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Abstract Modern image-based deblurring methods usually
show degenerate performance in low-light conditions since
the images often contain most of the poorly visible dark re-
gions and a few saturated bright regions, making the amount
of effective features that can be extracted for deblurring lim-
ited. In contrast, event cameras can trigger events with a very
high dynamic range and low latency, which hardly suffer
from saturation and naturally encode dense temporal infor-
mation about motion. However, in low-light conditions ex-
isting event-based deblurring methods would become less
robust since the events triggered in dark regions are often
severely contaminated by noise, leading to inaccurate recon-
struction of the corresponding intensity values. Besides, since
they directly adopt the event-based double integral model
to perform pixel-wise reconstruction, they can only handle
low-resolution grayscale active pixel sensor images provided
by the DAVIS camera, which cannot meet the requirement of
daily photography. In this paper, to apply events to deblurring
low-light images robustly, we propose a unified two-stage
framework along with a motion-aware neural network tai-
lored to it, reconstructing the sharp image under the guidance
of high-fidelity motion clues extracted from events. Besides,
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we build an RGB-DAVIS hybrid camera system to demon-
strate that our method has the ability to deblur high-resolution
RGB images due to the natural advantages of our two-stage
framework. Experimental results show our method achieves
state-of-the-art performance on both synthetic and real-world
images.
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1 Introduction

Images captured in low-light conditions1 are prone to motion
blur caused by camera shakes since the sensor requires a
longer exposure time to receive adequate light. Due to the
broad existence of light sources in such conditions, bright re-
gions with saturated pixels are often captured. Together with
the inevitable noise in dark regions, the amount of effective
features that can be extracted for deblurring is often limited,
which degenerates the performance of modern image-based
methods (Zhang et al, 2019; Ren et al, 2020; Cho et al, 2021)
for handling low-light images.

Unlike conventional frame-based cameras that can only
capture image frames, event cameras (e.g., DAVIS camera
(Brandli et al, 2014)) not only capture grayscale active pixel
sensor (APS) images, but also detect per-pixel brightness
changes in an asynchronous manner by triggering events
whenever the logarithmic change of latent irradiance exceeds
a preset threshold. These events have a very high dynamic
range (HDR) so they hardly suffer from saturation. Besides,

1 In this paper, we use the term “low-light images” to refer to the
images containing a majority of pixels in dark regions (poorly visible
with low contrast) and a few bright (usually saturated) pixels (e.g., night
scenes containing light sources (Hu et al, 2018b)), instead of the images
containing only dark regions (e.g., images with short-exposure (Chen
et al, 2018a; Zhang et al, 2020b)).
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events are triggered with very low latency, so that they natu-
rally encode dense temporal information about motion, which
is particularly useful in motion deblurring applications. Cur-
rent event-based deblurring methods (Pan et al, 2019; Lin
et al, 2020; Xu et al, 2021) aim to deblur the APS images
under the guidance of events that have the same spatial reso-
lution as APS images (the output of DAVIS camera). These
methods directly model the mapping from events to latent
irradiance in a pixel-wise manner based on the event-based
double integral (EDI) model (Pan et al, 2019), which demon-
strate higher performance and better generalization ability
than image-based ones. However, when taking photos in
low-light conditions, both the contrast and signal-to-noise
ratio (SNR) are much lower in dark regions (Mitrokhin et al,
2018) than in bright regions, so that in dark regions the “good
events” (triggered by brightness changes) are less observed
while the “bad events” (triggered by noise) become domi-
nated. In such a situation, the pixels in dark regions cannot
be reconstructed robustly by these event-based deblurring
methods due to their sensitivity to the lack of “good events”
as well as the abundance of “bad events”, this is because for
a certain pixel, the EDI model relies on events triggered at
its position to reconstruct the corresponding intensity value.
Furthermore, the APS images are grayscale and often have
low spatial resolution (typically 346 × 260 pixels for the
DAVIS346 camera), which cannot meet the requirement of
daily photography, leading to limited application scenarios.
So, it is of great interest to develop a new event-based deblur-
ring method for handling low-light images robustly, with the
ability to deblur high-resolution RGB images.

An intuitive strategy could be discarding the events trig-
gered in dark regions (which are often noisy and mainly
contain “bad events”) and focusing on filtering the events
triggered in bright regions (which are often clean and mainly
contain “good events”) for image deblurring. To apply this
strategy, our preliminary work (Zhou et al, 2021a) introduces
a two-stage deblurring pipeline instead of performing pixel-
wise reconstruction based on the EDI model. It first selects
an image patch containing a light streak (blurred light source
caused by camera shakes) and utilizes the light streak to fil-
ter the clean local events to estimate the spatially-uniform
2D blur kernel, then performs non-blind deconvolution with
the estimated blur kernel. Besides, the two-stage pipeline
is ready to be applied to deblurring high-resolution RGB
images captured by an RGB-DAVIS hybrid camera system,
by estimating the blur kernel from the APS image and corre-
sponding events (captured by the DAVIS camera) in the first
stage and deconvolving the high-resolution RGB image (cap-
tured by the RGB camera) using the estimated blur kernel in
the second stage. Despite that Zhou et al (2021a) for the first
time demonstrate the ability to deblur high-resolution RGB
images with events, they adopt the assumption that the blur
is caused by in-plane camera shakes, which cannot deal with

spatially-variant blur. To solve this problem, a new approach
for extracting global motion clues is required to replace the
process that estimates a 2D blur kernel from a local patch
reflecting the local motion only.

