Vascular
Food/Nutrition
Psychosocial
Musculoskeletal
Braden score
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considered on a pass/fail basis, and cardiac rhythms are treated
categorically based on each rhythm's contribution to excess mor-
tality. A maximum score of 100 indicates variables consistent with
no excess risk, and the score is reduced proportionate to increasing
risk. The model was derived from inpatient data at a large regional
medical center and validated against separate inpatient data from
the same institution and other large teaching institutions.15

RI is updated continually throughout the day whenever new
patient data is recorded and contributes to RI calculation for up to
forty-eight hours after collection. While the excess risk functions
for input variables were developed using one-year mortality data,
RI itself was not modeled to predict this particular end point.
Instead, evidence supports its prediction of other outcomes
including discharge disposition, twenty-four hour mortality, and
thirty-day readmission.15,16 It has also been shown to correlatewith
other physiologic scores (MEWS, APACHE III), while improving ac-
curacy in identifying patients at risk for imminent cardiopulmo-
nary arrest.15,17 Others report decreased mortality when RI is
employed as the continuous monitoring platform of choice.18

Nevertheless, these studies include internal medicine patients
and little is reported on the utility of RI in surgical patients.

There is some evidence to support RI's utility in managing sur-
gical inpatients. RI can stratify patients after colorectal surgery for
risk of post-operative complications, including sepsis.19 RI may also
play a role in the management of surgical intensive care unit (SICU)
patients, as patients with declining RI at SICU discharge are at
increased risk of readmission within forty-eight hours.20 Less is
known about the use of RI in managing surgical floor patients.
Specifically, the correlation of RI with surgical floor patient acuity
and its ability to predict RRT activation is unknown. This study aims
to fill that knowledge gap and identify the degree to which change
in RI values over the course of twenty-four hours can forecast RRT
activation. Such knowledge may potentially facilitate improved
recognition and triage of surgical floor patients at risk for deterio-
ration for transfer to a higher level of care.
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2. Methods

2.1. Rothman Index calculation

The Rothman Index (PeraHealth, Charlotte, NC) is a proprietary,
third-party algorithm that is fully automated and embeddedwithin
existing commercial electronic medical records. Twenty-six vari-
ables, twelve of which are nursing assessments, including vital
signs and laboratory values are tabulated and continuously updated
as new values become available. A composite score is rendered and
color bars are graphically displayed to demonstrate a patient's
overall physiologic condition.

2.2. RRT activation

Hospital wide RRT activation policy endorses widely accepted
trigger criteria (such as deterioration of vital signs, mental status
changes, airway compromise) for which providers are expected to
activate RRT. Response teams consists of a physician, experienced
critical care nurse, and respiratory therapist.21

2.3. Patient dataset

Cases consisted of 217 consecutive post-operative patient en-
counters with RRT activations and at least three consecutive
Rothman Index readings over the period from 2013 through 2015.
Each case was matched to four different controls from the same
hospital floor with at least three Rothman Index readings within
the same twenty-four-hour time interval. Case matching in this
manner is previously described.22 Patients were excluded if they
had previously experienced RRTactivation during that admission or
if they did not meet entry criteria. Data was retrospectively
retrieved from the electronic medical record database. This study
was approved by the Yale Human Investigation Committee and the
Yale Human Research Protection Program. Written informed con-
sent was not required for reviewing retrospective de-identified
patient data.

2.4. Observations and outcomes

Our primary observation was change in the Rothman Index
within a given twenty-four-hour interval. Change in Rothman In-
dex was assessed as Rothman Index standard deviation (RISD) and
maximum-minus-minimum Rothman Index (MMRI). Our primary
outcome was documented activation of the rapid response team
(RRT) code during hospitalization. Our secondary outcome was in-
hospital mortality and disposition at discharge (independence or
not). Rothman Index was not used to make clinical decisions.

2.5. Statistical methods

Variables were expressed as means with standard deviations,
medians with interquartile ranges or percentages, and compared
respectively using c2 tests, Mann-Whitney rank sum tests, or two-
sample T-tests after checking for equal variance and using Welch's
approximation for degrees of freedom.23 Association between
change in Rothman Index and outcome (RRT or in-hospital mor-
tality) was assessed using conditional logistic regressionwith ward
as the matched variable. This was done to minimize the effect of
nursing and specific ward practice differences. Multivariable anal-
ysis was also performed adjusting for possible confounders. Pre-
dictive accuracy was assessed using areas under the receiver
operating characteristic curve (AUROC). Standard errors were
calculated by the DeLongmethod.24 Sensitivity and specificity were
assessed by 2 � 2 table analysis after AUROC. P values < 0.05 two-
riability predicts clinical deterioration and rapid response activation,
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tailed were considered statistically significant. Statistical analyses
were performed using STATA 14/IC software package (StataCorp LP,
College Station, Texas).

