
Utrecht University

Master Thesis

Generating Sokoban Levels that are
Interesting to Play using Simulation

Author:
Simon Karman
ICA-5521904

Supervisor:
Prof. Dr. F.P.M. Dignum

Second Supervisor:
Dr. M. Löffler

Master Game and Media Technology
Department of Information and Computing Sciences

June 28, 2018

http://www.uu.nl
http://www.simonkarman.nl
http://www.cs.uu.nl/staff/dignum.html
http://www.cs.uu.nl/staff/MLoffler/0
https://www.uu.nl/masters/en/game-and-media-technology
https://www.uu.nl/en/organisation/department-of-information-and-computing-sciences

i

UTRECHT UNIVERSITY

Abstract
Faculty of Science

Department of Information and Computing Sciences

Master of Science

Generating Sokoban Levels that are Interesting to Play using Simulation

by Simon Karman

Procedural Content Generation for Games (PCG-G) is the act of generating content
for games using a procedure. There are many valid reason why game creators could
be interested in using PCG-G. An example is that artists can be aided in creating
massive game worlds, since creating all the content by hand is too time consuming.
By using pseudo randomness, procedures are able to generate content useful in games,
however without the input of an expert artist, procedures struggle to generate content
that is interesting to play.

The focus in this work lies on generating interesting game worlds. Generating
interesting game worlds can be subdivided into the generation of the space and the
mission of the game world. The abstract equivalent of the mission is a puzzle. A puzzle
generator that can generate interesting puzzles can therefore be used to generate
interesting worlds.

Previous work has shown that challenging Sokoban puzzles can be generated by
simulated play. Although these generated puzzles are slightly challenging, they do not
come near the interestingness of handcrafted puzzles. There seems to be an upper
limit that the current approach cannot (consistently) exceed. This is mainly due
to the use of simple metrics that do not seem to be able to capture the underlying
concepts of interestingness.

Seven candidate improvements on a replica of the foundational work were created.
The Push Alteration and the Hard-coded Symmetry Reduction seemed to be the
most promising. These two candidate improvements were taken to the test in an
user study experiment. The user study showed that these candidate improvements
result in generally more interesting puzzles than puzzles generated by the replica
of the foundational work, but that they are still much less interesting than puzzles
generated by expert artists.

HTTP://WWW.UU.NL
https://www.uu.nl/en/organisation/faculty-of-science
https://www.uu.nl/en/organisation/department-of-information-and-computing-sciences

ii

Acknowledgements
First, I would like to thank my supervisor, Prof. Dr. F.P.M. Dignum, and my second
supervisor, Dr. M. Löffler, for their assistance during my master thesis. They have
always been available for comments, feedback and advice.

Next, I would like to thank Bilal Kartal for granting me access to the code base
of the original paper. My thesis heavily relied on this access. Without it, I wouldn’t
have been able to replicate their results.

Next, I would like to thank all the participants of the user study for helping me
validate my hypotheses. The participants in order of participation are: Nik, Jelle,
Kim, Rosemarije, Yentl, Kees, Eileen, Maarten, Simardeep, Wouter, Samuel, Robert,
David, Roos, Steven, Sera, Niels, Reinier, Bart, Tommy, Matthijs, Lara, Roman,
Thomas, Pia, Bianca, Robin, Yorick, Lisa, Jac., Govie, Marcel, Glenn, Annelies,
Nelly, Pieternel, Anjo, Pieter and Geanne.

Next, I would like to thank Nik, Kevin, Rik, and Jorn for their valuable feedback
on the earlier versions of this master thesis.

Lastly, I would like to thank my parents, sister, and girlfriend for their loving
support.

iii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1
1.1 Procedural Content Generation for Games (PCG-G) 1

1.1.1 Assisting Artists . 1
1.1.2 Increase Gameplay Time . 1
1.1.3 Limited Disk Space . 2
1.1.4 Satisfying the desire to explore 2

1.2 Examples of PCG-G . 2
1.3 Research Motivation . 3
1.4 World Generation . 3

1.4.1 Puzzles Generation . 4
1.4.2 Sokoban - A Puzzle Game . 4
1.4.3 Reasons for using Sokoban . 5

1.5 Research Question . 6
1.6 Research Plan . 6

2 Related Work 7
2.1 Classes of Methods in PCG-G . 7

2.1.1 Pseudo-Random Number Generators (PRNG) 7
2.1.2 Generative Grammars (GG) . 9
2.1.3 Image Filtering (IF) . 9
2.1.4 Spatial Algorithms (SA) . 10
2.1.5 Modeling and Simulation of Complex Systems (CS) 12
2.1.6 Artificial Intelligence (AI) . 13

2.2 Applicability in Puzzle Generation . 14

3 Foundational Work 15
3.1 Introduction . 15
3.2 Sokoban as a Tree . 16
3.3 Estimated Difficulty Function . 18
3.4 Traversing the Tree . 18
3.5 Conclusion . 19

4 Candidate Improvements 21
4.1 Alteration Extending . 21

4.1.1 Push Alteration . 21
4.1.2 No Separate Freeze Alteration 23

4.2 Symmetry Reduction . 25
4.2.1 Motivation . 25
4.2.2 Understanding the Search Space 26

iv

4.2.3 Search Space Reduction . 28
4.2.4 Hard-coded Initial Layers . 28
4.2.5 Lexicographical Ordered . 31
4.2.6 Node Jumping . 33
4.2.7 Mirror . 35

5 Experiment 37
5.1 Hypothesis . 37
5.2 Sample Size . 37
5.3 Setup . 38
5.4 Datasets . 40

5.4.1 Improved Work . 40
5.4.2 Handcrafted dataset . 40

5.5 Comparison . 41
5.6 Analysis . 42

5.6.1 Assumption . 42
5.6.2 Outcome . 43
5.6.3 Correlation . 43
5.6.4 Handcrafted . 44

6 Conclusion 46
6.1 Limitations . 47

6.1.1 Congestion Metric . 47
6.1.2 Search Space Structure . 47
6.1.3 Max Evaluation Score . 48

6.2 Future Work . 48
6.2.1 Applicability to Other Puzzle Games 48
6.2.2 Key Moves . 48
6.2.3 Restricted Push Alteration . 48
6.2.4 Heat-map . 48
6.2.5 Recursive MCTS . 49
6.2.6 Flexible Board Size . 49
6.2.7 Player Starting Position . 49
6.2.8 Embed Flood-fill in Search Space 49

References 50

1

1 Introduction

1.1 Procedural Content Generation for Games (PCG-G)
Players of games demand larger and more detailed game worlds than ever before. Such
game worlds are getting too large to be created by hand. Instead of manually creating
game worlds, game worlds can also be algorithmically created. (Parts of) The creation
process can be executed by a procedure that generates the desired content. This is
called Procedural Content Generation for Games: PCG-G. The essence is easy to
understand: PCG-G is the act of generating content for games using a procedure.

Apart from creating large game worlds, procedural generation of content in games
can be used for many different reasons. Some other example reasons of using PCG-G
are assisting artists, allowing re-playability, saving disk space or satisfying peoples
desire to explore. These four examples are described in the subsections below.

1.1.1 Assisting Artists

The amount of content within worlds is growing quickly, because of two factors. First
the details within the world are increasing and secondly the overall size of the worlds
are increasing too. Some worlds require such high amounts of content that artists
can no longer create everything by hand.

Decreasing the amount of time an artist uses to create content, saves production
cost and production time. Simple copy and paste tools are generally not enough.
This results in worlds that look too repetitive and still need loads of work by the
artist tweaking the results. Offline PCG-G techniques can be used in this case. To
assist artists in their work PCG-G could: executing their repetitive tasks including
variants, generate parts of the world, or altering parts of the world.

1.1.2 Increase Gameplay Time

The amount time a game can be played can be increased by using PCG-G.

Re-playability

A player can spend more time playing the game if he/she can replay the whole game
or parts of the game. Re-playability is to what extent (parts of) a game can be
played repeatedly by players without the experience becoming repetitive. PCG-G
can be used to improve re-playability of a game. An example would be to add unique
content that is procedurally generated each time a player plays the game.

End Game Content

A player can spend more time playing the game if he/she can keep playing with a
character after the game has finished. Content that is provided to a player after the
end of a game is called end game content. PCG-G can be used to generate such end
game content.

Chapter 1. Introduction 2

Infinite Worlds

A player can spend more time playing the game if the world in which the game takes
place has an infinite size.

Because no computers exist that have infinite storage or infinite memory, it is
impossible to generate a world of infinite size. A workaround to still be able to
generate worlds that feel like they are infinite in size is to generate a small region
of the world around the player. When a player moves towards any boundary of this
region, new regions can be generated around the player. This way the player can
never reach any boundary of the playable space and thus the world seems infinite in
size.

1.1.3 Limited Disk Space

The amount of available disk space has increased massively over the last years, how-
ever historically this has not always been the case. PCG-G was a method used to
deal with limited disk space that used to be available. Nowadays it can still be used
to limit the use of disk space on mobile devices.

PCG-G can resolve this problem by procedurally generating the content in mem-
ory when the specific content is needed. The idea behind this is that algorithms to
generate content requires less disk space than the resulting content itself. Instead of
shipping a game with all its content, ship a game with only the algorithms to generate
the content, in exchange for longer loading times.

1.1.4 Satisfying the desire to explore

Humans are motivated by exploration as discussed in [Mas43]. Since the beginning of
mankind, humans have had the desire to explore. Over millennia, human exploration
has led to discovering new lands, exploring the deep and vast oceans, analyzing the
smallest bits that life is made of, and the exploration of space.

As an example: “Here be Dragons” - is a phrase historically used on world maps to
indicate unexplored territory. This phrase hints at hoping to find new and interesting
creatures when exploring new regions.

Exploring has become less accessible to most people nowadays. Most land on
earth has been discovered, and other forms of exploration are not easily accessible
for most people. Nowadays, to be able to satisfy the desire to explore, a different
approach has to be taken. Games can be used to satisfy this desire of exploring
unknown territories that haven not been seen by any other human, ever. PCG-G is
the driving factor behind such games.

1.2 Examples of PCG-G
PCG-G can be used to generate game content such as levels, maps, history, quests,
textures, characters, vegetation, and rules. A lot of existing games make use of PCG-
G. Either in their development pipeline (offline) or during gameplay (real-time). Some
great examples of PCG-G in games are: (see Figure 1.1)

• level layout generation in the Diablo series by Blizzard Entertainment,

• unique item creation in the Borderlands series by Gearbox Software,

• dungeon generation in UnExplored by Ludomotion,

Chapter 1. Introduction 3

Figure 1.1: Existing games that use procedural content generation
for games. FLTR: Diablo, Borderlands, UnExplored, Minecraft and,

.kkrieger

• infinite world generation in Mincecraft by Mojang,

• and texture generation in .kkrieger by Farbrausch.

1.3 Research Motivation
Nowadays, most content is generated by using pseudo-randomness, this results in
content that looks interesting at first glance, but fails in accomplishing similar results
to those achieved by expert artists. Generating content that resembles content created
by expert artists has shown to be much more difficult.

Combining multiple PCG-G approaches to generate more complex content is not
feasible, since most individual PCG-G approaches are not designed to work together.
Moreover, most approaches cannot be constrained to guarantee certain output, which
also makes them hard to combine. It is therefore still quite difficult to generate
content such as worlds with complex, meaningful and interwoven structures, that are
interesting to play.

1.4 World Generation
The scope of this master thesis is procedural content generation that is used to create
game worlds. In most game worlds, tasks are used to complete certain goals. These
tasks are what makes a game world interesting. A task that will result in the comple-
tion of a goal is also known as a mission. [Dor10] shows that it is a viable approach
to generate game worlds by separating the generation of the mission that has to be
completed by the player, from the space in which these missions take place.

The generation of a game world can thus be separated into two distinct parts:
(1) the generation of missions, (2) the generation of the space. The research in this
thesis focuses on generating an interesting mission for a game world. In most games

Chapter 1. Introduction 4

Figure 1.2: An example puzzle of the Sokoban puzzle game on a
board of 5x3 tiles. The player starts in the lower left corner. Walls are
gray, boxes are green, and goal location are green boxes surrounded

by a white border.

the mission can be described as an abstract puzzle solving problem. Being able
to generate interesting puzzles is being able to create interesting missions for game
worlds. This makes the ability to generate interesting puzzles useful. Within this
thesis the focus lies mainly on puzzle generation techniques.

1.4.1 Puzzles Generation

Generating interesting puzzles is a crucial component of generating interesting game
worlds. Solving puzzles is a notable ingredient of gameplay in most games and most
gameplay can be formulated as an abstract puzzle solving problem. A generic puzzle
generation tool that can generate puzzles given the elements of a game world does
not exist.

Many scientific puzzle generation and puzzle solving techniques use the game
‘Sokoban’ as a starting point for their research. Within this master thesis the puzzle
game Sokoban is used as well.