In this paper, we propose to extend our preliminary work
(Zhou et al, 2021a) to a unified two-stage framework to apply
events to deblurring low-light images with spatially-variant
blur. The key observation is that strong edges in low-light
images (they could be but not necessarily be caused by light
streaks) could generally trigger events with higher SNR and
they encode spatial information about motion (Joshi et al,
2008; Cho and Lee, 2009; Fu et al, 2022). We therefore de-
sign the first stage to extract global motion clues by utilizing
the edge map of the APS image to filter the clean events;
then, in the second stage the estimated global motion clues
are used for image deblurring. Tailored to such a framework,
we further propose a motion-aware neural network to per-
form the deblurring process: First, it extracts features from
the edge map of the APS image and corresponding events
jointly to obtain both spatial and temporal information about
motion, and encodes the information into high-fidelity mo-
tion clues by explicitly using bi-directional optical flows to
supervise this process in the latent space; then, it adopts a
denoising module to perform blind noise suppression in the
image domain to avoid ringing artifacts, and reconstructs the
sharp image under the guidance of motion clues. Besides, due
to the natural advantages of our two-stage framework that
does not directly adopt the EDI model to perform pixel-wise
reconstruction, by building an RGB-DAVIS hybrid camera
system, the proposed method demonstrates the ability to de-
blur high-resolution RGB images with events, without the
spatially-uniform blur assumption. To summarize, this paper
makes contributions by demonstrating:

• a unified two-stage framework to apply events to deblur-
ring low-light images;

• a motion-aware neural network tailored to such a frame-
work to perform the deblurring process;

• ability to deblur high-resolution RGB images with events,
without the spatially-uniform blur assumption.

Compared with our preliminary work (Zhou et al, 2021a),
the main improvement is replacing its deblurring pipeline
(based on blur kernel estimation) with a unified framework
(based on motion clue extraction) and redesigning the net-
work architecture along with the loss functions to adapt
spatially-variant blur. Besides, we improve the synthetic
dataset generation pipeline by adopting the model proposed
by Whyte et al (2012) and using the RealBlur dataset (Rim
et al, 2020) as the data source to generate images with
spatially-variant blur for evaluation. We also recapture the
real data containing spatially-variant blur to show that our
new framework has a good generalization ability on real
low-light images and events.
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2 Related works

2.1 Image deblurring methods

Generally, image deblurring methods could be divided into
two categories: image-based methods, which aims to directly
reconstruct the sharp image from a single blurry image, and
event-based methods, which use events to guide the image
deblurring process. We will have an overview on them re-
spectively in the following.

Image-based deblurring. Image-based deblurring is a
highly ill-posed problem due to the complexity of natural im-
age structures and the diversity of blur patterns. Some works
treated this problem as a maximum a posteriori (MAP) es-
timation problem and proposed several handcrafted image
priors (e.g., total variation regularization (Chan and Wong,
1998), heavy-tailed gradient distributions (Fergus et al, 2006),
local smoothness prior (Shan et al, 2008), normalized spar-
sity prior (Krishnan et al, 2011), and ℓ0-regularized prior
(Xu et al, 2013; Pan et al, 2016a)) to relieve its ill-posedness.
To reduce the ill-posedness and improve the robustness, sev-
eral methods tried to exploit the latent priors lying in the
image itself, such as strong edges (Joshi et al, 2008; Cho
and Lee, 2009; Fu et al, 2022), patch recurrences (Michaeli
and Irani, 2014), blurry image outliers (Dong et al, 2017),
channel statistics (Pan et al, 2016b; Yan et al, 2017), noise
pattern (Zhong et al, 2013), and light streaks (Hu et al, 2018b;
Chen et al, 2021a). Although these prior-based methods are
successful in restoring plausible sharp contents in a large vari-
ety of scenes, their applicability is still limited since they are
based on time-consuming numerical optimization, which can-
not meet the requirement of real-time deblurring. Recently,
deep neural networks have been adopted to handle this prob-
lem. They usually run much faster than prior-based methods.
These learning-based methods could be divided into two cate-
gories: direct methods and indirect methods. Direct methods,
which try to deblur in an end-to-end manner using convolu-
tional neural networks (CNN) (Nah et al, 2017; Zhang et al,
2018a; Tao et al, 2018; Gao et al, 2019; Zhang et al, 2019;
Suin et al, 2020; Cho et al, 2021; Chi et al, 2021) or genera-
tive adversarial networks (GAN) (Kupyn et al, 2018, 2019;
Zhang et al, 2020a), often demonstrate visually impressive
results and are easy to deploy. Indirect methods, which use
blur-related physical quantities (e.g., blur kernels (Kaufman
and Fattal, 2020; Ren et al, 2020; Dong et al, 2021; Tran
et al, 2021; Chen et al, 2021b) or their Fourier coefficients
(Chakrabarti, 2016), patch-wise motion vectors (Sun et al,
2015), and dense motion flows (Chen et al, 2018b; Gong et al,
2017; Yuan et al, 2020)) to implicitly or explicitly supervise
the extraction of image features for guiding the deblurring
process, usually show better generalization ability and suffer
less from overfitting.

Event-based deblurring. Event cameras (Lichtsteiner
et al, 2008; Brandli et al, 2014) are neuromorphic sensors
that can asynchronously detect per-pixel brightness changes
and trigger events whenever the logarithmic change of la-
tent irradiance exceeds a preset threshold. They have many
attractive properties that frame-based cameras do not pos-
sess: high temporal resolution, very high dynamic range,
low power consumption, and high pixel bandwidth, which
could naturally benefit the image deblurring task. Recent
event cameras (e.g., DAVIS camera (Brandli et al, 2014))
are able to capture grayscale APS images along with events,
since they contain a global shutter APS in addition to the
dynamic vision sensor that shares the same photosensor ar-
ray. This unique advantage makes it possible to use events
to guide the deblurring process of APS images. Pan et al
(2019) proposed the EDI model that clarifies the relation-
ship among the blurry image, events, and latent irradiance.
Based on the EDI model, several new methods have been
proposed to solve the event-based deblurring problem. Jiang
et al (2020) used a convolutional recurrent neural network
that integrates visual and temporal knowledge of both global
and local scales to recover image details. Lin et al (2020)
proposed an end-to-end trainable neural network to gener-
ate high-speed videos and used dynamic filtering to handle
the events triggered by the spatially-varying threshold. Chen
et al (2020) proposed a residual model suitable for learn-
ing image deblurring and high frame rate video generation
with events. Pan et al (2020) proposed a method based on
numerical optimization to estimate the optical flow from a
single image and corresponding events for deblurring. Xu
et al (2021) exploited the blurry consistency and photometric
consistency to enable self-supervision on the event-based
deblurring network with real-world data. Shang et al (2021)
developed a principled framework and a flexible event fusion
module for tackling video deblurring with the help of events.

