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ARTICLE INFO ABSTRACT

Keywords: Purpose: Early identification and treatment improve outcomes for patients with sepsis. Current screening tools
Sepsis, predicting sepsis are limited. We present a new approach, recognizing that sepsis patients comprise 2 distinct and unequal popu-
qSOFA lations: patients with sepsis present on admission (85%) and patients who develop sepsis in the hospital (15%)

Rothman Index with mortality rates of 12% and 35%, respectively.

Methods: Models are developed and tested based on 258 836 adult inpatient records from 4 hospitals. A “present
on admission” model identifies patients admitted to a hospital with sepsis, and a “not present on admission”
model predicts postadmission onset. Inputs include common clinical measurements and the Rothman Index.
Sepsis was determined using International Classification of Diseases, Ninth Revision, codes.

Results: For sepsis present on admission, area under the curves ranged from 0.87 to 0.91. Operating points chosen to
yield 75% and 50% sensitivity achieve positive predictive values of 17% to 25% and 29% to 40%, respectively. For sepsis
not present on admission, at 65% sensitivity, positive predictive values ranged from 10% to 20% across hospitals.
Conclusions: This approach yields good to excellent discriminatory performance among adult inpatients for
predicting sepsis present on admission or developed within the hospital and may aid in the timely delivery of care.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Sepsis is a complex illness with controversies embedded in its classi-
fication, epidemiology, presentation, diagnosis, and treatment. The past
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3 decades have witnessed significant developments in the definition
and conceptual understanding of the pathobiology of this condition
[1-3]. Over this time, the reported incidence of inpatient sepsis, espe-
cially severe sepsis (infection-induced organ dysfunction or tissue hy-
poperfusion), has increased, whereas related case-rate mortality has
decreased [4-8]. These trends are variously attributed to heightened
awareness, enhanced screening [9-11], improved critical care services,
proliferation of treatment bundles, and vigorous application of early
goal-directed therapies [6-8,12]. Simultaneously, the health care ecosys-
tem has evolved [13,14], with a growing emphasis on case identification
[6,8] driven by changes in diagnostic coding practices and policy-based
regulations that mandate hospital sepsis protocols [15]. Collectively,
these changes have produced a “denominator effect,” transforming sepsis
populations into larger, less severely ill groups of patients, many of whom
are not easily distinguished from the general patient populations [4,6,8,16].

An important distinction can be drawn between patients with sepsis
present on admission to the hospital (POA) and patients who develop
sepsis in the hospital, that is, not present on admission (NPOA).

0883-9441/© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Significant differences in incidence and mortality are associated with
these 2 modalities; around 85% of sepsis cases are POA with a mortality
rate of 12%, and 15% of sepsis cases are NPOA with a mortality rate of
35% [11].

In all cases, early identification is essential for effective disease man-
agement [17]. Once sepsis is identified, early administration of antibi-
otics is critical [18], with one study showing that for each hour of
delay following documented hypotension, survival decreased 7.6% [19].

Early detection of sepsis can be difficult. Frequently, clinicians must
differentiate sepsis from other acute conditions that can obscure its
presence with analogous signs or symptoms. In addition, clinicians
must confirm their suspicions with supportive data that are often elu-
sive. For example, two thirds of severe sepsis cases have negative
blood cultures; one third have negative cultures from all tested sites
[20,21]. Moreover, the systemic inflammatory response syndrome
(SIRS) criteria which have long been part of sepsis definitions are non-
specific, which handicaps their use as diagnostic indicators [3,13,
22-24], and so the traditional definition of sepsis, predicated on SIRS,
has limited prognostic value [3], prompting the proposal of new defini-
tions and approaches to sepsis identification [3,25].

In light of the need to rapidly and effectively identify patients on or
atrisk of progressing along the sepsis spectrum, various tools leveraging
electronic medical record (EMR) data have been developed [22,26-29].
Often, such efforts focus on specific patient care locations, such as the
emergency department or intensive care units (ICUs). For patients out-
side the ICU, recent interest has centered around the Quick Sequential
(Sepsis-related) Organ Failure Assessment (qSOFA) score as a severity
screen for patients with suspected infection (already receiving antibi-
otics) [25]. The goal of the present work is to advance these efforts by
developing a model for early identification while distinguishing be-
tween sepsis present on admission and sepsis developed in the hospital,
without restrictions based on hospital location.