3. Results

Two hundred seventeen (217) cases of rapid response team code
activation (RRT) and 868 ward-matched controls were included in
this study. Their baseline characteristics are summarized in Table 2.
Gender and age differed significantly between cases and controls,
and were causally linked to both RRT and the Rothman Index (RI);
therefore, they were adjusted for as possible confounders in sub-
sequent analyses. There was no difference in race or payer status.

First, the change in RI as a predictor of RRT was assessed. RI
variability was quantified as RI standard deviation (RISD) and
maximum-minus-minimum RI (MMRI) over a given 24-h window.
RISD and MMRI were both associated with RRT activation after
adjusting for gender and age (P < 0.05, Table 3). Agreement be-
tween RRT and RISD or MMRI was quantified using areas under the
receiver operating characteristic curve (AUROC). RISD predicted
RRT with AUROC of 0.74, 95% confidence interval (CI) (0.70, 0.77).
Likewise, MMRI predicted RRT with AUROC of 0.76, 95% CI (0.72,
0.79). There was no significant difference in AUROC between RISD
and MMRI (P ¼ 0.428 Fig. 1 and Table 3).

Using AUROC, we further evaluated specificity and sensitivity for
prediction of RRT at various cutoffs for RISD andMMRI. We selected
a cutoff of 3.0 for RISD and a cutoff of 8 for MMRI to maximize
sensitivity. At these cutoffs, RISD predicted RRT with a sensitivity of
91.7% but specificity of 39.9%. Likewise, MMRI predicted RRT with a
sensitivity of 92.2 but specificity of 37.3% (Table 4). Consistent with
our analysis, for this dataset the RISD cutoff (3.0) would have pre-
dicted 93% of RRT patients, whereas the MMRI cutoff (8) would
have predicted 92% of RRT patients. Additionally, RISD captured 5 of
the 17 (29%) patientsmissed byMMRI, whereasMMRI captured 4 of
16 (25%) patients missed by RISD. This indicates that sensitivity
might be increased by a consideration of both values simulta-
neously, although this would come at the cost of decreased
specificity.

In this study RRT cases had higher rates in-hospital mortality
compared to controls (adjusted odds ratio 17.4, P ¼ 0.008, Table 5).
Given the ability of RISD and MMRI to predict RRT, we next deter-
mined whether MMRI could predict in-hospital mortality. MMRI
and RISD were not significant predictors of in-hospital mortality
(adjusted odds ratios of 1.06, P ¼ 0.36, and 1.03, P ¼ 0.21, respec-
tively, Table 5).

4. Discussion

Although there is some evidence that RI is correlated to post-
operative complications and unplanned readmissions to the
Table 2
Baseline patient characteristics comparing cases and controls. P values from c2 tests
comparing means, from Mann-Whitney rank sum tests comparing medians or from
two-sample T-tests comparing ratios. *P values < 0.05 two-tailed considered sta-
tistically significant. IQR ¼ inter-quartile range, SD ¼ standard deviation,
MMRI ¼ maximum minus minimum Rothman Index, RISD ¼ Rothman Index stan-
dard deviation.

Patient characteristics Cases Controls P value

Number of patients 217 868 e

RISD, median (IQR) 6.1 (3.9) 3.7 (3.6) <0.001*
MMRI, median (IQR) 19.7 (14) 10.9 (11.7) <0.001*
Female, % 52.5 42.3 0.007*
Admit Age, mean (SD) 63.1 (16.5) 59.0 (17.1) 0.002*
Independent at discharge, % 22.0 44.1 <0.001*
In-hospital mortality, % 3.7 0.3 <0.001*
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surgical intensive care unit,19,20 the precise role of RI in the man-
agement of surgical floor patients remains ill defined. Additionally,
since RI was developed as a continuous, global indicator of patient
physiology, it is potentially a reasonable marker of deterioration,
and more specifically an early warning mechanism prior to overt
decompensation. The specific goal for this study was to understand
how fluctuation of RI over a twenty-four-hour period could predict
RRT activation. The most at-risk patients could then be targeted for
closer monitoring or other specific interventions including RRT
activation and transfer to a higher level of care. Over- and under-
activation of RRT is not well studied, but clearly hospital re-
sources are necessary for a multidisciplinary team approach to
emergency response on the ward. RRT is one important measure to
minimize failure-to-rescue scenarios; the tradeoff is often high
false positive rates as is the case when using our proposed RSID and
MMRI cutoffs (Table 4).25 If RI variability can predict RRT activation,
there exists potential to improve outcomes by delivering care more
efficiently and to reduce costs by devoting resources to those with
the greatest likely need. These are important subjects of future
study.