2.2 Low-light processing methods

Since our method is designed for low-light conditions, low-
light processing methods are also closely related with it. Low-
light processing methods focus mainly on handling the noise
in events or images, and we will briefly overview the methods
about event denoising and image denoising respectively in
the following.

Event denoising. Existing event denoising methods mainly
focus on background activity noise produced by temporal
noise and junction leakage currents. Liu et al (2015) designed
a correlation filter chip for removing background uncorre-
lated noise events. Barrios-Avilés et al (2018) proposed a
bioinspired filtering algorithm which reduces the generated
data from event-based sensors without loss of relevant infor-
mation and performs denoising. Khodamoradi and Kastner
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(2018) introduced a hardware friendly spatiotemporal correla-
tion filter with O(N) memory complexity for reducing noise
in neuromorphic vision sensors. Baldwin et al (2020) pre-
sented a novel method named “event probability mask” for
labeling event data and proposed a CNN for event denoising.
Based on the assumption that events are triggered by edge
motion and therefore shall follow the same spatiotemporal
motion projection within a local window if valid (Gallego
et al, 2018; Stoffregen et al, 2019), Wang et al (2019) pro-
posed to filter events by their motion association likelihood.
By further making use of the motion compensation between
the image and event signals, Wang et al (2020b) proposed
to use guided image filtering techniques to obtain events
with low noise. Recently, Duan et al (2021) proposed a deep
neural framework to achieve noise-free event restoration.

Image denoising. Maharjan et al (2019) proposed a resid-
ual learning based deep neural network for end-to-end low-
light image denoising to improve the image quality with low
computational cost. Gu et al (2019) designed a top-down
self-guided network to better exploit image multi-scale in-
formation, achieving excellent denoising performance for
low-light images. Wei et al (2020) formulated a noise model
to synthesize realistic noisy images that can match the qual-
ity of real data under extreme low-light conditions. Moseley
et al (2021) extended existing learning-based low-light image
denoising approaches by combining a physical noise model
with real noise samples and scene selection based on 3D
ray tracing to generate training data; and by conditioning
their model on the camera’s environmental metadata at the
time of image capture. Besides, existing low-light image en-
hancement methods also involve low-light noise reduction in
addition to visibility enhancement, which could be found in
the surveys of Li et al (2021); Liu et al (2021).

3 Framework

In this section, we will first introduce the background and
motivation of our unified framework in Section 3.1, then
detail its design in Section 3.2.

3.1 Background and motivation

For a typical event camera (e.g., the DAVIS346 camera used
in this paper), each event can be described as (u, t, σ), mean-
ing that the event is triggered at pixel position u = (ux, uy)

⊤

and time t when the logarithmic change of latent irradiance
I(t) = I(u, t) exceeds a preset spatially-varying threshold
c = c(u). Here σ is the polarity given by:

σ =

{
1 if log(I(u, t))− log(I(u, t− δt)) ≥ c(u)

−1 if log(I(u, t))− log(I(u, t− δt)) ≤ −c(u)
,

(1)

where δt denotes the time interval since the last event oc-
curred at the same pixel position. In addition to events, a
grayscale APS image that has the same spatial resolution as
events could also be recorded. Since camera shakes would
occur during the exposure period, the captured image tends
to be blurry. Denoting the blurry image as B ≜ B(u), its for-
mation could be described as the integral of latent irradiance
I(t) during the exposure period [0, T ]:

B =
1

T

∫ T

0

I(t)dt+ ϵ, (2)

where ϵ = ϵ(u) represents the image domain noise generated
with the in-camera imaging pipeline.

Combining Equation (1) and Equation (2) and denoting
I(0) (the latent irradiance at time 0) as the sharp image S, the
relationship among the blurry image, events, and sharp image
can be described using the EDI model (Pan et al, 2019):

B =
S

T

∫ T

0

exp(c ·E(t))dt+ ϵ, (3)

where E(t) = E(u, t) stands for the sum of events triggered
by brightness changes instead of noise between time 0 and t.
However, in low-light conditions, images usually contain a
majority of pixels in dark regions where events are mainly
triggered by noise, and the performance of current event-
based deblurring methods (Pan et al, 2019; Lin et al, 2020;
Xu et al, 2021) could be degenerated in those regions since
they directly adopt the EDI model to perform pixel-wise
reconstruction in an end-to-end manner. To appropriately
apply events to deblurring low-light images, we could di-
vide the end-to-end pixel-wise reconstruction process into
two stages: extracting motion clues from the blurry image
and corresponding events, and deblurring the blurry image
using the motion clues instead of events. Therefore, high-
fidelity motion clues could be extracted in the first stage by
discarding the events triggered in dark regions and focusing
on filtering the events triggered in bright regions, and the
sharp image could be restored robustly in the second stage
under the guidance of motion clues. In such a setting, de-
blurring high-resolution RGB images also becomes possible
since the second stage does not require events so that it is
not limited to processing the APS image which has the same
spatial resolution as events.