1.4.2 Sokoban - A Puzzle Game

Sokoban is an easy to play and easy to understand puzzle game. Figure 1.2 shows
an example puzzle of the Sokoban game. A metaphor for the game of Sokoban is
that you control a robot in a warehouse that is supposed to re-organize boxes into a
certain configuration.

Sokoban is played on a board of tiles, where each tile is either a floor or a wall.
The player starts on one of the floor tiles and can move horizontally and vertically
one tile at a time. The player cannot move to wall tiles and is thus restricted to move
on the floor tiles.

Some of the floor tiles contain boxes. These boxes can be pushed. A player can
push a box by standing next to it and moving onto the floor tile that has a box on it.
The box is then pushed to the next tile. Pushing a box is only possible when the tile
the box is pushed onto is also a floor. The floor may not have a box on it already,
because the player is only allowed to push one box at a time. Figure 1.3 shows an
overview of valid and invalid pushes in Sokoban for a player moving to the right.

Some of the floor tiles of the board contain goal locations. A puzzle is solved
when each goal tile is covered by a box. The number of goal tiles is always equal to

Chapter 1. Introduction 5

Figure 1.3: Overview of valid and invalid pushes in Sokoban when
the player makes a move to the right.

the number of boxes. Any goal location may be covered by any box, they are not
labeled, however in handcrafted puzzles each box generally has only one feasible goal
tile.

The game is considered to be pure and simple, very playable and mentally chal-
lenging according to Computer Gaming World magazine. What makes Sokoban tricky
is that it is easy to get stuck. Getting stuck in Sokoban means that from the current
configuration of the boxes a solution to the puzzle is no longer possible. The puzzles
must then be reset to its initial configuration of boxes, so the player can start over.
Situations in which the player gets stuck can easily arise. An example of this is that
a box is pushed into a corner.

After solving a puzzle, some players will try to solve the puzzle again while trying
to minimize the number of moves used.

1.4.3 Reasons for using Sokoban

Many puzzle solving and puzzle generation techniques use the Sokoban puzzle game as
a test case for their research. Sokoban suits puzzle solving and generation techniques
well, because of the following reasons:

• Simple to Understand - The puzzle game is simple to understand,

• Available Data Sets - There are datasets of solvable puzzles of varying diffi-
culties available,

• Large Search Space - There is a large search space of possible puzzle config-
urations,

• Hard to Solve - Testing whether possible puzzle configuration can be solved
is impractical. It has been proven that solving Sokoban puzzles is PSPACE-
complete by [Col97].

• General Applicability - In [Pos16] puzzle variations of deterministic trans-
portation games are considered. Sokoban falls under this category of deter-
ministic transportation games. This work shows that the approaches used to

Chapter 1. Introduction 6

generating deterministic transportation puzzles are applicable to other puzzle
games too.

1.5 Research Question
Existing work has shown that solvable Sokoban puzzles can be generated using sim-
ulated play. This simulated play is called simulation. Although the resulting puzzles
are solvable, they are generally less interesting to play in comparison to handcrafted
Sokoban puzzles. Other work in puzzle generation shows techniques that can gener-
ate puzzles that are interesting to play. By improving the existing work in simulated
play it might also be feasible to generate puzzles that are interesting to play using
simulated play.

The research question of the master thesis is:
Can simulation be used to generate Sokoban levels that are interesting to
play?

1.6 Research Plan
To be able to answer the research question, ’Can simulation be used to generate
Sokoban levels that are interesting to play?’, the research has been subdivided into
multiple smaller steps. The different chapters in this master thesis correspond to
these steps.

(a) An overview of related work in the field of PCG-G is made in Chapter 2.

(b) The foundational work that is able to generate Sokoban puzzles using a Monte
Carlo Tree Search approach is discussed in Chapter 3. This foundational work is
the basis of the rest of this thesis.

(c) Seven candidate improvements on this foundational work are formulated in
Chapter 4. These improvements fall into two categories: Alteration Extending
and Symmetry Reduction.

(d) An experiment is conducted on the work done in this master thesis and the
results of this are presented and compared to the foundational work in Chapter 5.

(e) The thesis is wrapped up by answering the research question and giving a con-
clusion in Chapter 6. Some discussion, current limitations and future work are
also included in this chapter.

7

2 Related Work

In this chapter existing work within PCG-G is discussed. First an overview of different
classes of methods in PCG-G is given. These different classes of methods are then
explained and are related to puzzle generation.

2.1 Classes of Methods in PCG-G
Before diving into techniques that specifically aim to generate puzzles, a broad
overview of PCG-G approaches is given. This section gives a summary of research that
has been done in the field of Procedural Content Generation for Games. [HMV13]
gives an comprehensive survey of the field of PCG-G. This survey shows six distin-
guishable classes of methods for PCG-G.

1. Pseudo-Random Number Generators (PRNG) - Used to mimic random-
ness found in nature,

2. Generative Grammars (GG) - Used to create correct objects from elements
encoded as letters/words,

3. Image Filtering (IF) - Used to emphasize certain characteristics of an image
to display (partially) hidden information,

4. Spatial Algorithms (SA) - Used to manipulate space to generate game con-
tent,

5. Modeling and Simulation of Complex Systems (CS) - Used to model
a simulation to overcome impracticability to describe natural phenomena with
mathematical equations,

6. Artificial Intelligence (AI) - Used to mimic animal or human intelligence.

The following sections will describe the classes of methods and will discuss some
related work within these classes of methods.

2.1.1 Pseudo-Random Number Generators (PRNG)

Pseudo-Random Number Generators are used to mimic randomness found in nature.
PRNG generated pseudo-random sequences of numbers, commonly the generated
numbers can be reproduced by using the same starting number, which is the seed.
These random sequences of numbers are random noise in which the numbers have no
relationship to each other. Other forms of random noise in which the numbers do
have relationships to each other also exist.

PRNG is not sophisticated enough to generate puzzles all by itself, since random-
ness rarely succeeds in generating interesting structures. However, PRNG can aid
other puzzle generation techniques in generating variation.

Perlin Noise and Simplex Noise are two examples of PRNG and are described
below.

Chapter 2. Related Work 8

Figure 2.1: A comparison of smooth random 2D-noise (on the left)
to random 2D-noise (on the right).

Perlin Noise

[Per85] formulates Perlin Noise. A noise algorithm in which the numbers do have
a relationship to each other. Perlin Noise is a very well known algorithm within
PRNG and is implemented in most game engines. The relationship between the
numbers in Perlin Noise is a smooth transition between the values. This makes it
extremely suitable for things such as terrain generation, because the terrain height is
also some form of a smooth transition. Figure 2.1 shows an example of smooth noise
in comparison to random noise. Perlin Noise is mainly used in its two-dimensional
form, so two dimensions are used in this explanation for simplicity, but note that
Perlin Noise works for any number of dimensions.

Given a 2D-coordinate a value will be calculated within the range of -1 to 1. Using
the same coordinate will always give the same result. Perlin Noise generates the value
in the following steps steps.

1. Find rectangle, - The space is subdivided into a grid of rectangle regions. The
rectangle in which the coordinate lies is found. A grid is most commonly made
of squares.

2. Calculate corner gradients, - For all four corners of the rectangle a random
two dimensional gradient is generated. The gradients all have the same mag-
nitude. In most cases an index table of gradients is used. The index within
this table of the corner is the same each time the same corner coordinate is
provided.

3. Calculate distance vectors, - For each corner a distance vector from the
corner of the rectangle to the coordinate is calculated.

4. Calculate dot products, - For each corner a dot product between the distance
vector and the gradient is calculated. The result of each dot product is a number
at each corner of the rectangle.

5. Combine dot products. - The results of the dot product at each corner have
to be linearly interpolated. First the two top corners are interpolated on the x
position of the coordinate. Secondly the two bottom corners are interpolated on
the x position of the coordinate. We now have a value at the top position of the
rectangle and the bottom position of the rectangle at the given x. Finally, these
are then interpolated using the y value of the coordinate. This is the result of
the Perlin Noise function. Instead of using the actual x and y position within
the rectangle a function is first applied to x and y, this is the fade-function.
Normally the fade-function is in the form of f(t) = 6t5 − 15t4 − 10t3.

Chapter 2. Related Work 9

Simplex Noise

Another form of smooth noise that was designed by Perlin is Simplex Noise. Simplex
Noise is similar to Perlin Noise, but differs from Perlin Noise in some parts. The
most important differences are that Simplex Noise uses equilateral triangles, instead
of rectangles. This will result in 60 degree artifacts instead of 90 degree artifacts,
which are harder to spot by the human eye. Also Simplex Noise sums contributions
from each corner and is slightly faster.

2.1.2 Generative Grammars (GG)

Generative grammar is used to create correct objects from elements encoded as let-
ters/words. Generative Grammars are sets of rules that, operating on individual
words, can generate only grammatically-correct sentences.

Within the scope of PCG-G more abstract forms of generative grammar are used.
Instead of operation on letters/words, the grammars operate on structures such as
graphs and shapes. These types of generative grammar are respectively named Graph
Grammar and Shape Grammar. These grammars are a sets of rules that change a
part of a graph or shape. New possibly interesting, graphs or shapes can be generated
by iterativel applying rules to the graph or shape.

GG is well suited to generate puzzles when the puzzles to be generated are made
out of fixed elements. In [Dor10], graph grammar is used to generate missions and
shape grammars is used to generate space.

Cyclic Graph Grammar

Recent work in Graph Grammar has resulted in a special case of Graph Grammar,
called Cyclic Graph Grammar. It can be used to generate missions. Cyclic graph
grammar is used to perform cyclic dungeon generation for UnExplored in [TWR17].

[Dor17] introduced these cyclic grammars. Traditional approaches of graph gram-
mar have rules that add branches to the graph, the base of these graph grammars
are connections between the nodes. Using such graph grammar will result in a graph
that grows from a starting point, much like a tree. The branches of these trees end
in nodes that are dead ends. Traditional approaches fix these dead ends by trying
to connect the nodes of dead ends. Cyclic grammar overcomes dead ends entirely by
using cycles as the base of the graph grammar. These cycles are used to create flows
that feels more handcrafted and to present the player with alternative solutions.

2.1.3 Image Filtering (IF)

Image Filtering is used to emphasize certain characteristics of an image to display
(partially) hidden information. Many techniques are yearly developed for image fil-
tering. Two fundamental image processing techniques are binary morphology and
convolution filters.

IF is not most useful when generating puzzles, because it is mainly used to gen-
erated smoothness or roughness in terrains or textures. Binary Morphology and
Convolution Filter are two IF approaches and are described below.

Binary Morphology

In binary morphology, pixels of a binary images are processed. An image can be
transformed into a a binary images by changing each pixel into either 0 or 1 based on
some threshold. Examples of techniques are erosion or dilation, which can respectively

Chapter 2. Related Work 10

add or remove edges from the binary image. These binary morphology techniques
can be used to gather certain characteristics of a texture to create new textures or to
generate binary fields.

Convolution Filters

Convolution filters are image filters that change a source image into a filter images, by
applying a filter to each pixel that takes surrounding pixels into account. This filter
could for example be used to blur or sharpen edges of images. Within procedural
content generation it can be used to generate variants or whole new textures from
existing textures.

2.1.4 Spatial Algorithms (SA)

Spatial Algorithms are used to manipulate space to generate game content. Out-
put is generated by using a structured input, for example a grid, or self-recurrence.
Tiling and layering, grid subdivision, fractals, and Voronoi diagrams are all spatial
algorithms that can be used in PCG.

SA can be very useful when generating puzzles. Most of the time puzzles can
be described as an abstract problem in some possibility space. For example a graph
that shows all possible routes through a dungeon. Being able to generate such spa-
tial structures can aid puzzle generation. Below Tile-based Methods for PCG are
described and we discuss how SA can be used to generate Infinite Worlds.

Tile-based Methods for PCG

[Mau16] shows that there are many tile-based approaches within PCG. Tile-based
approaches are applicable for many different types of content creation, including
levels. Tile-based approaches conveniently subdivide the content creation process
into smaller parts, making it easier to define local features. Another advantage of
tile-based generation is that the tiles themselves can be generated offline, while the
tile configuration can be generated in real-time. This makes sure lengthy content
generation methods do not have to be executed during run-time.

Infinite Worlds

An infinite world is something that can result from PCG-G methods by generating
content using Spatial Algorithms. It is used to create the feeling for the player of a
world that is infinite in size.

Because it is impossible to generate a world of infinite size, only a portion of the
world can be generated, ideally only the part of the world that can be seen by the
viewer is generated. This part is the local area. The local area moves along with
the viewer. To generate the local area, information about the surroundings might be
necessary. For example: Generating a town could need information of neighboring
towns to determine the road-layout to those towns. The challenge in this problem
is to generate all surrounding content that is strictly necessary to generate the local
area.