2. Methods
2.1. Data

Institutional Review Board approvals and data from adult admis-
sions were obtained from 4 hospitals:

» 161527 admissions (January 2010-December 2014) from Sarasota
Memorial Hospital (SMH), Sarasota, FL; Allscripts Sunrise Clinical
Manager EMR system

78 726 admissions (February 2013-December 2014) from Yale-
New Haven Hospital (YNHH), New Haven, CT; Epic EMR system
18 583 admissions (October 2013-September 2014) from River-
side Regional Medical Center (RRMC), Newport News, VA; Sie-
mens Soarian EMR system

132 821 admissions (July 2011-August 2015) from Houston Meth-
odist Hospital (HMH), Houston, TX; Allscripts Sunrise Clinical
Manager EMR system. Data from HMH were limited to Internation-
al Classification of Diseases, Ninth Revision (ICD-9) codes with pres-
ent on admission indicators and discharge disposition information.

For SMH, YNHH, and RRMC, Rothman Index (RI) scores from each
patient's stay were obtained, along with the constituent elements be-
hind each RI score. The Rl is an established EMR-based general acuity
score used at multiple hospitals; it is automatically calculated in real
time for each inpatient using vital signs, nursing assessments, and se-
lected laboratory results [30]. It should be noted that the range of the
Rl scale is from 100 to —91, with a value of 100 representing a patient
who is unimpaired. Almost all patients admitted to a hospital have an
Rl score less than 85. An RI of 65 is the average acuity level for patients
discharged to a skilled nursing facility. Patients with an RI of 40 are con-
sidered for transfer to the ICU. Zero is the lowest score typically seen on
a medical-surgical unit. Negative scores are sometimes present in the

ICU, and scores less than —20 are rare. A distinguishing characteristic
of the Rl is its use of nursing assessment data. Nursing assessments
have been shown to be a valid source of longitudinal clinical data [31].
In addition, we obtained ICD-9 data along with a wide range of clinical
information (Table 1). In some cases, data access was opportunistic, ac-
cording to data availability from each hospital, leading to some variation
in data set size and time frame.

Note that urine bilirubin rather than serum bilirubin is used, as the
measurement in urine is far more commonly available. Urine bilirubin
is reported as a qualitative measure (eg, large, medium, small, none)
and hence treated as a binary variable: if there is no bilirubin present
in the urine, the value is O; if any is present, the value is 1.

2.2. Incidence, onset, and model construction

Given the profound distinction between POA and NPOA sepsis pop-
ulations which has been noted by others [11], the present approach
entailed building 2 models to (1) identify patients admitted with sepsis,
severe sepsis, or septic shock quickly and accurately for timely and ap-
propriate treatment and (2) predict the risk of postadmission sepsis, se-
vere sepsis, or septic shock prior to onset.

Sepsis incidence was determined by ICD-9 codes 995.91 (sepsis),
995.92 (severe sepsis), and 785.52 (septic shock). The use of ICD-9
codes is imperfect owing to inevitable variations and inconsistencies
in coding practice, but lacking a criterion standard for sepsis diagnoses,
the use of such codes is an established method for retrospective identi-
fication [3,4,32,33]. Mortality is also used as an outcome, as this is an un-
ambiguous end point for assessing the ability of a tool to identify high-
risk patients [25].

To develop and test the NPOA model's ability to predict likelihood of
sepsis prior to onset, we focused on those patients identified by ICD-9
codes as having NPOA sepsis. As there is no established method to de-
termine the true actual “onset” time of sepsis for this population, we

Table 1
Data elements included in initial analysis
Vital signs Orders Laboratory tests
Temperature Heparin Creatinine
Diastolic blood pressure RecomblnfmF human Sodium
erythropoietins
. Colony-stimulating .
Systolic blood pressure factors (last 60 d) Chloride
Anti-infectives
Pulse oximetry (antibiotics, non-HIV Potassium
antivirals, antifungals)
Respiration rate BUN
Heart rate WBC
Assessments Diagnoses Hemoglobin
Cardiac ICD-9 (ICD-10) codes WBC bands
Respiratory Diagnosis present on Platelet count

admission flag
Medical or surgical

Gastrointestinal admission (based on Lactate
MS-DRG)
Genitourinary Diabetes diagnosis aPTT
Neurological End-stage renal Bilirubin
disease diagnosis
Skin Other Glucose
Safety Fluid I/0 C-reactive protein

Peripheral vascular
Food/Nutrition

Psychosocial

Musculoskeletal
Braden score

Administration of
antibiotics

X-ray showing
infiltrates

Patient on ventilator

Sex
Discharge disposition

Procalcitonin

INR

Microbiological
cultures
NBRC

Heart rhythm Location (ICU or non-ICU)

Italicized items are included in RI score computations. aPTT indicates activated partial
thromboplastin time; 1/0, intake and output; INR, international normalized ratio; NBRC,
nucleated red blood cells; MS-DRG, Medicare severity diagnosis related group.
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Fig. 1. Initial data points as a function of sepsis on admission. A, First RI scores. B, First Braden scores.

designate the time of the first order for anti-infectives, a practical and
identifiable event that reflects physician concern, as a key reference
point related to onset. NPOA model results are thus reported in relation
to the time of anti-infective orders.