3.2 Framework design

Our goal is to reconstruct the sharp image S from the blurry
image B and corresponding events e = {ei}Ti=0 (all events
triggered during the exposure period [0, T ]) in low-light con-
ditions in a two-stage manner. As shown in Figure 1 (left), our
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Fig. 1 Left: The deblurring pipeline adopted by our preliminary work (Zhou et al, 2021a), which first selects an image patch containing a light streak
and utilizes the light streak to filter the clean local events to estimate the spatially-uniform 2D blur kernel, then performs non-blind deconvolution
with the estimated blur kernel. Right: The proposed unified two-stage deblurring framework, which first utilizes the edge map of the APS image to
filter the clean events in the whole image to extract motion clues, then use the extracted motion clues to guide the deblurring process. We use color
pair (red, blue) to represent the event polarity (1,−1) throughout this paper.

preliminary work (Zhou et al, 2021a) first selects an image
patch containing a light streak and utilizes the light streak to
filter the clean local events to estimate the spatially-uniform
2D blur kernel, then performs non-blind deconvolution with
the estimated blur kernel. Denoting the two stages as ga and
gb respectively, the whole deblurring pipeline adopted by
Zhou et al (2021a) could be described as

K = ga(p(B), p(e)) and S = gb(B,K), (4)

where K is the estimated blur kernel and p denotes the opera-
tion on an extracted patch containing a light streak. However,
the first stage requires to detect a light streak manually or us-
ing the search-based algorithm proposed by Hu et al (2018b),
which is inconvenient. Besides, since the estimated 2D blur
kernel can only reflect local motion, the second stage is only
able to handle spatially-uniform blur.

To apply events to deblurring low-light images with
spatially-variant blur, we propose to extend our preliminary
work (Zhou et al, 2021a) to a unified two-stage framework.
We notice that in low-light images, strong edges can also
encode spatial information about motion (Joshi et al, 2008;
Cho and Lee, 2009; Fu et al, 2022) like light streaks due to
strong local contrast. These edges are suitable for filtering
the clean events when dealing with spatially-variant blur, be-
cause they are usually caused by light streaks observed in
the whole image, and the SNR of events triggered by them
is relatively high. Besides, they can be detected easily by
convolving the image with a Laplace kernel, which is less
time-consuming than detecting an image patch containing
a light streak. As shown in Figure 1 (right), instead of us-
ing a light streak to filter the clean local events in a patch
(Zhou et al, 2021a), we choose to use the edge map of B to
filter the clean events in the whole image in the first stage.
In addition, we choose to use high-dimensional image fea-
tures (named motion clues M) instead of a 2D blur kernel to

guide the deblurring process in the second stage, since high-
dimensional image features extracted by neural networks
are good at encoding complicated motion information and
can also be explicitly supervised in the latent space using
blur-related physical quantities (e.g., bi-directional optical
flows (Yuan et al, 2020)). Denoting the two stages as g1 and
g2 respectively, the proposed unified two-stage deblurring
framework could be described as

M = g1(B, e) and S = g2(B,M). (5)

Such a two-stage framework can be applied to deblurring
high-resolution RGB images without the spatially-uniform
blur assumption adopted in our preliminary work (Zhou et al,
2021a), by building an RGB-DAVIS hybrid camera system
that simultaneously captures a high-resolution RGB image
BRGB along with the APS image B and corresponding events
e, and simply substituting B with BRGB in the second stage.

4 Network

Tailored to the proposed two-stage framework, we design a
neural network to perform the deblurring process in a motion-
aware manner, as shown in Figure 2. Following Equation (5),
it consists of two stages for extracting motion clues and recon-
structing the sharp image. We will detail them in Section 4.1
and Section 4.2 respectively.

4.1 Extracting motion clues

The first stage aims to extract motion clues M from the
blurry image B and corresponding events e. As shown in
the first stage of Figure 2, we first adopt a Laplace kernel
to convolve the blurry image B to acquire its edge map
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Fig. 2 We design a motion-aware neural network tailored to our unified two-stage framework (Figure 1 (right)). In the first stage, it extracts features
from the edge map of the APS image and corresponding events jointly to obtain both spatial and temporal information about motion, and encodes
the information into high-fidelity motion clues by explicitly using bi-directional optical flows to supervise this process in the latent space. In the
second stage, it adopts a denoising module to perform blind noise suppression in the image domain to avoid ringing artifacts, and reconstructs the
sharp image under the guidance of motion clues.

L(B) (where L denotes the operation of convoving with
a Laplace kernel), and use two feature extraction blocks
(Ea and Eb) to extract features from e (stacked into a 13-
channel spatiotemporal voxel grid (Zhu et al, 2019)) and
L(B) respectively for obtaining both spatial and temporal
information about motion. Then, we adopt a feature fusing
block Fa to fuse the extracted features for encoding the
spatial and temporal motion information into high-fidelity
motion clues M (a 32-channel feature map which has the
same spatial resolution as B), by implicitly filtering the clean
events using the edge map in the latent space. The complete
process of this stage could be described as

M = Fa(concat(Ea(e), Eb(L(B)))). (6)

Since M should encode spatially-variant motion informa-
tion during the whole exposure period, blur-related physical
quantities such as bi-directional optical flows are suitable
for supervising this stage. Inspired by Yuan et al (2020), by
adopting a feature decoding block D to decode M, we ex-
plicitly let the output of D to be bi-directional optical flows
F:

F = D(M). (7)

In such a way, M can be effectively supervised in the latent
space, providing guidance to the reconstruction of the sharp
image in the second stage.

Layer details. Since both the edge map L(B) and events
e are sparse, noisy, and non-uniformly distributed signals,
extracting their features requires large receptive fields and
long-range spatial dependencies. Therefore, we design the
feature extraction blocks Ea and Eb to include a 1 × 1 con-
volution layer, a non-local block (Wang et al, 2018), and a
dense block (Huang et al, 2017). Note that we add an instance

normalization layer (Ulyanov et al, 2016) and a ReLU activa-
tion function after the 1× 1 convolution layer for bringing
sufficient non-linearity. Besides, to reduce the usage of GPU
memory and save inferring time, we split the output feature
map of the convolution layer into a grid of non-overlapping
patches before the non-local block (Li et al, 2018). As for the
feature fusing block Fa, since it aims to implicitly filter the
clean events using the edge map in the latent space, we de-
sign it to include a 1× 1 convolution layer for efficient usage
of the shallow features and a squeeze-and-excitation block
(Hu et al, 2018a) for adaptively recalibrating channel-wise
feature responses by modeling interdependencies between
the feature channels of the edge map L(B) and events e. The
feature decoding block D is designed to be a bottleneck block
(He et al, 2016) with a 1× 1 convolution layer for decoding
M into bi-directional optical flows F.