If RRT activation coarsely reflects the degree of inpatient acuity
and decompensation, it may not be surprising that patients who
underwent RRT activation are generally older, more likely to die in
the hospital, or more likely to require additional post-discharge
services as demonstrated in this study. Not surprisingly, in-
hospital mortality and non-independence at discharge are worse
for study patients who required RRT, even when adjusted for age
and gender.

RISD and MMRI predicted RRT activationwith similar degrees of
accuracy. Although previous early warning systems were devel-
oped to predict cardiac arrest, not rapid response or medical
emergency team activation, RISD and MMRI behaved similarly in
terms of demonstrating substantially higher negative predictive
values (Table 4).17 In our sensitivity and specificity analysis, cutoffs
of 8 (MMRI) and 3.0 (RISD) were required in order to maximize
sensitivity. The rationale for maximizing sensitivity is to mitigate
the potential of missing patients who would otherwise require
rapid response activation. While median MMRI values were grossly
different between cases and controls (19.7 vs. 10.9), this highlights
the necessity of evaluating the patient's entire clinical picturewhen
interpreting RI trends for any individual patient. It is unclear the
degree to which more standardized RRT activation criteria would
affect the data.

Despite the demonstrated association between RI variability and
RRT activation, it is somewhat surprising that neither RISD nor
MMRI was associated with in-hospital mortality. This may be due,
in part, to the rare nature of mortality in our study cohort (three
control patients and eight RRT patients) making elucidation of such
an association more challenging.

Rapid response team is a common resource nationwide, yet the
literature does not establish a set of common criteria for its acti-
vation. The definition of clinical deterioration is similarly ill-defined
and depends on the covert, potentially late signs of impending
decompensation such as blood pressure and respiratory compro-
mise.26 Much of literature suggests that RRT is a valuable resource,
potentially reducing hospital stay, on-ward cardiac arrest, and
facilitating timely transfer to the intensive care unit. Studies
involving early warning systems and emergency response teams
have generally been low quality and difficult to generalize.27 Early
warning score, developed in response to the Institute for Health-
care Improvement's call to save 100,000 lives, is a bedside assess-
ment which establishes criteria for RRT activation largely based on
vital sign derangements and is labor intensive for the bedside
nurse. Ultimately, studies evaluating outcomes based on EWS have
contradictory results.28
riability predicts clinical deterioration and rapid response activation,
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Table 3
Prediction of rapid response team (RRT) code activation using change in Rothman Index over a 24-h interval. Odds ratios from univariable or multivariable conditional logistic
regression adjusting for age and gender. P values < 0.05 considered statistically significant. RISD ¼ Rothman Index standard deviation, MMRI ¼ maximum minus minimum
Rothman Index, OR ¼ odds ratio, Std Err ¼ standard error, AUROC ¼ areas under the receiver operating characteristic curve.

Variable OR 95% CI Std Err P Value Adj OR Adj 95% CI Adj Std Err Adj P Value AUROC 95% CI Std Err P value

RISD 1.31 1.24, 1.38 0.04 <0.001 1.31 1.23, 1.38 0.04 <0.001 0.74 0.70, 0.77 0.02 0.428
MMRI 1.10 1.08, 1.12 0.01 <0.001 1.10 1.08, 1.12 0.01 <0.001 0.76 0.72, 0.79 0.02 1.00

Fig. 1. AUROC for prediction of RRT using RISD and MMRI. RRT ¼ rapid response team,
RISD ¼ Rothman Index standard deviation, MMRI ¼ maximum minus minimum
Rothman Index, AUROC ¼ area under the receiver operating characteristic curve.

Table 4
Sensitivity and specificity analysis after AUROC for predicting RRT using change in
Rothman Index. AUROC ¼ area under the receiver operating characteristic curve,
RRT ¼ rapid response team, RISD ¼ Rothman Index standard deviation,
MMRI ¼ maximum minus minimum Rothman Index, NPV ¼ negative predictive
value, PPV ¼ positive predictive value.