The qSOFA score has recently been proposed as a predictor of death
in patients with suspected infection. The qSOFA score is calculated from
0 to 3, with 1 point awarded for each of altered mental status (eg, Glas-
gow Coma Scale score < 13), respiratory rate greater than or equal to 22
per min, and systolic blood pressure less than or equal to 100 mm Hg
[25]. For the comparison with the qSOFA score, both onset and gSOFA
are defined to conform with the parameters used in the development
of qgSOFA [25]. Onset is the first of either orders for antibiotics or culture
sampling, with the condition that an order for antibiotics must be
followed within 24 hours by culture sampling and culture sampling, if
done first, must be followed by orders for antibiotics within 72 hours.
A qSOFA score greater than or equal to 2 is considered to be an indicator
of sepsis risk. Only SMH data were used for this analysis owing to limi-
tations on available culture sampling information from other sites.

Frequency and mortality are analyzed as functions of POA and NPOA
sepsis using data from all 4 hospitals and published data from 21 Kaiser
Permanente hospitals in Northern California, which also included pa-
tients coded with septicemia (ICD-9 038.xx) [34].

Model construction uses a combination of univariate analysis and
stepwise logistic regression using SMH data. To build the model, 2014
SMH data were supplemented by including all sepsis patients from
2010 through 2014 to provide a stronger sepsis signal for model training
purposes. For the POA model, 50% of the data were used for training, and
for the NPOA model, 20% of the data were used for training. However,
testing for SMH was done on the portion of the data not used in the
training, and not supplemented with earlier years of sepsis patients.

Hence, the POA training set consists of 11 899 patients without sep-
sis and 1917 patients with at least 1 sepsis diagnosis, whereas the test
data set consists of 11 691 patients without sepsis and 380 patients
with at least 1 sepsis diagnosis (ICD-9). Distributions of initial candidate
variables were examined as a function of having or not having any POA
sepsis diagnosis. Inclusion of a variable in the model was based on the
extent to which it could provide discriminatory evidence of POA sepsis
(Fig. 1).

The NPOA training set consisted of data points from 17 452 patients
without sepsis and 456 patients with at least 1 NPOA sepsis diagnosis,
and the test data set consisted of data points from 17 803 patients with-
out sepsis and 67 patients with at least 1 sepsis diagnosis. In contrast to
the POA model, which uses only values of variables at admission, the
NPOA model includes all points in the training data set with a new
point generated whenever new data are received; that is, there is a
new calculation for each time stamp associated with the arrival of
new data. Thus, for patients who do not develop sepsis, all points

generated throughout their admission are included as nonseptic. For pa-
tients developing sepsis, points prior to 24 hours before the first anti-
infective order are designated as nonseptic; and those after, as septic.

The complete data sets from YNHH and RRMC were used strictly for
model testing. Missing inputs associated with any variable used in ei-
ther model were imputed to have normal values in keeping with com-
mon practice when computing clinical risk scores [25].

The models were assessed by testing their ability to identify (POA
model) or predict (NPOA model) patients anywhere on the sepsis spec-
trum, including sepsis, severe sepsis, and septic shock. Patients were
assessed as a whole, regardless of location within the hospital, and
also as a function of whether or not they were in an ICU on admission
(POA model) or when an anti-infective was ordered (NPOA model). In
addition, both models are assessed as predictors of in-hospital mortali-
ty, as this is considered a more likely outcome for infected patients with
sepsis than for those without [25].

The C statistic for each model is reported. However, as the C statistic
alone does not always adequately reflect the efficacy of predictive clin-
ical models [35,36], a further assessment is done by selecting several op-
erating points and determining the associated sensitivity, specificity,
and positive predictive value (PPV). Model calibration was evaluated
with the Hosmer-Lemeshow goodness-of-fit test [37].