Layer-Based Regionalized Infinite World Generation To tackle this problem
[Joh13] presents layered-based approach to infinite world generation. The world space
is subdivided into regions, in which each region can have up to M layers. For the local

Chapter 2. Related Work 11

Figure 2.2: An abstract render of an infinite world in which the
circles are towns and the connections between those circles are roads.

area all information is needed, which means that the local area consists of regions
that all have M layers.

A layer adds more information to the region based on the information in the
surrounding layers below it. The information of a layer must be in a layer as low
as possible. In the 1st layer (base layer) all information that is independent of the
surroundings or other layers is generated. All information in the 2nd layer must be
based on information from the surrounding base layers, because if it was not based
on information from the base layer it could just as well have been generated in the
base layer itself. The general rule is: The nth layer of a region uses some of the
information from the (n-1)th layer of the surrounding regions. The shape and/or size
of the regions can differ for the different layers.

In Figure 2.2 an example is shown. This is an abstract render of a infinite world
in which the circles are towns and the connections between those circles are roads.
In this example the world is subdivided into square grid regions. The local area is
the area between the red lines. This example world uses five layers. For the local
area all available layers must be generated. All regions within the local area must
be surrounded by regions with 4 layers. This will inevitably include some regions
outside of the local area, which will result in a band of regions surrounding the center
regions. This band is then also surrounded by another band of regions with 3 layers.
This process is repeated until the base layer.

Non-Popping LOD-Chunks Terrain Visualizer Another approach to deal with
infinite worlds is to use Spatial Algorithms to generate high detail content close to
the viewer, and content with decreasing detail further from the view of the player.

[Ulr02] describes a method that visualizes existing, possibly infinite, terrain data.
Within the context of this approach a terrain is the combination of a heightmap (xy-
plane to z-height) and the textures that map onto this heightmap. Visualizing small
heightmaps is not a problem, but it becomes problematic when the terrain you are
trying to visualize is massive. In this context massive means, it contains way more
data than a computer is able to visualize at once. This paper describes a way to
render such a massive terrain using chunks.

A chunk is a subsection of the xy-plane. Each chunk contains local preprocessed
mesh and texture data up to some Level of Detail (LOD) to represent that the terrain
on its own subsection of the xy-plane. This LOD mesh has a certain maximum offset
error. The chunks can contain other chunks, up to some arbitrary depth. This forms
a chunk-tree. The further down the chunk-tree, the smaller the size of the xy-plane
of the chunk, the higher the precision and, the lower the maximum offset error from
the terrain data.

Rendering is based on the viewer. Chunks closer to the viewer need higher pre-
cision when rendered, than chunks far away. During rendering each chunk calculates
the maximum allowed offset error based on the distance to the viewer and the field of
view of the viewer. The chunk-tree is then traversed to select the correct depth in the

Chapter 2. Related Work 12

Figure 2.3: The initial line (left) first pops to a higher detail line
(middle) that has the same shape. As the player comes closer, the
higher detail line (middle) will slowly morph into the final line (right).

chunk-tree based on the maximum offset error of each chunk. This process results in
chunks with higher precision closer to the viewer and chunks that have lower precision
farther away.

This however gives two major problems. (1) Neighboring chunks with different
LOD meshes have cracks where they meet and (2) when the viewpoint approaches a
chunk, the chunk will split into child chunks, and the mesh shape will suddenly pop.

Cracks can be fixed by adding a vertical border around all chunks that have the
texture from the chunk itself applied to them.

The vertex popping can be fixed by slowly morphing to the next LOD mesh based
on the distance from the viewer to the previous and next LOD swap distances as can
be seen in Figure 2.3.

2.1.5 Modeling and Simulation of Complex Systems (CS)

Modeling and Simulation of Complex Systems is used to model a simulation to over-
come impracticability to describe natural phenomena with mathematical equations.
Well known methods are cellular automata, flocking, tensor fields, and agent-based
simulation. Many other methods of complex systems are part of procedural content
generation. For example acting (for quest generation) and semantic models (for entity
behavior).

CS can be useful in puzzle generation. Most puzzles can be modeled as a complex
system. This complex system can be build based on the key-elements of a certain type
of puzzle. In some cases this complex system can then be used to generate puzzles of
this type. Two examples, a semantics-based PCG approach and a flocking simulated
height brushing approach, are discussed below.

Semantics-based PCG

The PhD thesis [Tut12] uses semantics to procedurally generate content. Semantics
can be used to model a complex system, which can be used to generate content in a
meaningful and logical manner. The framework described uses a semantic database
of information about the objects that should be place in a world. The generated
worlds are meaningful and can be interacted with by using the semantic data that is
now present for the objects in the scene.

The procedure of generating content using semantics is described in a Semantic
Layout Solver. The semantic layout solver uses properties of the objects that are
placed to create the scene. Objects have preferred positions relative to other objects,
take up space that can not be occupied by other objects and can demand other objects
to be placed in the scene.

Chapter 2. Related Work 13

The procedure to build a scene is to place each object that has to be placed into
that scene sequentially. Each object is placed on a valid location. Whether its place-
ment is valid is based on its clearance-regions, off-limits regions and geometric rules.
Clearance regions should be empty but cannot overlap, off-limits regions must be
empty and cannot overlap with clearance-regions and geometric rules specify objects
that should be close to or far away from each other. Other rules such as how many
chairs should be placed around a table, or how much weight a table can hold can also
be incorporated into the metrics which are used by the layout solver.

Flocking Simulated Height Brushing

[CGG07] uses simulation to create the surface of a spherical world and texture the
resulting geometry.

To generate a spherical world, the approach starts with a perfect sphere. This
sphere is represented as a parametrized heightmap along its surface. Brushes are de-
fined that can conditionally raise or lower parts of this spherical heightmap. Artists
can create new brushes, these bushes can represent planet like features such as moun-
tains, canyons and oceans. Combinations of these brushes can be swarmed (which is
the flocking-like tool the developers created) over this planet to deform the sphere.
This results in a height map.

To texture the planet a color and a detail texture are generated and combined
using a control texture. A shader then combines those textures and changes the color
based on the curvature of the terrain, the height of the water level and the atmospheric
settings (such as the temperature) of the planet. Combinations of brushes, and all
texture and atmospheric settings can be considered as a planet type.

2.1.6 Artificial Intelligence (AI)

Artificial Intelligence is used to mimic animal or human intelligence. Examples include
speech recognition, planning, and execution of physical tasks by robots. Within PCG,
AI is used in Genetic Algorithms, Neural Networks and Constraint Satisfaction and
Planning.

AI can be used in puzzle generation to (1) try to model the task that a puzzle
designer would perform by hand, (2) to search in a smart manner through many
different puzzles to determine puzzles that fulfill certain requirements, and (3) it could
also be used to simulate gameplay to generate puzzles. A Monte Carlo Tree Search
(MCTS) approach that generates Sokoban puzzles is described below. Important to
note is that although AI looks promising, using generic AI to generate puzzles is still
in its infancy.

Monte Carlo Tree Search Puzzle Generation

[KSG16b] tries to generate Sokoban Puzzles by formulating the generation process
of Sokoban puzzles as a search (and optimization) problem in a tree. The search
technique used is Monte Carlo Tree Search (MCTS). MCTS is a search method that
combines the precision of tree search with the generality of random sampling. It has
shown great success in the world of Go, and this paper shows that it can also be used
to generate Sokoban puzzles.

An MCTS algorithm iteratively expands the whole search tree. During each
iteration a decision is made where to expand the search tree and a random simulation
is made to a leaf node of the tree to check whether the result looks promising. The
expansion process is made so a balance is found between exploitation and exploration.

Chapter 2. Related Work 14

The results of a simulation are fed back into the tree and are used to determine which
areas of the tree are most interesting.

By describing the Sokoban generation process as a stepwise process, the generation
can be seen as a tree search problem for which the MCTS can be used. The steps
are chosen such that they simulate gameplay and therefore ensure that all generated
puzzles are valid, because the generation process adheres to the rules of the game.
Heuristics are used to update the tree after each simulation. The paper shows that,
if these heuristics make more interesting puzzles score higher, the search tree slowly
converges to finding more interesting puzzles.

2.2 Applicability in Puzzle Generation
As can be concluded from this chapter, puzzles can be generated in many different
ways. Pseudo-Random Number Generators (PRNG) and Image Filtering (IF) have
shown to be useful in other area’s of PCG-G, but are not so suitable for puzzle gen-
eration. Generative Grammars (GG), Spatial Algorithms (SA), Modeling and Sim-
ulation of Complex Systems (CS) and Artificial Intelligence (AI) do show promising
application within puzzle generation.

15

3 Foundational Work

This chapter discusses the foundational work done in search-based Sokoban puzzle
generation. [KSG16b; KSG16a] present a way of generating puzzles of varying diffi-
culty for Sokoban. [KSG16b] is the initial work of the method and [KSG16a] proposes
an improvement of this method using a data driven approach. The complementary
work of these two papers will be referred to within this master thesis as the foun-
dational work, because it lies the foundation and basis for the work done in this
thesis.

The foundational work shows very promising results. The method that is de-
scribed heavily relies on a Monte Carlo Tree Search (MCTS) which is used frequently
in AI research. At the time of writing it is the only puzzle generation technique that
was found that uses an MCTS to generate puzzles. Given the promising results, the
brand-new topic, and the state-of-the-art techniques: this paper is the foundation of
the research in this master thesis.

A good understanding of the foundation is necessary, therefore it is crucial to
have a detailed overview of the foundational work. Although a rough summary was
already presented in Section 2.1.6, a more in-depth summary is given in this chapter.
First, an introduction of the work is given, secondly it is shown how the generation
of a Sokoban puzzle can be mapped to a tree, thirdly a estimated difficulty function
is given, fourthly the use of the MCTS to traverse this tree is explained and lastly
the conclusion of the work is discussed.

3.1 Introduction
The foundational work proposes a method to generate Sokoban puzzles using simu-
lated play. It does this by mapping the generation process of all Sokoban puzzles (of
a fixed board-size) to a simple hierarchical tree structure. Each branch from the root
to a leaf node in this tree represents the construction of a single Sokoban puzzle. This
tree that has branches for all possible Sokoban puzzles is, consequently, too large to
explore completely. However, clever techniques that have been developed to traverse
large trees, for example for game-trees used in Chess or Go playing AIs, can be used.

The clever technique that is used to traverse the tree is the Monte Carlo Tree
Search (MCTS). This technique expands the tree one node at a time. The node that
is expanded is selected based on an exploitation vs exploration dilemma. The foun-
dational work shows that by traversing the search space using an MCTS, somewhat
challenging puzzles can be found within a fixed amount of exploration time.

The MCTS uses random roll-outs to leaf nodes of the tree to determine the es-
timated difficulty of puzzles in certain regions of the search space. A roll-out is a
random sequence of alterations that results in a leaf node. A branch from the root to
any leaf node represent a Sokoban puzzle. Each leaf node has only one branch back to
the root, therefore each leaf node corresponds to a Sokoban puzzle. Each time a leaf
node is traversed, an estimated difficulty is computed for its corresponding puzzle.
The puzzle that resulted in the highest estimated difficulty is kept track of. At any
time during the traversal of the tree, the process can be halted after which the puzzle

Chapter 3. Foundational Work 16

that scored the highest on the estimated difficulty function is returned. Increasing
the exploration time will increase the likelihood of finding more difficult puzzles.

3.2 Sokoban as a Tree
As explained in the introduction, the foundational work is based on the ability to
map the generation of all Sokoban puzzles as a tree. In this section this mapping is
explained.

The tree that is used to described the generation process of all Sokoban puzzles
is an hierarchical non-cyclic tree. A branch from the root node to any leaf node
represents the generation process of a Sokoban puzzle. The nodes do not represent
Sokoban puzzles themselves, the nodes represent a step in the construction process
of a Sokoban puzzle. A step in the construction process in the context of this tree is
called an alterations.

The root node is the entry point of the tree. The root node is the node that
provides the initial state of a Sokoban puzzle. The initial state is a puzzle in which
all tiles, except the center tile, are obstacles. At the center tile the player starts.
This initial state is visualized at the left-top in Figure 3.1. A leaf node is an exit
point of the tree. A leaf node is a node that describes a construction state which
has no potential alterations available. A branch from the root node to a leaf node
describes the sequence of alterations that is applied to the initial state that results in
the generation of a Sokoban puzzle. Because the tree is hierarchical and non-cyclic,
each leaf node has exactly one path to the root of the tree. Each leaf node therefore
corresponds to a single Sokoban puzzle.

To ensure that all the generated puzzles adhere to the rules of the game, the tree
structure is build up out of alterations that adhere to the rules of the game. Due to
this, all branches from root to a leaf node are puzzles that adhere to the rules of the
game. Consequently, puzzles that do not adhere to the rules of the game, such as
puzzles that are not solvable, cannot be generated using these alterations.