RISD MMRI

Cutoff 3.0 8
Sensitivity % 91.7 92.2
Specificity % 39.9 37.3
NPV % 95.1 95.0
PPV % 27.7 26.9
LRþ 1.53 1.46
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There are several limitations to this study. Data garnered were
retrospective in nature; however, RI's were prospectively calculated
based on real-time information. We used randomly selected case
controls in a 4:1 (control: case) ratio as representative of the overall
nursing and ward conditions. Given that multiple surgical services
are represented in this study (Trauma and Emergency General
Surgery, Colorectal Surgery, Minimally Invasive/Bariatric Surgery,
Table 5
Prediction of in-hospital mortality using change in Rothman Index over a 24-h interval. O
for age and gender. P values < 0.05 considered statistically significant. RRT ¼ rapid res
minimum Rothman Index, OR ¼ odds ratio, Std Err ¼ standard error, AUROC ¼ areas un

Variable OR 95% CI Std Err P Value

RRT 10.67 2.83, 40.21 7.22 <0.001
RISD 1.03 0.92,1.16 0.06 0.57
MMRI 1.02 0.98, 1.07 0.02 0.28
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Surgical Oncology, Neurosurgery, Urology and Otolaryngology), the
case controls may not represent patients who did not sustain RRT.
We selected a 4:1 ratio to optimize case control matching which is
reported by other authors.29 Because RRT was such a rare event and
the surgical characteristics (surgery, surgeon, pathology) so
different, it was impractical to specifically case match controls. To
capture all patients who sustained RRT in the study period, the
sampling pool was necessarily broad. Additionally, it was necessary
to randomly select for controls to minimize introduction of bias.
While these patients were representative of patients in similar
clinical settings (same cohort of nurses and ancillary staff), they
were not selected based on care teammembership, disease process,
or surgical procedure. There were gender and age differences be-
tween control and case groups; however, these differences were
incorporated into themultivariate analysis as possible confounders.
Additionally, because RI is heavily dependent on nursing input, the
nursing ward and clinical shifts were deemed more relevant in-
dependent variables. We attempted to control for differences in
nursing staff and wards by limiting the controls to patients on the
same ward around the same time periods patients who suffered
RRT activation. Because the algorithm is proprietary, we are un-
certain about the precise weighting of nursing assessment which
involves some subjectivity versus objective data such as laboratory
values. There is evidence to support that subjective nursing input is
crucial in RRT activation.30 The data were collected at a single, large
tertiary care facility in the Northeast United States, and therefore
may not be reflective of institutions of different sizes or in different
regions.While RI was not actively integrated into the algorithms for
any treatment teams covering the respective surgical floors under
study, treatment teams were also not blinded to any patient RI
values. Finally, patients transferred to the SICU or surgical step-
down unit without RRT activation were not analyzed in this study.

Optimizing criteria for RRT activation remains elusive, but
additional tools such as RI may facilitate identification of surgical
patients at risk of cardiopulmonary compromise. Despite the large
amount of data required for its implementation, its potential
advantage is automation and ease of access. Perhaps the most
useful application of RI variability is to alert providers that the
patient may need additional monitoring due to impending RRT,
rather than activation of RRT based on this study. A comparison of
Rothman Index to traditional criteria for RRT activation in a pro-
spective fashion may elucidate if RI is superior to current practices
in detecting patient deterioration.
dds ratios from univariable or multivariable conditional logistic regression adjusting
ponse team, RISD ¼ Rothman Index standard deviation, MMRI ¼ maximum minus
der the receiver operating characteristic curve.

Adj OR Adj 95% CI Adj Std Err Adj P Value

17.36 2.09, 144.36 18.76 0.008
1.06 0.93, 1.21 0.07 0.36
1.03 0.98, 1.08 0.02 0.212

riability predicts clinical deterioration and rapid response activation,
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5. Conclusion

RI variability predicted likelihood of rapid response activation.
While RISD and MMRI predicted RRT, no variability measure pre-
dicted in-hospital mortality. Our data indicate that changes in RI
may be used as a marker of clinical deterioration and impending
RRT. There is potential for the use of RI variability as standard
criteria for RRT activation but will need to be the subject of future
study. Further validation of this work is necessary, both in terms of
expanding this retrospective analysis to other sites within our
system and carrying out prospective studies to determine if acti-
vation of RRT based on RI variability criteria result in decreased in
hospital mortality and on-ward cardiac arrest.
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