3. Results
3.1. Incidence and mortality rates

Important differences in incidence and mortality rates for sepsis, se-
vere sepsis, and septic shock were observed between POA and NPOA pa-
tients (Table 2). The POA group accounted for 77% to 93% of sepsis
diagnoses across hospitals, with an average 12% mortality rate. The

Table 2
Incidence of sepsis diagnoses (sepsis, severe sepsis, septic shock) and associated mortality
rates

Onset . Unique % of total % of septic Mortality
Hospital . . .

category admissions admissions diagnoses rate
RRMC 1090 5.8% 93.1% 15.5%
YNHH 4222 5.2% 83.6% 12.3%

POA SMH 3926 2.4% 88.5% 12.2%
HMH 5322 4.0% 77.0% 13.9%
KPNC 50 520 10.5% 91.8% 10.4%
RRMC 81 0.5% 6.9% 46.9%
YNHH 826 1.0% 16.4% 35.2%

NPOA SMH 511 0.3% 11.5% 34.6%
HMH 1588 1.2% 23.0% 37.9%
KPNC 4488 0.9% 8.2% 23.0%
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Fig. 2. Mortality rates by sepsis-related ICD-9 codes at SMH.

NPOA group accounted for 7% to 23% of sepsis diagnoses across hospi-
tals, with an average 35% mortality rate.

Within the POA and NPOA populations, important distinctions be-
tween the type of sepsis coded (ie, sepsis, severe sepsis, septic shock)
and the associated mortality rates was also found, as shown for 5
years of SMH data in Fig. 2.

Final inputs and associated odds ratios for both the POA and NPOA
models are given in Table 3. For the POA model, a 10-point lower RI
score translates to a 25% increase in the likelihood of sepsis (95% confi-
dence interval [CI], 22%-28%) [computation, 1 — (0.972'°)], a 1-degree-
higher temperature increases likelihood by 68% (61%-75%), a 5-point-
lower Braden score by 30% (20%-39%), and so on. Note that the impact
of any variable is a function of both the odds ratio and the size of a pos-
sible change in that variable.

3.2. POA model performance

The POA model is well calibrated as measured by the Hosmer-
Lemeshow goodness-of-fit test. Table 4 reports the C statistics for the

Table 3
Model input variables with point estimates of odds ratios

train and test data sets across facilities as assessed for all patients as a
group as well as for test subpopulations based on whether or not the
first location on admission was an ICU.

For any desired sensitivity or specificity, an operating point on the
receiver operating characteristic curve can be chosen, and correspond-
ing predictive values can be determined. For the POA model, we choose
2 such points with sensitivities of 50% and 75% for all patients (Table 5).
These operating points are also used to find the sensitivity, specificity,
and PPV for identifying septic patients who are admitted directly to
the ICU and those who are not. We also validate the model by using
these operating points to ascertain how well the sepsis model identifies
patients who expire in the hospital.

Recent mention of the qSOFA as a potential sepsis screening tool (al-
though not yet prospectively validated in that regard) prompted a compar-
ison of qSOFA with the reported POA and NPOA models [3,24]. As
previously described and in keeping with the development approach
used for gSOFA, a modified definition of onset is used to identify the target
population for both qSOFA and the POA model in this comparative analysis.

For the subset of patients with onset (as evidence of infection) prior
to or within 6 hours of inpatient admission (thereby including anti-
infectives orders in the ED), the POA model performance at 2 operating
points (determined from all patients) is compared with the first gSOFA
score available for each patient. Only patients whose first location on
admission is not an ICU are included in this analysis. The same operating
points are also used to compare the POA model to qSOFA as a predictor
of in-hospital mortality, as shown in Table 6.

3.3. NPOA model performance

The NPOA model is well calibrated as measured by the Hosmer-
Lemeshow goodness-of-fit test. For this predictive model, the C statistics
obtained across facilities are shown in Table 7. The subpopulations in
and out of ICU are determined based on the patient's location at the
time an anti-infective is ordered.