Each alteration has to define two important procedures. The first is finding the
available alterations given the current state of construction. The second is applying
an alteration to a state of construction. These find and apply procedures of the
alterations should be executable within a very short execution time. The faster these
procedures are executed, the less time is spent on a single branch, which means more
time is available for visiting new branches.

The following five types of alterations are used.

1. Delete Obstacle Alteration - If the level has not yet been frozen, each ob-
stacle adjacent to an empty square can be removed.

2. Place Box Alteration - If the level has not yet been frozen, on each empty
square a box can be placed.

3. Freeze Level Alteration - If the level has not yet been frozen, the level can
be frozen.

4. Move Player Alteration - If the level has been frozen, the player can move
(up, down, left or right) based on the rules of the game.

5. Evaluation Alteration - If the level has been frozen, some post-processing is
applied to the puzzle, resulting in a leaf node.

Chapter 3. Foundational Work 17

Figure 3.1: An example of the states of a puzzle. left-top: initial
state, right-top state at freeze, left-bottom: state before evaluation

and right-bottom state after evaluation.

Chapter 3. Foundational Work 18

These alteration types divide the tree into two phases. The first phase is from
root until the freeze, the second phase is from the freeze until the end. During the
first phase the starting configuration is created. This starting configuration contains
the positions of the player, boxes and obstacles. During the second phase, play
is simulated on the puzzle defined during the first phase. This simulated play only
consists of alterations that are legal moves within the game. The second phase always
ends with the evaluation alteration.

The evaluation alteration is the most complicated alteration. It only happens once
each branch and it is always the alteration that results in a leaf node of the branch.
The evaluation alteration applies some post-processing. The player and all boxes are
moved back to their starting positions. The starting position of the player and boxes
are their positions at the moment the freeze alteration occurred. The positions where
the boxes ended up are their goal locations, at these position a goal is created. An
example of this can be seen in Figure-3.1. In this figure you can also find a box that
has not been pushed by the player and is turned into an obstacle. Boxes that have
not been pushed by the player do not add any value to the puzzle, these boxes could
have just as well been obstacles. These boxes are therefore changed into an obstacle
without invalidating the puzzle.

3.3 Estimated Difficulty Function
As explained in the introduction, the foundational work uses a function to estimate
the difficulty of solving a certain puzzle. The estimated difficulty function maps a
Sokoban puzzle to an estimated difficulty, which is a number in the range from zero
to two.

In [KSG16b] this function is based on two metrics, a terrain-metric and a congestion-
metric. The terrain-metric will return higher scores for puzzles with not too many
open obstacle-free spaces, and the congestion-metric will return higher scores for
puzzles in which box-path are congested with other boxes, obstacles and goals. The
results of these metrics are combined using the geometric mean. Therefore, when one
of the metrics approaches zero, the result approaches zero too, meaning that both
metrics have to be improved to result in good puzzle scores.

In [KSG16a], the follow up work of the main approach, a data-driven approach
was used to reformulate these metrics. For over 200 hand-crafted puzzles a dif-
ficulty was estimated by users playing the puzzles. Metrics were formulated that
showed correlation between the user-estimated and computer-estimated difficulty of
the hand-crafted puzzles. Three promising metrics arose: a new congestion-metric,
a non3X3UniformBlock-metric and a boxCount-metric. The new congestion-metric
is almost the same as the original one, except it takes the size of the area of the
box-path into account. The non3X3UniformBlock-metric counts each tile that is not
part of either a 3x3 region of obstacles or a 3x3 region of non-obstacles. And the
boxCount-metric simply counts the number of boxes. The results of these metrics are
scaled using individual weights and then combined using the arithmetic mean, after
which the result is divided by a normalizer to get the results within the range of zero
to two.

3.4 Traversing the Tree
To traverse the search space a Monte Carlo Tree Search (MCTS) is used. An MCTS
expands the traversed space one node at a time. Each expansion is a single iteration

Chapter 3. Foundational Work 19

Figure 3.2: Visual overview of the different phases in the Monte
Carlo Tree Search algorithm.

of the MCTS. Each iteration executes four steps: selection, expansion, simulation
and backpropagation. An MCTS is a tree that slowly expands towards higher scoring
nodes as more iterations are performed. Figure 3.2 gives a visual overview of the
different phases of the MCTS.

The selection-phase traverses the tree until a node is found that does not have all
its children expanded. In the expansion-phase one of the non-expanded child nodes is
expanded. In the simulation-phase a random roll-out is run from the newly expanded
node, until a leaf node is reached. The leaf node corresponds to a puzzle for which
the estimated difficulty is computed. The nodes created for the roll-out are then
discarded. All nodes on the branch from the expanded node to the root node are
updated with the estimated difficulty in the backpropagation-phase.

During the selection-phase the results of the back-propagation-phase are used
to chose how to traverse the tree. Choosing the child node to traverse to, is an
exploitation vs exploration dilemma. On the one hand picking child nodes that have
promising results seems logical (exploitation) and on the other hand exploring new
nodes that have not shown promising results yet is also necessary (exploration). The
UCB formula provides a good balance between these two.

ei + C

√
ln vp
vi

in which ei is the estimated value of the child node between 0 and 1, C is the
tunable bias parameter, vp is the visit count of the parent and vi is the visit count of
the child node.

3.5 Conclusion
The foundational work shows that it can generate somewhat challenging puzzles
within minutes for varying board sizes given no human designed input and that
it is guaranteed to produce solvable puzzles. Figure 3.3 shows four example puzzles
generated by the foundational work. The authors note that the box path interactions
in their puzzles usually correspond to determining a small number key moves, after
which the puzzle is easily solved. In contrast, human designed puzzles can require

Chapter 3. Foundational Work 20

Figure 3.3: Puzzle examples generated by the foundational work
requiring at least left-top: 15, right-top 15, left-bottom: 18 and, right-

bottom 15 moves to solve on boards with a size of 6x6.

the player to move boxes carefully together throughout the entire solution. There is
thus room for improvement.

21

4 Candidate Improvements

In this chapter an overview of candidate improvements on the foundational work is
given. The candidate improvements that were implemented all fall into one of two
categories: Alteration Extending or Symmetry Reduction. Candidate improvements
in Alteration Extending try to improve the foundational work by altering or extending
the alterations that are used to build up the search space. Candidate improvements in
Symmetry Reduction try to improve the foundational work by removing the symmetry
that is present within the search space.

The following sections describe the candidate improvements. For each candidate
improvement the motivation, concept, implementation and results are discussed. The
setup that was used to gather the results can be found in Section 5.3.

4.1 Alteration Extending
In this section candidate improvements that fall into the category Alteration Extend-
ing are described. These candidate improvements try to improve the foundational
work by altering or extending the alterations that are used to build up the search
space. The alterations that are used in the foundational work are described in Sec-
tion 3.2.

4.1.1 Push Alteration

Motivation

In the foundational work a move alteration is used. This move alteration simulates
input for left, right, up, and down moves. The idea is that this move alteration will
sometimes push a box when moving the player. These box pushes are used by the
evaluation alteration to finalize the puzzle. The evaluation alteration is always the
last iteration that is applied to the board. This alteration moves all boxes and the
player back to their starting positions and adds goals at the positions where the boxes
ended. The end position of the player does not affect the outcome of this evaluation
alteration. Therefore, moves that do not push a box, do not alter the outcome of the
puzzle and are uninteresting.

The move alteration is essentially a way to search for box pushes. By using
an alteration to perform this search the MCTS is executing this search algorithm
internally. Although this seems to work in the foundational work, there might be a
better way to execute this search. An external search algorithm can be employed to
search for available box pushes instead of using the MCTS for this.

Concept

The push alteration is the substitute for the move alteration. The traditional moves
used by the move alteration are replaced with sequences of moves that end with a
box push. Such a sequence of moves is a path. The push alteration searches for all
paths that end with a box push from the current position of the player. It does this

Chapter 4. Candidate Improvements 22

Figure 4.1: An example of all reachable tiles (white circle) and all
available box pushes (red arrow) from those reachable tiles.

by first finding all the floor tiles that the player can reach and then looking for all
the box pushes that can be made from these reachable floor tiles. Figure 4.1 shows
an example of this.

In the foundational work the move alteration marks tiles that are moved to as
used. During the evaluation alteration tiles that have not been used are turned into
an obstacle. The push alteration should make sure that tiles are marked as used when
a path crosses them. Moreover it is preferable that the paths that are found try to
avoid tiles that are not marked as used unless unavoidable. When it is unavoidable
for a path to cross a tile that is not marked as used there might be multiple solutions
to achieve this. In the implementation, the first solution that is found is picked and
all other solutions are discarded.

A benefit of the push alteration is that it drastically reduces the number of cycles
in the search space. In the foundational work, alterations can create cycles in the
search space. Any sequence of alterations that will result in the same configuration
of the board as that was started with is a cycle. As an example: the move alteration
could move the player left and right indefinitely. There are many more examples of
such cycles, and the move alteration is involved in most of them. Although the push
alteration does not completely get rid of such cycles, it does reduce the amount of
cycles that can occur drastically.

There is also a drawback in using the push alteration. It does not scale well
with an increasing board size. The complex push alteration is a more costly to
compute than the simple move alteration. Moreover, the expected time to find all
push alterations depends on the size and state of the board and the expected time
of applying the push alteration depends on the length of the path. Therefore, the
time in which the push alterations can be found and applied is not constant. On
large boards this computation time could get too large and neglect the benefits of the
candidate improvements.

Chapter 4. Candidate Improvements 23

Implementation

The implementation of an alteration requires two components. The first is finding the
available alterations on a board state, and the second one is applying an alteration
to a board state.

To find the available push alterations all floor tiles that are reachable from the
current position of the player are first found. Figure 4.1 shows all reachable tiles
marked with a white circle. A flood-fill algorithm is used to find the reachable tiles.
The flood-fill is performed on empty floor tiles. The flood-fill is slightly altered to
prioritize the exploration of tiles that have been marked as used. This ensures that
tiles not yet marked as used are only used when necessary. The flood-fill is executed
breath-first. This makes sure that path that is found to a reachable tile is the shortest
possible path. This path is used to apply the alteration.

Once all reachable tiles have been found, checks are performed from each reachable
tile into all four directions (up, down, left and right). These checks test for the
presence of a box in a neighboring tile and for an empty floor tile behind it. If this is
the case, a push alteration is created. The push alteration contains the sequences of
moves to the reachable tile and includes a move into the direction of the box, to push
the box. Figure 4.1 shows an example of all available push alteration on a board. In
this example, the player could for instance move to tile (3, 3) and from there push
the box on (2, 3) to (1, 3).

Applying the push alteration is now trivial. The box is pushed from its original
position in the direction that the player pushed it in, then all tiles from the player to
the box are marked as used, and lastly the player is moved to the original position of
the box.

Results

Figure 4.2 shows the average results over generating ten puzzles with and without the
push alteration. The results show that the push alteration generates higher scoring
puzzles on average.

Although the push alteration itself takes more time to compute, on average less
time is spent to execute 500.000 iterations. This seems to have two main reasons.
First, when the push alteration finds no available pushes, the branch is immediately
stopped and therefore a leaf node is immediately reached. Secondly, the push alter-
ation is less likely to find redundant moves that result in identical positions. As an
example: A move alteration that moves the player can be followed up by a move
alteration that moves the player into the opposite direction back onto its previous
position. This is a redundant sequence of moves. Such an example is less likely to
occur when the push alteration is used.

4.1.2 No Separate Freeze Alteration

Motivation

The freeze alteration is used to separate the deletion of walls and placement of boxes
from the simulated play. This is necessary since deleting an obstacle or adding a box
during simulated play could break the solution to the puzzle. However, a separate
freeze alteration is in essence an unnecessary alteration that increases the size of the
search space. Removing the separate freeze alteration decreases the search space and
might therefore improve the results.

Chapter 4. Candidate Improvements 24

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Sc
o

re

Number of Iterations

Score vs Iteration
average of 10 puzzles with 500k iterations per puzzles

 Evolved [] Evolved [A]

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Sc
o

re

Time (in seconds)

Score vs Seconds
average of 10 puzzles with 500k iterations per puzzles

 Evolved [] Evolved [A]

Figure 4.2: Two graphs that show the score over an average of 10
puzzles at the seconds and the iterations used for puzzles generated

with (green) and without (yellow) Alteration Extending.

Chapter 4. Candidate Improvements 25

Concept

The freeze alteration does not have to be a separate alteration, the concept of this
candidate improvement is to always allow the move alteration but to disallow delete
and place alteration after a move alteration has been applied. The move alterations
are then no longer restricted to only work on boards that have been frozen, instead,
a move alteration freezes the board and delete and place alterations are restricted on
frozen boards.