4.2 Reconstructing the sharp image

The second stage aims to reconstruct the sharp image S from
the blurry image B under the guidance of motion clues M.
Since directly using M to perform deconvolution-like opera-
tions on B would bring about ringing artifacts due to noise,
we propose to adopt a denoising backbone Ba to perform
blind noise suppression in the image domain first. Despite the
noise usually resides in dark regions which makes it difficult
to distinguish, we observe that by applying a gamma trans-
formation (γ < 1), the contrast between noise and original
signal could be magnified. Therefore, as shown in the second
stage of Figure 2, we first apply a gamma transformation (we
choose γ = 1

2.2 ) to convert B to Bγ , and use Ba to learn the
residual between Bγ and B̂γ (where B̂ denotes the denoised
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blurry image):

B̂γ = Ba(B
γ) +Bγ , (8)

and then apply a inverse gamma transformation to convert
B̂γ back to B̂. As the denoised blurry image B̂ becomes
available, we use another feature extraction block Ec to ex-
tract its features, adopt another feature fusing block Fb to
fuse the extracted features and the motion clues M, and then
send the fused features into a deblurring backbone Bb to learn
the residual between B̂ and S. This process can be written as

S = Bb(Fb(concat(Ec(B̂), ↑ (M)))) + B̂, (9)

where ↑ denotes the feature upsampling block. Note that the
feature upsampling block ↑ is only used when deblurring
high-resolution RGB images. As for supervision, instead
of supervising in the latent space like the first stage, we
propose to use the noise-free blurry image and sharp image
to explicitly supervise the outputs of denoising backbone Ba

and deblurring backbone Bb respectively.
Layer details. The denoising backbone Ba is designed to

be a modified autoencoder architecture (Hinton and Salakhut-
dinov, 2006), since it can incorporate multi-scale information
for enriching detail contents, which is proved to be effective
in denoising (Gu et al, 2019; Moseley et al, 2021). Inside Ba,
we embed 3 residual bottleneck blocks (He et al, 2016) in the
coarsest layer for more fine-grained contextual information.
The feature extraction block Ec consists of only a 7× 7 con-
volution layer (also followed by an instance normalization
layer (Ulyanov et al, 2016) and a ReLU activation function)
since it only extract features directly from the denoised blurry
image B̂. The feature fusing block Fb is designed to be the
same as Fa in the first stage. As for the deblurring backbone
Bb, we design it to be an attention U-Net architecture (Oktay
et al, 2018), since it shows excellent localization and context
generalization ability in other works that also performs the
guided reconstruction operation like ours (Han et al, 2020;
Zhou et al, 2020, 2021b).

5 Data preparation and implementation details

In this section, we will first detail our synthetic dataset gener-
ation pipeline in Section 5.1, then show our loss function and
training strategy in Section 5.2 and Section 5.3 respectively.

5.1 Synthetic dataset generation pipeline

It is difficult to get pairwise blurry and sharp low-light im-
ages with corresponding events triggered during the exposure
period. Besides, obtaining the ground truth noise-free blurry
image and bi-directional optical flows for supervision is not
feasible. So, we propose to generate a synthetic dataset for

training our network. Since existing event-based deblurring
benchmarks (Wang et al, 2020a; Xu et al, 2021) do not con-
tain images captured in low-light conditions, we cannot use
them to generate our dataset. However, we find that the Real-
Blur dataset (Rim et al, 2020) contains abundant night scenes
with noise-free high-resolution RGB images, making it the
desired data source for generating our dataset. In short, for
each scene, our synthetic dataset generation pipeline could
be described as the following steps:

(1) Resize the source image to 960× 760 pixels to serve as
the ground truth noise-free high-resolution RGB image
SRGB;

(2) convert SRGB to grayscale, and resize it to 320 × 256

pixels to serve as the ground truth noise-free APS image
S;

(3) randomly adjust the dynamic range of SRGB and S to
make some pixels saturated;

(4) randomly generate a base camera motion trajectory using
the algorithm proposed in (Boracchi and Foi, 2012), and
use the spatially-variant blur model proposed by Whyte
et al (2012) to make it pixel-wise;

(5) obtain the bi-directional optical flows F from the pixel-
wise trajectory using the method proposed by Hyun Kim
and Mu Lee (2015);

(6) move SRGB and S along the pixel-wise trajectory to get
multiple (25 in our experiments) latent frames during
the exposure period, and use V2E (Delbruck et al, 2020)
(applying the “noisy mode”) to generate corresponding
events e from the latent frames of S;

(7) average the latent frames to get the noise-free blurry
images B̂RGB and B̂, and adopt the low-light noise model
proposed by Lv et al (2021) to acquire the blurry images
BRGB and B.

For evaluation, we choose the images provided by Hu
et al (2018b) as source images, and also adopt the above
dataset generation pipeline to generate the test dataset. Note
that for each scene, we randomly generate 20 different cam-
era motion trajectories and further perform data augmentation
(e.g., flipping and rotating) to avoid overfitting, so that our
training (test) dataset contains 4680 (220) different images
in total.

5.2 Loss function

The total loss function of our network L consists of three
terms: flow loss Lflow, denoising loss Ldeno, and reconstruc-
tion loss Lrecon, which is defined as

L(F, B̂,S,Fgt, B̂gt,Sgt)

= Lflow(F,Fgt) + Ldeno(B̂, B̂gt) + Lrecon(S,Sgt),
(10)

where the subscript gt labels the ground truth throughout this
paper. We will detail each of them in the following.
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Flow loss. The flow loss term Lflow aims to supervise the
first stage (the extraction of motion clues) in the latent space,
which could be written as

Lflow(F,Fgt) = βflowa
L1(F,Fgt) + βflowb

Ltv(F), (11)

where L1 denotes the ℓ1 loss, Ltv is the total variation loss to
enforce smoothness, βflowa

and βflowb
are empirically set to

be 0.1 and 0.01 respectively.
Denoising loss. The denoising loss term Ldeno aims to

supervise the denoising backbone for obtaining noise-free
blurry images in the second stage, which could be written as

Ldeno(B̂, B̂gt) = βdenoaL1(B̂, B̂gt) + βdenobL2(B̂, B̂gt),

(12)

where L2 denotes the ℓ2 loss, βdenoa and βdenob are empiri-
cally set to be 10.0 and 10.0 respectively.