The NPOA model was derived using data points throughout each
patient's admission, and hence, the AUC values correspond to the

POA model inputs

NPOA model inputs

Variable Point 95% Wald Variable Point 95% Wald
(first value) estimate confidence estimate confidence
RI score 0.972 0.967-0.976 RI score 0.962 0.961-0.963
Temperature 1.676 1.606-1.749 Heart rate 1.014 1.013-1.015
Braden 0.93 0.906-0.955 Diastolic BP 0.99 0.99-0.991
Heart rate 1.017 1.014-1.02 Creatinine 1.283 1.271-1.295
Systolic BP 0.986 0.983-0.989 INR 0.849 0.826-0.873
Diastolic BP 0.987 0.983-0.992 Bilirubin 6.313 5.92-6.731
GU assmt not met 1.323 1.153-1.518 Currently in ICU 2.876 2.786-2.969
WBC 1.023 1.015-1.032 Admitted through ED 1.204 1.169-1.24
Creatinine 1.168 1.126-1.212 Male 1.086 1.055-1.118
Admitted through ED 2.241 1.946-2.581

Male 1.641 1.445-1.864

Model coefficients for each variable are found from the natural log of the corresponding odds ratio. The constants from the regression equations are —49.96 for the POA model and —1.14
for the NPOA model. Missing inputs were imputed with normal values for each variable. As an example, for SMH, vital signs were always present in the data for both models. For the POA
model, imputed values were used for WBC (13%), creatinine (17%), Braden (18%), RI (20%), and genitourinary assessments (35%). For the NPOA model, imputed values were used for cre-

atinine (19%), INR (35%), and bilirubin (39%).

Table 4
Train and test C statistics for the POA model as a function of patient location
Data set Hosp. All Inpatients Non-ICU ICU
POA train SMH 0.908 (0.901-0.915) - -
SMH 0.911 (0.897-0.924) 0.908 (0.894-0.923) 0.897 (0.847-0.947)
POA test YNHH 0.894 (0.889-0.900) 0.897 (0.891-0.903) 0.814 (0.788-0.841)
RRMC 0.869 (0.857-0.881) 0.860 (0.846-0.875) 0.865 (0.841-0.890)

Numbers in parentheses are 95% confidence intervals.
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Table 5
POA model performance at 2 operating points
POA sepsis prediction Hosp. All inpatients Non-ICU ICU
SMH 0.50, 0.96, 29% 0.49, 0.96, 28% 0.59, 0.91, 44%
Operating point at 50% sepsis sensitivity YNHH 0.49, 0.96, 34% 0.49, 0.96, 34% 0.39,0.93,37%
RRMC 0.39, 0.97, 40% 0.29, 0.98, 36% 0.62,0.91, 47%
SMH 0.75,0.88,17% 0.75, 0.88, 16% 0.76, 0.78, 29%
Operating point at 75% sepsis sensitivity YNHH 0.73,0.88,21% 073, 0.89, 20% 0.65, 0.80, 27%
RRMC 0.64, 0.89, 25% 0.55,0.92, 23% 0.85, 0.73, 30%
Mortality prediction Hosp. All inpatients Non-ICU ICU
SMH 0.30, 0.95, 8.5% 0.32,0.95,7.7% 0.23,0.87,21%
Operating point at 50% sepsis sensitivity YNHH 0.32,0.95, 13% 0.31,0.95, 12% 0.36,0.92, 33%
RRMC 0.33,0.96, 17% 0.30,0.97,13% 0.37,0.87,23%
SMH 0.59, 0.87, 6.5% 0.59, 0.87,5.5% 0.60, 0.78, 28%
Operating point at 75% sepsis sensitivity YNHH 0.56, 0.87,9.1% 0.56, 0.87, 8.2% 0.60, 0.79, 24%
RRMC 0.59, 0.88, 12% 0.57,0.90, 8.6% 0.62, 0.69, 18%

Resulting values ordered as follows: sensitivity, specificity, PPV.

effectiveness with which the model discriminates between points asso-
ciated with septic vs nonseptic states. However, to illuminate the utility
of the NPOA model, it is also evaluated by patient admission. For each
admission, we identify the first time the predicted probability of sepsis
is above a given value. In each instance that the model flags a patient,
we compute the time between the first order for an anti-infective and
the time the patient was flagged. Performance of the model was
assessed against all patients as well as for subpopulations based on
whether the order for anti-infectives was placed while the patient was
in or out of the ICU.

Different model output levels reflect the trade-off between the con-
fidence with which they are identified as septic and how far in advance
of an anti-infective order they are identified. Fig. 3 illustrates the rela-
tionship between PPV and median time prior to onset for 4 different
model outputs (corresponding to an 80%, 60%, 40%, and 20% likelihood
of sepsis), for all patients (Fig. 3A), for patients with onset outside of
the ICU (Fig. 3B), and for patients with onset in the ICU (Fig. 3C). Pa-
tients are also assessed using qSOFA outside the ICU where it is designed
to be applied according to whether or not at least 2 qSOFA criteria are
met (Fig. 3B).