Results

Removing the separate freeze alteration has shown not to be successful. The average
score of the puzzles dropped, when no separate freeze alteration was used.

The bad results are probably due to the fact that the separate freeze alteration
does serve a function. Its function is to separate the delete and place alterations from
the simulated play. The freeze alteration hereby decreases the number of iterations
that are spend on exploring states that simulate play in the first few layers of the
tree. This is beneficial since simulated play is not interesting there.

4.2 Symmetry Reduction
In this section candidate improvements that fall into the category Symmetry Reduc-
tion are described. These candidate improvements try to improve the foundational
work by removing the symmetry that is present within the search space.

In the following subsections, first the motivation behind symmetry reduction is
given, then a visualization of the first layers of the search space is given, then simple
search space reduction techniques are described and lastly improvements that try to
reduce symmetry are described.

4.2.1 Motivation

The search space that is defined by the alterations of the foundational work contains
symmetry. Spending computer power on exploring configurations is a waste of time
when a configuration symmetrical or identical to it has already been explored. The
goal is to minimize the time spent on exploring configurations that have already been
seen before, and thereby maximize the time spent on new and unique configurations.
Removing this symmetry will reduce the search space while preserving the existence
of all possible configuration in the search space.

The symmetry that has been found in the search space of the foundational work
can be categorized into the following two categories:

• an equal board configuration reached by symmetrical branches within the search
tree

• a board configuration that is symmetrically equal to another board configuration
elsewhere in the tree

An example of symmetry in the search tree: Given a configuration that has two
empty floor tiles A and B, where a box can be placed by a place alteration. The
search space contains a branch in which a box is placed on tile A and then on tile B,
and also a branch in which a box is placed on tile B and then on tile A. Although
these branches seem like completely different configuration to the MCTS, the resulting

Chapter 4. Candidate Improvements 26

configuration are equal, due to the symmetry in the branches. This symmetry can be
avoided by only allowing one of these two branches to exist.

Ideally, there would be a system that prunes out all symmetry from the search
space while preserving the existence of at least one unique instance of each possible
configuration. Building and verifying such a system is however very complex. Some
explanations of this complexity are:

• Visualizing the search space to find examples of symmetry is hard.

• Programmatically defining which configurations are symmetrically identical is
not trivial.

• Verifying whether the symmetry reduction algorithm preserves all possible con-
figurations is hard to verify.

A candidate improvement does not have to be perfect. If it can very rapidly
prune out half of the symmetry, the overall results might be better than a very
slow candidate improvement that removes all of the symmetry. Moreover, it is not
that bad if ten percent of the possible puzzle configuration are lost, if that means
the other ninety percent of the puzzles can be found more quickly. Finding a good
candidate improvement that reduces symmetry is thus a balance between speed and
effectiveness.

4.2.2 Understanding the Search Space

To reduce symmetry a good understanding of the search space is essential. The
insights gained from this subsection can be used to understand the structure of the
search space and can be used to understand what possible changes to the search space
can be made by candidate improvements.

Visualization Tools

To get a better understanding of the search space two visualization tools have been
made. Figure 4.3 shows a preview of these visualizations. One preview of the con-
figurations that arise in the top layers of the search tree, and one preview of the
visualization of the UCB values in the MCTS. The visualizations of the search space
showed where symmetry in the search space existed. These insights were used to
come up with candidate improvements.

Measurements

To get a better understanding of the search space, measurements have been done on
the size of the search space.

• In Table 4.1 the size of the tree, the number of nodes, and the average growth
of a node from the previous depth can be seen for depths one to nine. As can
be conclude each node has approximately nine children at depth five, which
slightly increases as the depth increases.

• After five hundred thousand iterations in the MCTS the average depth at which
a child node is expanded is 5.45, the average depth of a roll out is 14.04, and
the average depth of a roll out that resulted in an improvement is 34.99.

Chapter 4. Candidate Improvements 27

Figure 4.3: A preview of the visualization of the configurations of the
search tree (on the left and bottom) and a preview of the visualization
of the UCB values of the MCTS after five-hundred-thousand iterations

(on the right).

Depth Tree Size Number of Nodes Growth
1 1 1 -
2 6 5 x5.00
3 38 32 x6.40
4 268 230 x7.19
5 2.454 2.186 x9.43
6 22.990 20.536 x9.39
7 229.866 206.876 x10.07
8 2.412.794 2.182.928 x10.55
9 26.275.178 23.862.384 x10.93

Table 4.1: Tree Size, Number of Nodes, and Growth at different
depths in the tree

Chapter 4. Candidate Improvements 28

4.2.3 Search Space Reduction

While trying to get a better understanding of the search space, some insightful ob-
servations were made. These resulted in two simple approaches to reduce the size of
the search space. These approaches do not relate to symmetry reduction, but reduce
the size of the search space in a different manner.

• Applying the freeze alteration in the first few layers is not useful. In the first few
layers the freeze alteration will always result in puzzles that have an estimated
difficulty score of zero.
The approach used to counter this problem is to only allow freeze alteration
from the ninth layer. When no delete or place alterations are available, the
freeze alteration can always be applied to ensure that the play-phase is reached.

• There should always at least be one box before the simulation part of the
search space is reached. Otherwise resulting puzzles have a near zero estimated
difficulty score.
The approach used to counter this problem is to ensured that at least three
and at most seven boxes are placed before the freeze alteration is applied.

Figure 4.4 shows a graph of the average score over ten puzzles per iteration for not
applying search space reduction (Evolved [A]) and a graph for applying the search
space reduction (Evolved [A + SSR]). The graphs show that these simple reductions
of the size of the search space have a slightly positive effect on the speed by which
higher scoring puzzles are found. These effects are most notable during the first two
hundred fifty thousand iterations of the search. Due to the positive results, these two
improvements are also applied in all symmetry reduction improvements described in
the following subsections.

4.2.4 Hard-coded Initial Layers

Concept

Before trying to implement a symmetry reduction approach that dynamically prunes
parts of the search space, a hard-code symmetry reduction test is done. In this test
the first five layers of the search tree have been collapsed into one layer containing all
unique configurations that would be available after five layers of only applying delete
alterations. The number of hard-coded layers was empirically set at five.

Symmetry

The symmetry that is pruned out using this approach is symmetry in the shape of the
cut-outs of the delete alterations. Cut-out shapes are considered symmetrical when
they can be either rotate or flipped onto each other.

Implementation

Figure 4.5 shows the available variants. Each row is a layer of cutout from the search
space, the first column shows the unique cut-outs from the previous row, and the
second column are the possible cut-outs after applying one more delete operation
adjacent to the existing cut-out. Unique variants are underlined by a green line. As
can be seen in the second column of the last row there are twelve unique variants
after a depth of five layers.

Chapter 4. Candidate Improvements 29

0

0,2

0,4

0,6

0,8

1

1,2

Sc
o

re

Number of Iterations

Score vs Iteration
average of 10 puzzles with 500k iterations per puzzles

 Evolved [] Evolved [A] Evolved [A + SSR] Evolved [A + SSR + HS] Evolved [A + SSR + M]

0

0,2

0,4

0,6

0,8

1

1,2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Sc
o

re

Time (in seconds)

Score vs Seconds
average of 10 puzzles with 500k iterations per puzzles

 Evolved [] Evolved [A] Evolved [A + SSR] Evolved [A + SSR + HS] Evolved [A + SSR + M]

Figure 4.4: Multiple graphs of the average score over ten puzzles per
iteration for different symmetry reduction techniques.

The yellow graph shows the results of the replica of the foundational
work. The green graph shows the results of Alteration Extending.
The gray graph shows the results of Alteration Extending and Search
Space Reduction. The orange graph shows the results of Alteration
Extending, Search Space Reduction, and Hard-coded Symmetry Re-
duction. The blue graph shows the results of Alteration Extending,

Search Space Reduction, and Mirror Symmetry Reduction.

Chapter 4. Candidate Improvements 30

Figure 4.5: An overview of the unique hard-coded cut-out shapes
after five layers of delete alterations.

A new type of alteration is used, the cut-out alteration. This cut-out alteration
has twelve variants, one for each of the unique cut-outs. The first alteration made in
the search tree is always one of these twelve cut-out alterations. They are not used
in the rest of the search tree.

Results

Table 4.1 shows that the original size of the search tree at depth five is around 2454
nodes of which 2168 are at depth five itself. Using this implementation the number
of nodes at depth five is brought down to twelve. This is a reduction of the search
space at depth five from 2454 to 13 nodes. Which is a 99.5% reduction.

These twelve nodes do not contain all distinct configurations possible after five
layers of the original search tree. This has two important reasons. The first reason
is that only delete alterations are considered. Place, freeze, push, and evaluation
alterations are not considered. The second reason is that all cut-out shapes are
applied at the center of the puzzle, whereas the in the original approach they could
arise at any position within the puzzle.

Figure 4.4 shows a graph of the average score over ten puzzles per iteration for not
applying the hard-coded initial layers (Evolved [A + SSR]) and a graph for applying
the hard-coded initial layers (Evolved [A + SSR + HS]). These graphs shows that
the hard-coded initial layers perform better than the original approach.

Removing symmetry from the branches is therefore very promising. Because by
only reducing a small fraction of the symmetry, a notable effect on the outcome can
be seen. It is a small fraction, because although pruning out 99.5% of the first five
layers seems like a lot, it pales into insignificance when compared to the whole search
tree that has depths of around 40.

The idea was to test whether symmetry reduction is useful at all, based on this
hard-coded test. The results show that symmetry reduction that only operates on
the first few layers certainly is already worth it and that pruning out symmetrical
branches throughout the whole tree might even improve the results further.

Chapter 4. Candidate Improvements 31

Figure 4.6: Different permutations of the same example configura-
tion.

4.2.5 Lexicographical Ordered

Concept

[Wal06] shows that lexicographical ordering can be successfully used to prune sym-
metry from constraint solving problems. This concept can also be applied to the
structure of the search space. To prune the search space, this approach only al-
lows the search space to expand into configurations that are the smallest possible
lexicographical ordering of all symmetrical permutations.

Symmetry

Within this candidate improvement symmetry is only reduced in the shape of the
cut-out that results after applying delete alterations. Configurations are considered
symmetrical identical if they are different permutation of each other. Different per-
mutations of the same configuration can be seen in Figure 4.6. In this figure the
tiles resemble a Sokoban puzzle, the white tiles are obstacles, and the black tiles are
places were a delete alteration has deleted an obstacle. The black tiles form the cut-
out shape of the configuration. This cut-out shape can be described in eight different
lexicographical orderings. The description can start at the left or right side of the
puzzles, the description can start at the top or bottom of the puzzle, and the descrip-
tion can describe the puzzle row-first or column-first. This gives 2 ∗ 2 ∗ 2 = 23 = 8
distinct lexicographical orderings.

Chapter 4. Candidate Improvements 32

Figure 4.7: Example process that filters out lexicographical non-
minimal permutations.

Implementation

The implementation of this candidate improvement is a filter. The filter is applied
when a child is expanded into its possible delete alterations. The expansion of a
child into a delete alteration is only allowed when the resulting cut-out shape is
lexicographically minimal. To do this, all possible permutations of the cut-out shape
are compared with the actual one. Figure 4.7 shows an example of this process. It
consists of five steps, from A to E.

Step A shows the input of the process. The input consists of the board state before
the candidate delete alteration is applied and the location of the candidate
delete alteration. The candidate delete alteration is indicated by a red square.

Step B shows how the board is cropped to the size of the cut-out shape, including a
one tile wide border around it. This is the area of the cut-out shape in which
all possible delete alterations could be applied.

Step C shows the visualization of the cut-out shape. The white tiles correspond to
obstacles, black tiles correspond to non-obstacles, and the red tile indicates
the candidate delete alteration. The red and black tiles together form the
cut-out shape after the candidate delete alteration would be applied.

Step D shows the calculation of the permutation-value of the cut-out shape from last
step. Its value is 1112.

Step E shows that this permutation-value is then compared to all other possible
permutations of the same cut-out shape. Since the cut-out shape in blue has
a value of 612, which is smaller than 1112, the candidate delete alteration
is not minimal and it is therefore rejected.

This approach does have a limitation. It is limited in the size of the board. To
calculate the permutation-value the size of the board is limited to the size of the data
type that is used to store numbers. The number of tiles in the minimal area that
is created at Step B can be as large as the size of the board. 2Nt is the maximum
number that the data type needs to store in which Nt is the number of tiles. If a
32-bit integer is used, which can represent values up to 232, the maximum supported
board size is 32 tiles. For a 64-bit integer the maximum supported board size is 64,
which corresponds to a board size of 8x8 tiles.