Reconstruction loss. The reconstruction loss term Lrecon

aims to supervise the deblurring backbone for reconstructing
high-quality sharp images in the second stage, which could
be written as

Lrecon(S,Sgt) = βreconaL2(S,Sgt) + βreconbLperc(S,Sgt),

(13)

where Lperc denotes the perceptual loss, βrecona and βreconb
are empirically set to be 100.0 and 0.1 respectively. The
perceptual loss Lperc is defined as

Lperc(S,Sgt) = L2(ϕh(S), ϕh(Sgt)), (14)

where ϕh denotes the feature map from h-th layer of VGG-19
network (Simonyan and Zisserman, 2014) pretrained on Ima-
geNet (Russakovsky et al, 2015), and here we use activations
from V GG3,3 convolutional layer.

5.3 Training strategy

We implement our method using PyTorch on a PC with an
Intel Core i7-8700K CPU and an NVIDIA 2080Ti GPU. The
network is trained for 100 epochs with a batch size of 8.
For optimization, we use Adam optimizer (Kingma and Ba,
2014) with β1 = 0.5, β2 = 0.999. The learning rate is set
to be 0.001 during the training process without change. The
network parameters are initialized with Xavier initialization
(Glorot and Bengio, 2010).

6 Experiments

In this section, we make comparisons with other methods
and conduct ablation study on the synthetic dataset in Sec-
tion 6.1 and Section 6.2 respectively, and use an event cam-
era (DAVIS346) and our RGB-DAVIS hybrid camera system
to capture real-world images for further evaluation in Sec-
tion 6.3 and Section 6.4 respectively.

6.1 Evaluation on synthetic data

We compare our method with four state-of-the-art event-
based deblurring methods including (Pan et al, 2019; Lin
et al, 2020; Xu et al, 2021) and our preliminary work (Zhou
et al, 2021a), and four state-of-the-art image-based deblur-
ring methods including (Hu et al, 2018b; Zhang et al, 2019;
Ren et al, 2020; Cho et al, 2021). Visual quality comparisons
are shown in Figure 32. From the results we can see that
the result generated by our method resembles the ground
truth more closely. Despite the method proposed by Pan et al
(2019) could relieve motion blur, it generates over-smooth re-
sult since it is based on numerical optimization which cannot
make full use of semantic information. The method proposed
by Lin et al (2020) fails to deblur since it requires infor-
mation of multiple adjacent frames, which is unavailable in
our settings (see Section 3.2). The method proposed by Xu
et al (2021) darkens the whole scene since it is not good
at handling the dark regions. Our preliminary work (Zhou
et al, 2021a) does not perform well since it cannot deal with
spatially-variant blur. The image-based deblurring methods
(Hu et al, 2018b; Zhang et al, 2019; Ren et al, 2020; Cho
et al, 2021) cannot handle the regions with strong local con-
trast (e.g., edges) robustly since they cannot obtain temporal
information about motion from events; in addition, they often
suffer from ringing artifacts due to noise.

To evaluate the deblurring results quantitatively, we adopt
four frequently-used image quality metrics including PSNR
(peak signal-to-noise ratio), SSIM (structural similarity), MS-
SSIM (multi-scale SSIM), and LPIPS (learned perceptual
image patch similarity (Zhang et al, 2018b), higher (lower)
means more different (similar) to ground truth, which is
different from other metrics). Results are shown in Table 1
(also labeled in the top right of corresponding examples in
Figure 3). Our model consistently outperforms the compared
methods on all metrics.

6.2 Ablation study

To verify the validity of each design choice, we conduct a
series of ablation studies and show comparisons in Table 2.
We first verify the significance of events that encode tem-
poral information about motion by comparing with a model
that performs deblurring without using events (W/o events).
From the result we can see that the performance degener-
ates severely, since the problem turns into an image-based
deblurring problem which is too ill-posed. Then, we demon-
strate the necessity of taking the edges of the blurry image
as input by removing them (W/o edges). We find that this
model does not perform as well as our complete model since
the edges can filter clean events to avoid the artifacts caused

2 Additional results can be found in the supplementary material.



Deblurring Low-Light Images with Events 9

Events Blurry image Ground truth sharp image Ours

P:30.24 S:0.929
M:0.986 L:0.031

Pan

P:20.60 S:0.593
M:0.774 L:0.397

Lin

P:17.54 S:0.488
M:0.675 L:0.309

Xu

P:16.55 S:0.314
M:0.490 L:0.404

Zhou

P:17.57 S:0.433
M:0.672 L:0.281

Hu

P:15.96 S:0.387
M:0.503 L:0.266

Zhang

P:17.39 S:0.463
M:0.631 L:0.385

Ren

P:15.51 S:0.382
M:0.408 L:0.424

Cho

P:19.95 S:0.586
M:0.778 L:0.328

Fig. 3 Qualitative comparisons on synthetic data among our method, four event-based deblurring methods (Pan et al, 2019; Lin et al, 2020; Xu
et al, 2021; Zhou et al, 2021a), and four image-based deblurring methods (Hu et al, 2018b; Zhang et al, 2019; Ren et al, 2020; Cho et al, 2021).
Quantitative results evaluated using PSNR (P), SSIM (S), MS-SSIM (M), and LPIPS (L) are labeled in the top right of each image.

Table 1 Qualitative comparisons on synthetic data among our method, four event-based deblurring methods (Pan et al, 2019; Lin et al, 2020; Xu
et al, 2021; Zhou et al, 2021a), and four image-based deblurring methods (Hu et al, 2018b; Zhang et al, 2019; Ren et al, 2020; Cho et al, 2021). ↑ (↓)
means the higher (lower) the metrics the better the results throughout this paper. Bold font indicates the best performance throughout this paper.