For each model output point, the percentage of sepsis patients cor-
rectly identified can be broken out over time relative to the order for
anti-infectives. This is explicitly shown in Fig. 4 for the population of
all YNHH patients. It is evident that a model output corresponding to a
20% probability of correct identification (where lower probability im-
plies a lower PPV) allows more patients to be identified early relative
to the order for anti-infectives than a model output with a higher prob-
ability of being correct (high associated PPV).

Table 6
POA model performance at 2 operating points compared with qSOFA

The predictive statistics of the NPOA model at 4 different SMH sepsis
likelihoods are detailed in Table 8 for both prediction of sepsis as well as
the prediction of in-hospital mortality.

4. Discussion

The principal goal of the current research is to construct a practical
model to identify sepsis on admission or predict its onset during hospi-
talization. The model uses structured information that is commonly
available for adult inpatients in the EMR.

The POA and NPOA versions of the model have advantages over pre-
viously reported models in their broadened use of EMR data. Some in-
cluded data elements, such as blood pressure and temperature, are
common to all SIRS-based models, and sex has also been included in
some models [6,26]. However, other variables such as the genitourinary
nursing assessment and Braden score (both elements of the RI) have not
been included previously. Indeed, the use of the R, a general measure of
patient acuity that encompasses vital signs, nursing assessments, and
laboratory findings, represents a novel approach to sepsis screening
and prediction. As a general acuity measure, the RI enhances the ability
to detect or predict sepsis, severe sepsis, or septic shock, as these condi-
tions are characterized by general deterioration.

The approach pursued in this work to separately examine POA and
NPOA sepsis reveals important distinctions between these populations
and concomitant differences in the practicability of identifying sepsis on
admission vs that developed in the hospital. Identifying sepsis on
admission—without any prior knowledge of infection or cultures—appears
to be a tractable problem. We measured performance on all patients and

POA model
50% sensitivity

Target condition Patient population

POA model

75% sensitivity qSOFA

SMH: non-ICU
SMH: non-ICU

POA sepsis
Mortality

0.54, 0.88, 35%
0.44,0.83,5.1%

0.78, 0.69, 24%
0.70, 0.65, 3.8%

0.15, 0.90, 16%
0.60, 0.90, 11%

Resulting values ordered as follows: sensitivity, specificity, PPV.

Table 7
Train and test C statistics for the NPOA model as a function of patient location
Data set Hosp. All inpatients Non-ICU ICU
NPOA train SMH 0.850 (0.847-0.852) - -
SMH 0.884 (0.880-0.888) 0.872 (0.866-0.877) 0.911 (0.906-0.916)
NPOA test YNHH 0.821 (0.818-0.825) 0.801 (0.797-0.806) 0.860 (0.855-0.865)
RRMC 0.814 (0.809-0.819) 0.819 (0.814-0.825) 0.802 (0.791-0.812)

Numbers in parentheses are 95% confidence intervals.
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then separately for patients where the first order for an anti-infective was
in the ICU or not in the ICU to facilitate comparisons with models limited to
patients in the ICU. Generally, model results were good to excellent inde-
pendent of the location of the patient at the time of the first anti-
infective order. Whether patients are first admitted to ICU units or non-
ICU units, it is possible to identify three quarters of patients with any
form of sepsis with a reasonable number of false positives for the impor-
tance of the alert, limiting alarm fatigue (PPV about 33% in the ICU and
20% outside of the ICU). Variation in the reported PPV values between hos-
pitals is due in part to the variation in POA incidence rates (eg, SMH and
RRMC differ by a factor of 2), which in turn reflects the different patient
populations each hospital serves. The ultimate clinical value of the POA
model will depend on the proportion of patients admitted with sepsis
who currently fail to receive timely recognition and therapy. A tool such
as the POA model, run once at admission and which can effectively high-
light 75% of all sepsis cases, has the potential to offer valuable clinical deci-
sion support by raising suspicion of sepsis and encouraging consideration
of sepsis therapies.