The search space will collapse to zero nodes if the lexicographical ordering is
applied on each depth in the tree. This happens because the minimal permutations
are not necessarily children of each other within the search tree. The lexicographical

Chapter 4. Candidate Improvements 33

Depth Without LOSR With LOSR
1 1 1
2 6 4
3 38 12
4 268 39
5 2.454 141
6 22.990 603
7 229.866 2.464
8 2.412.794 25.594
9 26.275.178 215.709

Table 4.2: Size of the search space with and without Lexicographical
Ordered Symmetry Reduction (LOSR)

permutation that are used are therefore slightly altered. On each odd depth all eight
permutations of the configuration are considered, however on each even depth only
the first four permutations are considered. Although this will result in symmetrical
permutation of symmetrical position occuring in the search space, the algorithm still
reduces a lot of symmetry by only using a small amount of time.

Table 4.2 shows the difference in search space with and without Lexicographical
Ordered Symmetry Reduction.

An important aspect of the MCTS is that similar configurations should be close
together in the search space. Given the MCTS finds a high scoring configuration in
some part of the search space and starts to exploit that part of the search space, the
MCTS expects to find more high scoring configuration nearby. If this is not the case,
using an MCTS to explore the search space is no longer useful. Using the approach
described in this subsection, similar configurations are no longer guaranteed to be
close to each other in the search space. At the beginning of the search tree this is
not so much of a problem, however when diving deeper into the tree the alterations
should not be filtered to disallow exploration of configurations that might have a
symmetric configuration somewhere else in the tree. These symmetric configurations
might have not been encountered yet, and during the current search we might not
find them. To avoid this problem the symmetry reduction approach is only applied
for the first eleven layers of the search tree.

Results

Before the Evolved project was written an experimental C# project was created.
This candidate improvement was only implemented on the C# project. This C#
project ran 20 times slower than the Evolved project written in C++. The results
are therefore not comparable to the C++ project to which the other approaches are
compared.

In Figure 4.8 the results of this improvement in the C# project can be seen. This
approach results in a slight improvement.

4.2.6 Node Jumping

Concept

This candidate improvement tries to use node jumping to reduce the symmetry in
the search space. The idea is that when a configuration is reached that has already
been identically, or symmetrically reached somewhere else in the search space, that

Chapter 4. Candidate Improvements 34

0

0,2

0,4

0,6

0,8

1

1,2

0

1
0

0
0

0

2
0

0
0

0

3
0

0
0

0

4
0

0
0

0

5
0

0
0

0

6
0

0
0

0

7
0

0
0

0

8
0

0
0

0

9
0

0
0

0

1
0

0
0

0
0

1
1

0
0

0
0

1
2

0
0

0
0

1
3

0
0

0
0

1
4

0
0

0
0

1
5

0
0

0
0

1
6

0
0

0
0

1
7

0
0

0
0

1
8

0
0

0
0

1
9

0
0

0
0

2
0

0
0

0
0

2
1

0
0

0
0

2
2

0
0

0
0

2
3

0
0

0
0

2
4

0
0

0
0

2
5

0
0

0
0

2
6

0
0

0
0

2
7

0
0

0
0

2
8

0
0

0
0

2
9

0
0

0
0

3
0

0
0

0
0

3
1

0
0

0
0

3
2

0
0

0
0

3
3

0
0

0
0

3
4

0
0

0
0

3
5

0
0

0
0

3
6

0
0

0
0

3
7

0
0

0
0

3
8

0
0

0
0

3
9

0
0

0
0

4
0

0
0

0
0

4
1

0
0

0
0

4
2

0
0

0
0

4
3

0
0

0
0

4
4

0
0

0
0

4
5

0
0

0
0

4
6

0
0

0
0

4
7

0
0

0
0

4
8

0
0

0
0

4
9

0
0

0
0

5
0

0
0

0
0

P
u

zz
le

 S
co

re

Number of Iterations

Number Of Iterations vs Score
(average of 10 puzzles)

 Base Base - AlterationExtending Base - SymmetryReduction

0

0,2

0,4

0,6

0,8

1

1,2

P
u

zz
le

 S
co

re

Time (in seconds)

Number Of Seconds vs Score
(average of 10 puzzles)

 Base Base - AlterationExtending Base - SymmetryReduction

Figure 4.8: A graph of the average score over ten puzzles per itera-
tion in the C# project. Red is the base graph, gray is the graph with
alteration extending, and yellow is the graph with alteration extending

and with the lexicographical ordering improvement.

Chapter 4. Candidate Improvements 35

instead of adding a new node, a reference to the previously reached node is created.
In essence, instead of adding a new node, a jump is made to the node where the
configuration was first seen. This way, existing information that has been collected
at that node can immediately be used instead of starting exploration of the essentially
same configuration all over again.

Implementation

When a node is expanded into children, for each of the children a search has to be
performed to find whether the resulting configuration already exists somewhere else
in the tree. This search cannot compare the configuration to each node in the tree
since this would take to much time. To avoid this, a hash map is used. Hash maps
have a constant add and find speed. To use a hash map a hashing function must be
created for configurations. Configurations that are symmetrically equal should return
the same hash.

A node jump can only be added when the configuration is 100% identical or
symmetrical to the node that is jumped to. The hash function should therefore take
the cut-out shape, used tiles, box placements, box origins, and player location into
consideration. Moreover, since the hash has to be calculated for each node, the hash
function should be fast. A hashing method exists that is both accurate and fast,
Zobrist Hashing. This hashing method is very fast because given the hash of the
node before the last alteration the new hash can be calculated in constant time. The
changed that the alterations made simply have to be hashed-in to the hash.

The hashing function is used when a child node is created. The hash of the child
node is calculated and a check is performed whether this hash already is present in
the search tree. If the hash does not exist, the node is created and it is added to
the hash map. If the hash does exist, a jump to the already existing node is inserted
instead of creating a new child.

Results

Unfortunately after implementing the approach, it did not work. The structure of the
search space is heavily altered by using this approach. The resulting structure is no
longer a hierarchical non-cyclic tree. Directed cycles were able arise in the resulting
search space when jumps to nodes are added. Unfortunately, no way around this
problem was found.

4.2.7 Mirror

Concept

The mirror symmetry reduction approach tries to remove symmetry over the whole
depth of the search space. The mirror approach does not try to remove all symmetry.
The mirror approach only removes some of the symmetry, but tries to do this very
efficiently. The mirror approach removes symmetry in the creation of child nodes.
When multiple alterations on a node are found that will result in symmetrical identical
children, only one of these nodes is accepted, while the others are rejected.

Symmetry

Configurations that this approach considers symmetrical are configurations in which
the cut-out shape is symmetrical. When a configuration is horizontally, vertically

Chapter 4. Candidate Improvements 36

Figure 4.9: All possible variants of mirrors.

or diagonally (for square boards) symmetrical, alterations on only one side of the
symmetry line are allowed.

Implementation

Figure 4.9 shows all possible variants of mirrors. The green tiles underneath each 6x6
board describe on which axis the board is symmetrical: (1) diagonal right, (2) diagonal
left, (3) vertical, and (4) horizontal. Gray means the board is not symmetrical on
that particular axis and green means the board is symmetrical on that axis. On each
board the green tiles indicate the tiles on which a delete alteration is allowed. The
gray tiles indicate that no delete alteration is allowed. These are not allowed since
these would create a symmetric alteration that could also be created from within the
green area. On each board there are always some green tiles, meaning some delete
alterations are always allowed.

Just before the delete alterations are added, the mirror variant that corresponds
to the board configuration is picked. Using this mirror variant only tiles that lie
within the green area are allowed and the other delete alterations are rejected.

Results

Figure 4.4 shows that the mirror approach (A + SSR + M) is a slight improvement
in comparison to not using the mirror approach (A + SSR).

37

5 Experiment

To answer the research question a comparison between the foundational work and
the improved work is made. An experiment is used to make this comparison. The
experiment is a user study that tries to verify the assumption that the improved work,
on average, results in more interesting puzzles. Within this chapter the hypothesis,
sample size, setup, datasets, comparison and analysis of the experiment are outlined.

5.1 Hypothesis
The user study of this experiment compares two datasets. The first dataset is a set
of puzzles from the foundational work. The second dataset is a set of puzzles from
the work that has been done in this master thesis. The most promising candidate
improvements were chosen and combined to generate the second dataset. This is
referred to as the improved work. The goal of the experiment is to compare these
two datasets on their interestingness. Apart from the interestingness, the tools that
are used for this comparison, also try to gather as much additional data as possible
during the experiment.

The hypothesis is that the puzzles from the improved work, on average, are more
interesting than the puzzles from the foundational work. The improved work tries to
achieve more work in the same amount of iterations, without spending much more
time. Since both datasets have been generated with the same number of cycles, the
puzzles from the improved work data set should generally be more interesting.

5.2 Sample Size
Due to time constraints an experiment with strong confidence cannot be conducted.
The experiment is therefore only an initial guideline to whether the improved work
might be more interesting than the foundational work.

To be able to compare the interestingness of the puzzles, the puzzles must be of
the same difficulty in both data sets. If the puzzles are not of the same difficulty,
then the fact that people dislike or like difficult or easy puzzles would influence the
interestingness of them. For this experiment we can assume that the puzzles in
both data sets are homogeneously difficult. This assumption is verified during the
experiment.

Given a confidence level of 80% and a margin of error in the result of 10%, the
sample size of the user study is calculated to be 40 samples per comparisons.

To eliminate bias from the users: (1) each sample is provided by a unique user
and (2) the order in which the puzzles from both sets are presented to the user is
random.

To eliminate bias from the generation methods: each puzzle that is pre-generated
is only used once.

Chapter 5. Experiment 38

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000 5000000

A
ve

ra
ge

 s
co

re
 v

al
u

e

Number of Iterations

Foundational: Graph of Iterations vs Score
Average over 10 puzzles generated with 5 million iterations

Figure 5.1: Graph of the average score of ten puzzles from the foun-
dational work over the number of iterations.

5.3 Setup
Within this section the experimental setup is described. In the following subsections
an explanation for the chosen number of iterations and the chosen board size is
given. Replicating the foundational work was not trivial, this resulted in differences
between the foundational paper and the implementation used by this experiment.
These differences are discussed in the last subsection.

Number of Iterations

The foundational work describes how using more iterations should result in more
interesting puzzles. Figure 5.1 shows a graph of the average score over ten puzzles
over the number of iterations. This graph shows that after around 500.000 (five
hundred thousand) iterations, the result is about as good as after 5.000.000 (five
million) iterations. In this experiment all puzzles have been generated using 100.000
(one hundred thousand) iterations or 500.000 (five hundred thousand) iterations.

The average score reached by performing a certain number of iterations is not the
only interesting property to look at when trying to improve a iteration based system.
The duration of each iteration is also very important. Just looking at the number of
iterations is biased, because an approach could execute more time consuming algo-
rithms in a single iterations to achieve better results. Improving an iteration-based
approach is a choice between executing more complex algorithms per iteration, or do-
ing as many simpler iterations as quickly as possible. Therefore the comparisons do
not just show the average score after a certain amount of iterations but also show the
amount of seconds it took to execute these iterations. The execution time can heav-
ily differ between different implementations. Therefore, comparing executing time is
only insightful when comparing within the same implementation.

Chapter 5. Experiment 39

Board Size

In this experiment comparisons between different puzzles are made. To make a fair
comparison, the sizes of the boards of the puzzles should be the same. Therefore a
fixed board size was set. The board size was set to six by six tiles. The choice for
this board size is mainly based on the following three reasons:

• 6x6 puzzles are generated in the foundational work,

• 6x6 is not too large. Therefore puzzles can be generated within 30 seconds and
with reasonable memory usage of around two gigabytes,

• 6x6 is not too small. Therefore interesting puzzles can still arise within 6x6
board configurations. As an example Figure 5.2 shows highly interesting puzzles
on 4x6 boards.

Parameter Differences in Foundational Work

Replicating the foundational work was not trivial. The foundational work was not
reproducible from the paper describing it. The results of the foundational work were
different from the replica. Fortunately, the development project of the foundational
work was made available by the authors. A comparison between the development
project of the foundational and the development project of this master thesis was
made. This showed some differences between the foundational work and the replica
were found. These are set out in this subsection. This might not be all, since there
might be more differences left that were not found during this master thesis.

Estimated Value of Nodes Within the foundational work the estimated value
that is used when computing the UCB is based partly on the highest scoring node
found in its children. The UCB function is therefore slightly altered. The estimated
value is calculated by the following formula E(n) = (Sm + Sa)/2 in which E(n) is
the estimated value of a node, Sm is the score of the highest scoring child seen so far
and Sa is the average score of its children. This seemed to have no significant effect
on the outcome and it is therefore not used in the foundational work replica used by
this master thesis.

Ordered Child Expansion In a default MCTS implementation a random child is
expanded during the child expansion step. However, within the foundational work,
the children are expanded in order of appearance to save execution time. A costly
randomized pick of a non-expanded child can be avoided, instead a simple shift to
the next child can be used. It does change the outcome of the algorithm slightly
since alterations that appear first are picked first. This seemed to have a significant
impact on the results and is therefore used in the foundational work replica used by
this master thesis.