(Pan et al, 2019) (Lin et al, 2020) (Xu et al, 2021) (Zhou et al, 2021a) (Hu et al, 2018b) (Zhang et al, 2019) (Ren et al, 2020) (Cho et al, 2021) Ours
PSNR↑ 21.92 19.18 16.63 18.13 18.13 18.47 17.10 19.47 31.61
SSIM↑ 0.699 0.604 0.497 0.541 0.543 0.557 0.475 0.604 0.912
MS-SSIM↑ 0.821 0.736 0.602 0.696 0.669 0.668 0.515 0.721 0.982
LPIPS↓ 0.329 0.307 0.353 0.275 0.270 0.382 0.376 0.323 0.051

Table 2 Quantitative evaluation results of ablation study.

PSNR↑ SSIM↑ MS-SSIM↑ LPIPS↓
W/o events 23.11 0.724 0.875 0.155
W/o edges 31.18 0.892 0.976 0.056
W/o flows 31.11 0.905 0.977 0.058
W/o denoising 30.99 0.897 0.975 0.061
W/o residual 27.82 0.776 0.946 0.058
Our complete model 31.61 0.912 0.982 0.051

by noisy events. Furthermore, we validate the effectiveness
of using the bi-directional optical flows for supervision by
removing the flow loss (W/o flows), and show the impor-
tance of adopting the denoising module to perform blind
noise suppression in the image domain by removing it (W/o
denoising). Finally, we validate the residual learning strategy
adopted in the second stage (learn the residual between B̂

and S, see Equation (9) for details) by comparing with a
model directly learning S (W/o residual). These results show
that our complete model achieves the optimal performance
with the proposed specific designs.

6.3 Evaluation on real data captured by an event camera

To show that our method has a good generalization ability
on real low-light images and events, we capture several im-
ages from various scenes along with corresponding events
using an event camera (DAVIS346). As shown in Fig. 43, our
method generalizes well with excellent performance. Tak-
ing the green box as an example, the shadow on the ground
cannot be restored robustly by event-based deblurring meth-
ods that directly adopt the EDI model to perform pixel-wise
reconstruction (Pan et al, 2019; Lin et al, 2020; Xu et al,
2021), because the EDI model is vulnerable to noisy events
in such a dark region; the bicycle wheel restored by our pre-
liminary work (Zhou et al, 2021a) is still blurry due to its
spatially-uniform blur assumption; the image-based deblur-
ring methods (Hu et al, 2018b; Zhang et al, 2019; Ren et al,
2020; Cho et al, 2021) suffer from ringing artifacts severely,
leading to overlapped fringes.

3 Additional results can be found in the supplementary material.
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Events

Ours Pan Lin

Blurry image

Xu Zhou Hu

Zhang Ren Cho

Fig. 4 Qualitative comparisons on real data captured by an event camera (DAVIS346) among our method, four event-based deblurring methods
(Pan et al, 2019; Lin et al, 2020; Xu et al, 2021; Zhou et al, 2021a), and four image-based deblurring methods (Hu et al, 2018b; Zhang et al, 2019;
Ren et al, 2020; Cho et al, 2021).

Light 
Input

DAVIS  Camera

Beam 
Splitter

Fig. 5 Our RGB-DAVIS hybrid camera system, which consists of
an RGB camera (PointGrey Chameleon3) and an event camera
(DAVIS346). A beam splitter is placed in front of them to make their
fields of view aligned.

6.4 Evaluation on real data captured by a hybrid camera

To demonstrate that out method has the ability to deblur
high-resolution RGB images with events, we build an RGB-
DAVIS hybrid camera system consisting of an RGB camera
(PointGrey Chameleon3) and an event camera (DAVIS346)
with the same F/1.4 lens to capture high-resolution RGB
images and low-resolution APS images along with corre-
sponding events, as shown in Fig. 5. To ensure the motion
trajectories of the two sensors are approximately the same,
we use a beam splitter in front of them to make their fields of
view aligned (Han et al, 2020; Wang et al, 2020b). Note that
in our experiments we resize and crop the central part of the

RGB and APS images to 960 × 768 and 320 × 256 pixels
respectively.

To deblur an RGB image, we need an APS image cap-
tured simultaneously with it, along with corresponding events
triggered during the exposure period. However, it is non-
trivial to achieve precise temporal synchronization unless we
can configure a synchronized clock to trigger two cameras
simultaneously at the chip level, which is beyond the scope
of this paper. Therefore, we propose an alternative strategy
to achieve approximated temporal synchronization. First, to
alleviate the software delay, we write a script to simultane-
ously trigger the capturing programs of two cameras. Then,
to relieve the negative impact caused by hardware delay, we
periodically capture a scene and select the “best” matched
image pair between RGB and APS images. In such a period-
ical capturing process, we first set the exposure time of the
RGB images to the same value as the APS images and set
the RGB camera to burst mode, then capture a sequence of
RGB images and APS images and select an image pair with
the closest appearance by scaling them to the same size and
seeking a pair with maximum MS-SSIM value. After select-
ing the APS image, the events triggered during the exposure
period can be extracted since APS images and events are well
synchronized in the event camera.

Visual quality comparisons are shown in Fig. 64. Note
that we only compare our method with our preliminary work
(Zhou et al, 2021a) and image-based deblurring methods (Hu
et al, 2018b; Zhang et al, 2019; Ren et al, 2020; Cho et al,

4 Additional results can be found in the supplementary material.
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Blurry image

Ours Zhou Hu

Zhang Ren Cho

Fig. 6 Qualitative comparisons on real data captured by our RGB-DAVIS hybrid camera system among our method, our preliminary work (Zhou
et al, 2021a), and four image-based deblurring methods (Hu et al, 2018b; Zhang et al, 2019; Ren et al, 2020; Cho et al, 2021).

2021) since event-based methods that directly adopt the EDI
model can only handle low-resolution APS images (Pan et al,
2019; Lin et al, 2020; Xu et al, 2021). This proof-of-concept
experiment shows a great potential of applying events to
deblurring images satisfying modern camera specifications
and daily photography.