In contrast to sepsis present on admission, predicting NPOA sepsis
without prior knowledge of infection is a considerably more daunting
problem. The challenge is 3-fold. Part of the difficulty lies in distinguishing
the clinical indicators of sepsis from those of comorbidities that share
many of the same signs and symptoms. Indeed, the NPOA sepsis model's
higher PPV values for predicting mortality (as seen in Table 8) are a reflec-
tion of the fact that detecting the clinical deterioration that precedes
death is an easier task than distinguishing the deterioration characteris-
tics uniquely linked to sepsis. Finding an appropriate reference point for
establishing onset is another part of the challenge. Using the order for
anti-infectives as a target is straightforward in principle but less meaning-
ful in actual practice because such orders are extremely common. Approx-
imately 60% of patients in the SMH data set had such an order, suggesting
that they rarely denote a point at which “life-threatening organ dysfunc-
tion caused by a dysregulated host response to infection” commences, in
keeping with the Third International Consensus Definition of sepsis [3]. It
is therefore reasonable to interpret such orders as a suggestive reference
point that serves as a surrogate for suspicion of infection rather than an
absolute indicator of onset time. Finally, the extremely small target popu-
lation exacerbates the operational difficulty of providing adequate sensi-
tivity while maintaining an acceptably low false-positive rate. What we
observe across all 3 hospitals in Fig. 3 is that seeking higher confidence,
as reflected by a higher PPV, results in sepsis patients being identified at
later times relative to the probable point of onset suggested by the
order for anti-infectives. This reflects the fact that identification becomes
easier as physiological derangement progresses over time. The upper left-
most point in Fig. 3A indicates that 45% of all NPOA sepsis cases are
flagged with a PPV of 30%. Of those flagged, 30% are prior to or within
24 hours after the anti-infective order. These would represent early warn-
ings. Forty-four percent of patients are flagged 6 days or more following
the anti-infective order (rightmost bar in Fig. 4). The utility of these warn-
ings is less clear. Integration of the model with clinical workflow is needed
to determine the most effective mode of use; this might include early
warning alerts or serve as evidence for clinical decision support in cases
of uncertain sepsis determination. This work depends on the integrity of
ICD-9 codes as an indicator of sepsis. As we see in Fig. 2, increased sepsis
acuity (from sepsis to severe sepsis to septic shock) corresponds to in-
creased mortality. In addition, it is apparent that each form of POA sepsis
has a lower associated mortality rate than its NPOA counterpart. The ob-
servation that the data bear out the expected correspondence lends cred-
ibility to the use of ICD-9 codes, however imperfect, as an indicator of
sepsis incidence and type.

Fig. 3. Positive predictive value for a sepsis alert versus the percentage of septic patients
identified "early” - in this case any time prior to, or with 24-hours after, the order for anti-
infectives. Graph A shows this relationship for all patients for each hospital. Graph B includes
only those patients outside the ICU at the time of the anti-infective order. Graph C includes
only patients in the ICU at the time of the anti-infective order. Numbers in parentheses are
sensitivity and specificity. See discussion for further elucidation of the term early in this context.
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Fig. 4. Distribution of all YNHH sepsis cases correctly identified in the days before and after the order for anti-infectives as a function of model output probability. Labels indicate midpoints,
for example, “2.5” contains sepsis patients identified between 2 and 3 days after the order for anti-infectives.

Assessing the ability of both models to predict mortality recognizes
that the presence of sepsis is associated with an elevated risk of mortal-
ity and provides an additional dimension to validation. For example, the
recently derived “quick” SOFA or qSOFA score depends on trying to pre-
dict risk of mortality in a subpopulation of patients suspected to have in-
fection [25]. When we test qSOFA at admission, it performs reasonably
in predicting mortality, the measure for which it was developed. How-
ever, comparisons with gSOFA on the subset of the population meeting
infection criteria highlight the excellent performance of the POA model
for detection of sepsis. The POA model demonstrated sepsis sensitivity 3
to 5 times higher than qSOFA (depending on the POA model’s operating
point) with a PPV 50% to 100% higher. This superior performance is not
surprising given that the POA model incorporates the RI, which itself
spans a wide range of physiologic components, as well as demographic
inputs, compared with qSOFA's 3 inputs.

4.1. Limitations

The training and test data sets were limited by reliance on
hospital ICD-9 coding to identify sepsis, severe sepsis, and septic
shock when determining the target populations. Intrafacility and
interfacility variations are inevitable in the way that coding is con-
ducted, and hence, recorded codes in an administrative database
are an imperfect representation of the true incidence of sepsis within
a patient population.

In addition, our selection of orders for anti-infectives as the signal for
onset also entails an approximation. Although this data element cap-
tures physician awareness and concern regarding patient infection, de-
pendency on this criterion rather than a detailed retrospective chart
review introduces an element of ambiguity regarding the true onset
time presumed for any particular patient.