Weights of Metrics The weights used for the metrics in the paper of the founda-
tional work differ from the weights used in the development project of the foundational
work. The weights that were found in the development project seemed to work best
and were therefore used in the foundational work replica used by this master thesis.

• Box Count Metric: 10,

• Congestion Metric: 4*,

Chapter 5. Experiment 40

• 3x3 Block Metric: 1 over the number of tiles in the board.

*The Congestion Metric uses an additional multiplier, the square multiplier. This
multiplier is calculated for each box individually. The rectangle that encapsulates
the box path is taken into account. The value is bigger on a rectangle that more
closely resembles a square. The multiplier is calculated by the following formula:
squareMultiplier = (Rw +Rh)/max(Rw + 1, Rh + 1) in which Rw is the width and
Rh is the height of the rectangle.

Tunable Constant of UCB The MCTS is unstable in the selection phase when
used with a tunable constant C of

√
2 as described by the paper of the foundational

work. In the development project of the foundational work a value of 5
√
2 is used

that seems to work better. This value is also used in the foundational work replica
used by this master thesis.

Upper Limit on Number of Boxes The foundational work adds an upper limit
to the amount of boxes that can be placed. This upper limit was not described in
the paper, but is present in the development project. An upper limit on the number
of boxes is not used in the foundational work replica used by this master thesis.

5.4 Datasets
The experiment compares two datasets to empirically determine which dataset has
puzzles that are more interesting. The datasets consist of 80 pre-generated puzzles.
Half of each dataset has been generated with 100.000 (one hundred thousand) iter-
ations and the other half has been generated using 500.000 (five hundred thousand)
iterations. Although the puzzles are pre-generated to save time while conducting the
experiment, the puzzles are assumed to be generated right before a user plays them.

During the experiment a quick comparison is also made between a dataset of
handcrafted puzzles and the improved work.

The following subsection describe the improved work dataset and the handcrafted
dataset.

5.4.1 Improved Work

Chapter 4 described seven candidate improvements falling in two categories: Alter-
ation Extending and Symmetry Reduction. In both categories, one candidate im-
provement seemed to work best. For the Alteration Extending category this is the
’Push Alteration’-improvement and for the Symmetry Reduction category this is
the ’Hard-coded Symmetry Reduction’-improvement. This includes the Search
Space Reduction that is included in all symmetry reduction candidate improvements.

These candidate improvements have shown to improve the foundational work. The
foundational work including these two improvements is the improved work proposed
by this master thesis. Figure 4.4 shows the results of the improved work in the graph
(Evolved [A + SSR + HS]). It shows that the average score after 500.000 iterations
is significantly higher than that of the foundational work (Evolved []).

5.4.2 Handcrafted dataset

A dataset of handcrafted Sokoban puzzles was collected. These puzzles can be com-
pared to puzzles generated by the work in this master thesis. This is useful to get and
understanding in which ways generated puzzles still differ from handcrafted puzzles.

Chapter 5. Experiment 41

Figure 5.2: Handcrafted puzzle examples requiring at least left-top:
74, right-top 116, left-bottom: 119 and, right-bottom 105 moves to solve

on boards with a size of 6x4.

Figure 5.2 shows examples of puzzles that are highly interesting. The puzzles
require certain ’key’-moves to be found through-out the entire solution of the puzzle.
As pointed out by the foundational work, most puzzles generated with it only have a
few key moves, while the handcrafted (high quality) puzzles seem to have key moves
until the end of the solution.

5.5 Comparison
The comparison of the two datasets will be done using a comparison tool that was
created for this master thesis. This section explains the process a user makes while
using the tool.

The user will start with a tutorial. The tutorial familiarizes the user with the
controls and the gameplay. It is important that the user has a good understanding
of the gameplay before beginning the experiment.

Chapter 5. Experiment 42

Next, the comparison tool presents the user with two puzzles, one from each
datasets, that was generated with 100.000 thousand iterations. The user will play
both these puzzles in a random order without knowing to which dataset the puzzles
belong. There is no restriction on the number of resets, number of solves, or play
time that the user has while playing the puzzles. During the playthrough of each
puzzle, the following data is collected in the background:

• The number of seconds a player played a certain puzzle. The timer starts when
the player makes the first move (or after 3 seconds) and stops when the player
clicks on the continue/next button to either go to the next puzzle or go to the
questions.

• A log of all the actions the player took. Containing the following actions:

– Moves: Logging of each move (per direction). A move is added to the log
when the input resulted in the player successfully moving on the board.

– Resets: Logging of each reset of the puzzle to its original state.
– Solves: Logging of each time the puzzle was solved. The puzzle can remain

unsolved, solved once, or solved multiple times.

• The minimum number of moves it took a player to solve the puzzle. Or -1,
indicating that the puzzle was not solved.

After playing the first two puzzles, the user decides which puzzle it found more
interesting to play and which puzzle it found more difficult to play. The player also
assigns from 1 to 5 stars for the following four questions:

• interestingness of the first puzzle,

• difficulty of the first puzzle,

• interestingness of the second puzzle,

• difficulty of the second puzzle.

Next the process starts over, skipping the tutorial and picking two puzzles that
were generated with 500.000 thousand iterations from the datasets. After playing
these two puzzles and answering the questions the user has finished the experiment.

5.6 Analysis
In this section the output from the experiment is analyzed. Figure 5.3 and Figure 5.4
show the results of the user study.

5.6.1 Assumption

In Section 5.2 the assumption was made that the puzzles in both datasets are of
homogeneous difficulty. This was verified during the experiment. The user study
shows that all datasets are of homogeneous difficulty. People rate both datasets with
an average of 2.9 stars out of 5 for difficulty. The exception are the puzzles of the
foundational work at 100.000 iterations, these puzzles have a slightly lower difficulty
rating of 2.5 stars out of 5.

Chapter 5. Experiment 43

Figure 5.3: User study results of the puzzles generated with 100.000
iterations

5.6.2 Outcome

The hypothesis defined in Section 5.1 is that puzzles of the improved work dataset
should be more interesting on average. The user study shows that puzzles generated
by the improved work are indeed generally more interesting. The puzzles also gen-
erally have more playtime, more moves to solve the puzzles, more overall moves and
more box pushes. The puzzles of 100.000 iterations from the improved work dataset
were found to be more interesting by 75% of the users and the interestingness is on
average 0.5 stars higher than of the foundational work. The puzzles of 500.000 itera-
tions from the improved work dataset were found to be more interesting by 60% of the
users and the interestingness is on average 0.2 stars higher than of the foundational
work.

5.6.3 Correlation

Figure 5.5 gives an overview of the correlation between different variables of the results
of the user study. A value close to 0 means that two variables are not correlated and
a value closer to 1 means that the two variables are correlated. The figure consists
of five tables. The first table is the correlation overview of all the puzzles from all
datasets. The other four tables show the correlation overview of a specific dataset
with a specific number of iterations. There seems to be no significant difference in
the correlation tables of the specific tables. The main focus is thus on the first table
which shows the correlation for all datasets.

The correlation overview shows some obvious correlation. The number of moves
correlates with the playtime. This is obvious since a user that makes more moves use
more time.

Notable is that the perceived interestingness does not correlate with any of the
other variables. The interestingness does only partly correlate with the perceived

Chapter 5. Experiment 44

Figure 5.4: User study results of the puzzles generated with 500.000
iterations

difficulty (0.57). The fact that interestingness does not seem to correlate with simple
variables indicates that interestingness is not easily captured by simple metrics.

5.6.4 Handcrafted

The first time the experiment was conducted, the users compared puzzles form the
handcrafted dataset and the improved work dataset. During this experiment the
difference in difficulty between the two datasets was too large. The puzzles from the
handcrafted dataset were significantly harder to solve. The users would take around
fifteen to twenty minutes to solve a handcrafted puzzle, sometimes even without
success. On the other hand the puzzles from the improved work data set were solved
in under a minute. This shows that the puzzles from the improved work dataset still
lack the quality of handcrafted puzzles.

Chapter 5. Experiment 45

all
Playtime Quickest Solve Number Of Moves Number Of Box Pushes Number Of Resets Perceived Interestingness Perceived Difficulty

Playtime 1,00
Quickest Solve 0,40 1,00
Number Of Moves 0,67 0,84 1,00
Number Of Box Pushes 0,71 0,59 0,87 1,00
Number Of Resets 0,62 0,42 0,63 0,72 1,00
Perceived Interestingness 0,17 0,25 0,28 0,28 0,15 1,00
Perceived Difficulty 0,39 0,32 0,40 0,41 0,40 0,57 1,00

original_100k
Playtime Quickest Solve Number Of Moves Number Of Box Pushes Number Of Resets Perceived Interestingness Perceived Difficulty

Playtime 1,00
Quickest Solve 0,54 1,00
Number Of Moves 0,78 0,88 1,00
Number Of Box Pushes 0,90 0,72 0,90 1,00
Number Of Resets 0,82 0,67 0,72 0,83 1,00
Perceived Interestingness 0,15 0,31 0,36 0,24 0,05 1,00
Perceived Difficulty 0,50 0,45 0,52 0,47 0,39 0,65 1,00

thesis_100k
Playtime Quickest Solve Number Of Moves Number Of Box Pushes Number Of Resets Perceived Interestingness Perceived Difficulty

Playtime 1,00
Quickest Solve 0,42 1,00
Number Of Moves 0,56 0,91 1,00
Number Of Box Pushes 0,41 0,62 0,82 1,00
Number Of Resets 0,49 0,50 0,76 0,73 1,00
Perceived Interestingness 0,09 0,10 0,15 0,19 0,16 1,00
Perceived Difficulty 0,40 0,38 0,44 0,38 0,45 0,34 1,00

original_500k
Playtime Quickest Solve Number Of Moves Number Of Box Pushes Number Of Resets Perceived Interestingness Perceived Difficulty

Playtime 1,00
Quickest Solve 0,43 1,00
Number Of Moves 0,62 0,80 1,00
Number Of Box Pushes 0,57 0,47 0,88 1,00
Number Of Resets 0,63 0,27 0,79 0,88 1,00
Perceived Interestingness 0,25 0,19 0,39 0,49 0,44 1,00
Perceived Difficulty 0,34 0,27 0,44 0,46 0,46 0,60 1,00

thesis_500k
Playtime Quickest Solve Number Of Moves Number Of Box Pushes Number Of Resets Perceived Interestingness Perceived Difficulty

Playtime 1,00
Quickest Solve 0,28 1,00
Number Of Moves 0,74 0,68 1,00
Number Of Box Pushes 0,80 0,44 0,91 1,00
Number Of Resets 0,81 0,20 0,72 0,81 1,00
Perceived Interestingness 0,16 0,18 0,17 0,13 0,04 1,00
Perceived Difficulty 0,51 0,24 0,39 0,39 0,38 0,54 1,00

Figure 5.5: Correlation overview of the results of the user study

46

6 Conclusion

A puzzle generator that can generate interesting puzzles, can be used to generate
interesting worlds. The Sokoban puzzle game is a puzzle game that suits research
into puzzle generation well. It is interesting to know whether it is possible to generate
Sokoban puzzles that are interesting to play using simulated play.

Generative Grammars (GG), Spatial Algorithms (SA), Modeling and Simulation
of Complex Systems (CS), and Artificial Intelligence (AI) show promising application
within puzzle generation. [KSG16b] uses CS and AI to generate Sokoban puzzles
using simulated play, this is the foundational work. The foundational work showed
that slightly challenging Sokoban puzzles can be generated using simulated play that
are guaranteed to be solvable.

Within this master thesis it is tested whether the foundational work can be im-
proved to generate Sokoban puzzles that are interesting to play. This resulted in
the research question: "Can simulation be used to generate Sokoban puzzles that are
interesting to play?". The concluding answer is:

No. Although the generated puzzles are slightly challenging, they do not come
near the interestingness of handcrafted puzzles. It might be achievable by using a
different implementation, but highly interesting puzzles are not achievable with the
current approach. There seems to be an upper limit that the current approach cannot
(consistently) exceed. This is mainly due to the use of simple metrics that do not
seem to be able to capture the underlying concepts of interestingness.

What the puzzles seem to lack are key moves through-out the whole solution of
the puzzle. After one or a few key moves the solution to most puzzles becomes trivial.
The simple metrics that are used do not capture such key moves. The definition of a
key move is not trivial either. Examples of key moves are:

• a (sequence of) move(s) that is hard to spot or that is overlooked at first sight,

• a (sequence of) move(s) that might feel like locking the configuration, but is
actually the right way to progress,

• a sequence of moves that feels like a short puzzle itself.