7 Conclusion and discussion

We propose a unified two-stage framework to apply events
to deblurring low-light images. Instead of performing pixel-
wise reconstruction based on the EDI model, it extracts high-
fidelity motion clues by utilizing the edge map of the APS
image to filter the clean events in the first stage, and recon-
structs the sharp image under the guidance of motion clues in
the second stage. Tailored to such a framework, we further de-
sign a motion-aware neural network to perform the deblurring
process, and demonstrate the ability to deblur high-resolution
RGB images with events, without the spatially-uniform blur
assumption. Experimental results show our method achieves
state-of-the-art performance over image-based and event-
based solutions on both synthetic and real-world images.

Flexibility of the proposed framework. Due to the complexity
of the proposed framework, errors could be accumulated in

the deblurring process. For example, in addition to strong
edges, weak edges containing noisy textures could also be
detected by the Laplace kernel. Therefore, once the first stage
fails to process the less reliable features extracted from those
weak edges, the filtered events would still be noisy so that
the obtained motion clues would become inaccurate, leading
to artifacts in the reconstructed sharp images. This problem
could be mitigated by adopting modern learning-based edge
detection algorithms Yu et al (2017); Liu et al (2019) to esti-
mate the edge map in a noise-resistant manner. In our future
work, we plan to add a plug-and-play edge detection network
module to replace the Laplace edge detection operation in our
framework to further increase the robustness and flexibility.

Limitations. Since our method is designed for deblurring a
single image with corresponding events triggered during the
exposure period, we cannot reconstruct high-frame-rate video
like other event-based deblurring methods which directly
adopt the EDI model (Pan et al, 2019; Lin et al, 2020; Xu
et al, 2021). In addition, our RGB-DAVIS hybrid camera
system cannot achieve precise temporal synchronization, and
this could be solved by locating the two sensors in the same
chip with different resolutions (pixel sizes) in the future.
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8 Additional results on synthetic data

In this section, we provide additional qualitative comparisons
on synthetic data among four state-of-the-art event-based
deblurring methods including (Pan et al, 2019; Lin et al, 2020;
Xu et al, 2021) and our preliminary work (Zhou et al, 2021),
and four state-of-the-art image-based deblurring methods
including (Hu et al, 2018; Zhang et al, 2019; Ren et al, 2020;
Cho et al, 2021), as shown in Fig. 7, Fig. 8, and Fig. 9,
corresponding to Footnote 2 in Section 6.1 of the paper.

9 Additional results on real data captured by an event
camera

In this section, we provide additional qualitative comparisons
on real data captured by an event camera (DAVIS346) among
four state-of-the-art event-based deblurring methods includ-
ing (Pan et al, 2019; Lin et al, 2020; Xu et al, 2021) and our
preliminary work (Zhou et al, 2021), and four state-of-the-art
image-based deblurring methods including (Hu et al, 2018;
Zhang et al, 2019; Ren et al, 2020; Cho et al, 2021), as shown
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in Fig. 10, Fig. 11, and Fig. 12, corresponding to Footnote 3
in Section 6.3 of the paper.

10 Additional results on real data captured by a hybrid
camera

In this section, we provide additional qualitative comparisons
on real data captured by our RGB-DAVIS hybrid camera
system among our preliminary work (Zhou et al, 2021) and
four image-based deblurring methods (Hu et al, 2018; Zhang
et al, 2019; Ren et al, 2020; Cho et al, 2021), as shown in
Fig. 13, corresponding to Footnote 4 in Section 6.4 of the
paper.
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Fig. 7 Additional qualitative comparisons on synthetic data among our method, four event-based deblurring methods (Pan et al, 2019; Lin et al,
2020; Xu et al, 2021; Zhou et al, 2021), and four image-based deblurring methods (Hu et al, 2018; Zhang et al, 2019; Ren et al, 2020; Cho et al,
2021) (part 1).
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Fig. 8 Additional qualitative comparisons on synthetic data among our method, four event-based deblurring methods (Pan et al, 2019; Lin et al,
2020; Xu et al, 2021; Zhou et al, 2021), and four image-based deblurring methods (Hu et al, 2018; Zhang et al, 2019; Ren et al, 2020; Cho et al,
2021) (part 2).
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Fig. 9 Additional qualitative comparisons on synthetic data among our method, four event-based deblurring methods (Pan et al, 2019; Lin et al,
2020; Xu et al, 2021; Zhou et al, 2021), and four image-based deblurring methods (Hu et al, 2018; Zhang et al, 2019; Ren et al, 2020; Cho et al,
2021) (part 3).
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Fig. 10 Additional qualitative comparisons on real data captured by an event camera among our method, four event-based deblurring methods (Pan
et al, 2019; Lin et al, 2020; Xu et al, 2021; Zhou et al, 2021), and four image-based deblurring methods (Hu et al, 2018; Zhang et al, 2019; Ren et al,
2020; Cho et al, 2021) (part 1).
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Fig. 11 Additional qualitative comparisons on real data captured by an event camera among our method, four event-based deblurring methods (Pan
et al, 2019; Lin et al, 2020; Xu et al, 2021; Zhou et al, 2021), and four image-based deblurring methods (Hu et al, 2018; Zhang et al, 2019; Ren et al,
2020; Cho et al, 2021) (part 2).
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Fig. 12 Additional qualitative comparisons on real data captured by an event camera among our method, four event-based deblurring methods (Pan
et al, 2019; Lin et al, 2020; Xu et al, 2021; Zhou et al, 2021), and four image-based deblurring methods (Hu et al, 2018; Zhang et al, 2019; Ren et al,
2020; Cho et al, 2021) (part 3).
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Fig. 13 Additional qualitative comparisons on real data captured by our RGB-DAVIS hybrid camera system among our method, our preliminary
work (Zhou et al, 2021), and four image-based deblurring methods (Hu et al, 2018; Zhang et al, 2019; Ren et al, 2020; Cho et al, 2021).
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