Table 8
NPOA model performance for sepsis and mortality prediction at 4 model output levels
NPOA sepsis prediction Hosp. All inpatients Non-ICU ICU
SMH 0.58,0.99, 21% 0.56,0.99, 17% 0.67,0.99, 6.5%

Model output

80% probability YNHH

RRMC

Model output

60% probability YNHH

RRMC

Model output

40% probability YNHH

RRMC
Model output

0.45, 0.98, 29%
0.63, 0.98, 10%
SMH 0.82,0.97, 10%
0.65, 0.96, 19%
0.82,0.94, 5.6%
SMH 0.88,0.93, 4.6%
0.81,0.92, 12%
0.94, 0.89, 3.3%
SMH 0.97,0.82,2.1%

0.41,0.98, 21%
0.62, 0.98, 7.0%
0.81,0.97,7.9%
0.61, 0.96, 14%
0.81,0.94, 3.8%
0.85,0.93, 3.5%
0.77,0.92, 8.6%
0.93, 0.89, 2.3%
0.96, 0.83, 1.6%

0.54, 0.98, 12.4%
0.65, 0.98, 3.6%
0.87,0.97, 2.6%
0.76, 0.96, 7.7%
0.85, 0.94, 1.9%
1.00, 0.93, 1.2%
0.92,0.92, 4.5%
0.95,0.89, 1.1%
1.00, 0.83, 0.5%

20% probabilit YNHH 0.91, 0.82, 7.0% 0.88, 0.82, 4.8% 0.98, 0.82, 2.4%
*P v RRMC 0.98,0.77,1.8% 0.98,0.78,1.2% 1.00, 0.78, 0.6%

NPOA mortality prediction Hosp. All inpatients Non-ICU ICU
Model output SMH 0.26, 0.99, 38% 0.24,0.99, 37% 0.21, 0.99, 35%
30% robagilit YNHH 0.39, 0.98, 36% 0.36, 0.99, 34% 0.33,0.99, 31%
°P y RRMC 0.41, 0.98, 32% 0.38,0.98, 30% 0.39, 0.98, 30%
Model output SMH 0.48,0.98, 24% 0.47,0.98, 23% 0.45, 0.98, 23%
60% robagilit YNHH 0.62, 0.96, 27% 0.60, 0.97, 25% 0.57,0.97, 24%
P y RRMC 0.64, 0.95, 21% 0.62, 0.95, 20% 0.63, 0.95, 20%

Model output

40% probability YNHH

RRMC

Model output

20% probability YNHH

RRMC

SMH 0.68, 0.94, 15%
0.81,0.92, 18%
0.82,0.90, 15%
SMH 0.89,0.83,7.7%
0.92, 0.83, 10%
0.92,0.79, 8.2%

0.67, 0.94, 14%
0.79,0.92,17%
0.81, 0.90, 13%
0.89, 0.83,7.5%
0.91, 0.83,9.6%
0.92,0.79, 7.8%

0.67,0.94, 14%
0.78,0.92, 16%
0.81, 0.90, 14%
0.88,0.84, 7.2%
0.91, 0.83, 8.9%
0.92,0.79, 8.0%

Resulting values ordered as follows: sensitivity, specificity, PPV.
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The methodology represents a compromise. The training data were
from a single hospital, using 1 year of data supplemented by an addi-
tional 4 years of sepsis data to increase the signal. However, it is possible
that sepsis treatment patterns changed over the 5-year period and have
affected the performance of the model.

Furthermore, others have suggested that general early warning sys-
tems, such as Modified Early Warning System (MEWS) or National Early
Warning Score (NEWS), may have utility in predicting mortality in in-
fected patients [38]. We have not explicitly addressed these consider-
ations, which may be the subject of further work.

5. Conclusions

Analysis of data from 4 hospitals shows that addressing sepsis is fa-
cilitated by recognizing 2 distinct patient populations: those who are
admitted with sepsis and those who develop sepsis during their hospital
stay. Consequently, 2 models were developed: one to determine the
likelihood of sepsis on admission and the other to predict onset of sepsis
postadmission. Both models yield good to excellent discriminatory per-
formance and are applicable to all adult patients regardless of admission
route or inpatient location. Furthermore, the model that predicts the de-
velopment of sepsis in the hospital is also effective at identifying pa-
tients at high risk of death. By design, the use of readily available
clinical real-time data from the EMR makes these models suitable for
automated monitoring and practical for clinical implementation and
may improve care. Approaches to implementation and prospective as-
sessment of outcomes are subjects of further research.
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