Such key moves can be identified by humans, however a solid definition of what a
key move is is quite hard to establish. As is instructed by the given examples, key
moves have something to do with look and feel of the puzzle, these concepts are hard
to grasp for a computer. Key moves make a puzzle interesting. Due to the complex
nature of key moves, it can be concluded that simple metrics will probably not be
able to capture the definition of them. If a definition for key moves can be defined for
Sokoban, then the definition will probably rely on specific knowledge and insights of
the Sokoban puzzle game. Which makes it hard to generically use it for other puzzle
games.

Although the approach was unsuccessful in generating Sokoban puzzles that are
interesting to play, some interesting candidate improvements on a replica of the foun-
dational work were created. Two candidate improvements stood out in their perfor-
mance. The first one being the Push Alteration. The Push Alteration replaced the

Chapter 6. Conclusion 47

simple move alteration by a more complex alteration used during simulated play. It
simulates multiple consecutive alterations at once by only focusing on the alterations
that have an impact on the result. The second one is Hardcoded Symmetry Re-
duction. The Hardcoded Symmetry Reduction prunes out symmetry in the upper
layers of the search space, which decreases the size of the search space and therefore
increases the chance of exploring unique and promising Sokoban puzzles.

These most promising candidate improvements were taken to the test in an ex-
periment. The improved work was defined to be the replica of the foundational work
including the Push Alteration and the Hardcoded Symmetry Reduction. A puzzle
dataset from the replica of the foundational work was compared to a puzzle dataset
of the improved work. An user study is used to make this comparison. The user
study showed three interesting results:

• The user study showed that the puzzles generated by simulated play are notably
less interesting than handcrafted puzzles.

• The user study showed that puzzles from the improved work are generally more
interesting than puzzles from the replica of the foundational work.

• The user study showed that there seems to be little to no correlation in the
perceived interestingness of the puzzles with simple metrics such as the quickest
solve, number of box pushes, and playtime. Indicating that interestingness is
not easily captured by simple metrics.

6.1 Limitations
The current approach has some limitations. These limitations are described in the
following subsections.

6.1.1 Congestion Metric

The congestion metrics that calculates an estimated difficulty score of a puzzle con-
figuration has a limitation. Although most of the times the metrics are correct there
are situations in which the estimated difficulty score is far off the actual score. This
is due to the fact that boxes are not labeled. In the estimated difficulty function the
boxes are expected to go to a specific goal tile, however sometimes a simpler solu-
tion exists. The result is that although a puzzle seems difficult to the MCTS, it can
actually be trivial to solve.

6.1.2 Search Space Structure

There are two important limitations in the structure of the search space. The first
one is that similar puzzle should be close together in the tree. When the MCTS is
exploring puzzles it has expected to be interesting, it should be able to find similar
puzzles in that part of the tree. The second limitation is that puzzles that are similar
in configuration should also be similar in interestingness. If highly interesting puzzles
are scattered randomly around the search space, then looking for interesting puzzles
by checking variants of those puzzles that are nearby in the search space does not
make sense.

Chapter 6. Conclusion 48

6.1.3 Max Evaluation Score

The evaluation score seems to be capped to a max value of around 1.2. Of all puzzles
seen so far, no puzzle has exceeded this number. This indicates that it is very rare
for highly interesting puzzles, such as hand made ones, to arise from this generation
technique. And that, although somewhat interesting puzzles can be found, with the
current metrics, better results are not to be expected.

6.2 Future Work
In the following subsections some potential future work is discussed.

6.2.1 Applicability to Other Puzzle Games

In the introduction the assumption was made that the foundational work can be used
to generate puzzle configuration for other puzzle games. Due too time constraints,
this lies outside the scope of this master thesis, future research is necessary to verify
this assumption. Apart from the metrics and the alteration steps, the foundational
work is generally applicable to other puzzle games. The metrics and alterations have
to be designed for each puzzle game individually. It is important to know whether
the foundational work can be used to generated puzzles for different types of puzzle
games too. If this is the case then research on Sokoban puzzle generation can be
applied to many different games.

6.2.2 Key Moves

In the conclusion some examples of key moves are given. It can be insightful to try
to define what a key move in the game Sokoban actually is. Based on this definition
new metrics can be formed. These metrics should reward puzzles with key moves
and penalize puzzle configurations that lack key moves. After it has been shown that
using key moves can generate interesting puzzles for the puzzle game Sokoban, other
puzzles games could also be tried. Different games might have key moves based on
similar definitions. Showing that patterns do, or do not exist in the key moves of
different games can be very insightful.

6.2.3 Restricted Push Alteration

A limitation of the proposed push alteration in this thesis is that the expected time
to find and execute a push alteration is not constant. The move alteration that this
push alteration replaced is constant. A middle ground might be feasible that searches
for nearby box pushes and that allows a simple move alteration to reach boxes further
away.

6.2.4 Heat-map

The conclusion states that the metrics are too simple to capture interestingness. A
new idea for a more complex metric that might be used to estimate the difficulty
score of a puzzle configuration is to create a heat-map of the usage of the tiles of the
puzzle. The state of the heat-map can be kept track of when applying the alterations,
making sure not much additional execution time is spent on updating the heat-map.
This heat map could positively reward usages of all sections of the puzzle and it could
also positively reward parts of the puzzle that are highly congested.

Chapter 6. Conclusion 49

6.2.5 Recursive MCTS

A possible way to improve the results of the MCTS could be to recursively step down
the MCTS after a fixed amount of iterations have been applied. For example after
every ten-thousand iterations, the MCTS could change the root of the search space
to the most promising child of the current root (based on the UCB). If at every
ten-thousand iteration the next alteration is fixed, then after five-hundred-thousand
iterations the puzzle will be 50 alterations deep. This could simply be implemented
by breaking out of the the back propagation step when a node with a depth smaller or
equal to currentIteration/10.0000 is reached. All existing information that is already
present in the branch of the search space from the first ten-thousand iterations will
be preserved.

6.2.6 Flexible Board Size

Another way to possibly improve the results of the MCTS is that the board could be
made of a flexible width and height. This could be implemented by starting with a
board of 1x1 with just the player on it, and allowing the delete alterations to increase
the size of the board. This possible improvement would make it easier to reduce
symmetry, since the puzzle are no longer positioned on a board, which removes a way
in which puzzles can be symmetrical. This type of symmetry is already tried to be
removed by the candidate improvement ’Lexicographical Symmetry Reduction’, but
would be made much easier when a flexible board size is used. To make sure that size
of the board does not get too large an upper limit on the width and height could be
added.

6.2.7 Player Starting Position

The starting position of the player can be made variable. In the current situation the
player always starts in the center of the board. It might be hard to generate very
interesting puzzles that have a player in the center of the board. In most handcrafted
puzzles the player does not seem to start at the center of the board. Figure 5.2 shows
that in a lot of highly interesting puzzles the player start at the side of the puzzle.

6.2.8 Embed Flood-fill in Search Space

Although the push alteration seems to work very good, there might still be room
for improvement. An idea is to embed the flood-fill algorithm of the push alteration
within the move alteration. The move alteration would then, apart from moving
the player, also mark all neighboring tiles from the tile that was moved from as not
walkable. Only when a push is made by this simple move alteration the walkable
tiles will be reset. This will execute the flood-fill algorithm within the search space
itself. It will also leave the opportunity for all possible paths open, and not just the
shortest ones.

To ensure that not all tiles have to be enumerated to reset the empty tiles that are
available for box pushes, a counter could be kept of the number of box pushes since
the start of the simulated play. When the player moves to a floor tile the number of
box pushes since the start of the simulated play can be saved. A move can then only
be allowed to floor tiles that have a value lower than this number.

50

References

[Mas43] Abraham H Maslow. “A theory of human motivation.” In: Psychological
review 50.4 (1943), p. 370.

[Dor10] Joris Dormans. “Adventures in level design: generating missions and spaces
for action adventure games”. In: Proceedings of the 2010 workshop on pro-
cedural content generation in games. ACM. (2010), p. 1.

[Col97] Joseph C. Colberson. Sokoban is PSPACE-complete. Tech. rep. TR 97-02,
Dept. of Computing Science, University of Alberta. (1997).

[Pos16] Jelle O.M. Postma. “Generic Puzzle Level Generation for Deterministic
Transportation Puzzles”. MA thesis. Utrecht University, (2016).

[HMV13] Mark Hendrikx, Sebastiaan Meijer, and Joeri Van Der Velden. “Procedu-
ral content generation for games: A survey”. In: ACM Transactions on
Multimedia Computing, Communications, and Applications (TOMM) 9.1
(2013), p. 1.

[Per85] Ken Perlin. “An image synthesizer”. In: ACM Siggraph Computer Graph-
ics 19.3 (1985), pp. 287–296.

[TWR17] Mike Treanor, Nicholas Warren, and Mason Reed. “Playable Experi-
ences”. In: AIIDE (2017).

[Dor17] Joris Dormans. A Handcrafted Feel: Unexplored Explores Cyclic Dungeon
Generation. (2017). url: http://ctrl500.com/tech/handcrafted-
feel-dungeon-generation-unexplored-explores-cyclic-dungeon-
generation/.

[Mau16] David Maung. “Tile-based Method for Procedural Content Generation”.
PhD thesis. The Ohio State University, (2016).

[Joh13] Rune Skovbo Johansen. Layer-Based Procedural Generation for Infinite
Worlds. Youtube. (2013). url: https://www.youtube.com/watch?v=
GJWuVwZO98s.

[Ulr02] Thatcher Ulrich. “Rendering massive terrains using chunked level of detail
control”. In: Proc. ACM SIGGRAPH. (2002).

[Tut12] Tim Tutenel. “Semantic game worlds”. ISBN 978-94-6203-259-0. PhD
thesis. Delft, The Netherlands: Delft University of Technology, (2012).

[CGG07] Kate Compton, James Grieve, and Ed Goldman. “Creating spherical
worlds.” In: SIGGRAPH Sketches. (2007), p. 82.

[KSG16b] Bilal Kartal, Nick Sohre, and Stephen Guy. “Generating sokoban puzzle
game levels with monte carlo tree search”. In: The IJCAI-16 Workshop
on General Game Playing. (2016), p. 47.

[KSG16a] Bilal Kartal, Nick Sohre, and Stephen J Guy. “Data-driven sokoban puz-
zle generation with monte carlo tree search”. In: Twelfth Annual AAAI
Conference on Artificial Intelligence and Interactive Digital Entertain-
ment (AIIDE). (2016).

http://ctrl500.com/tech/handcrafted-feel-dungeon-generation-unexplored-explores-cyclic-dungeon-generation/
http://ctrl500.com/tech/handcrafted-feel-dungeon-generation-unexplored-explores-cyclic-dungeon-generation/
http://ctrl500.com/tech/handcrafted-feel-dungeon-generation-unexplored-explores-cyclic-dungeon-generation/
https://www.youtube.com/watch?v=GJWuVwZO98s
https://www.youtube.com/watch?v=GJWuVwZO98s

REFERENCES 51

[Wal06] Toby Walsh. “General Symmetry Breaking Constraints”. In: Principles
and Practice of Constraint Programming. Ed. by Frédéric Benhamou.
Springer Berlin Heidelberg, (2006), pp. 650–664. isbn: 978-3-540-46268-
2.

	Abstract
	Acknowledgements
	Introduction
	Procedural Content Generation for Games (PCG-G)
	Assisting Artists
	Increase Gameplay Time
	Limited Disk Space
	Satisfying the desire to explore

	Examples of PCG-G
	Research Motivation
	World Generation
	Puzzles Generation
	Sokoban - A Puzzle Game
	Reasons for using Sokoban

	Research Question
	Research Plan

	Related Work
	Classes of Methods in PCG-G
	Pseudo-Random Number Generators (PRNG)
	Generative Grammars (GG)
	Image Filtering (IF)
	Spatial Algorithms (SA)
	Modeling and Simulation of Complex Systems (CS)
	Artificial Intelligence (AI)

	Applicability in Puzzle Generation

	Foundational Work
	Introduction
	Sokoban as a Tree
	Estimated Difficulty Function
	Traversing the Tree
	Conclusion

	Candidate Improvements
	Alteration Extending
	Push Alteration
	No Separate Freeze Alteration

	Symmetry Reduction
	Motivation
	Understanding the Search Space
	Search Space Reduction
	Hard-coded Initial Layers
	Lexicographical Ordered
	Node Jumping
	Mirror

	Experiment
	Hypothesis
	Sample Size
	Setup
	Datasets
	Improved Work
	Handcrafted dataset

	Comparison
	Analysis
	Assumption
	Outcome
	Correlation
	Handcrafted

	Conclusion
	Limitations
	Congestion Metric
	Search Space Structure
	Max Evaluation Score

	Future Work
	Applicability to Other Puzzle Games
	Key Moves
	Restricted Push Alteration
	Heat-map
	Recursive MCTS
	Flexible Board Size
	Player Starting Position
	Embed Flood-fill in Search Space

	References

