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Abstract When photographing through a piece of glass, re-
flections usually degrade the quality of captured images or
videos. In this paper, by exploiting periodically varying light
flickering, we investigate the problem of removing strong
reflections from contaminated image sequences or videos
with a unified capturing setup. We propose a learning-based
method that utilizes short-term and long-term observations of
mixture videos to exploit one-side contextual clues in fluctu-
ant components and brightness-consistent clues in consistent
components for achieving layer separation and flickering re-
moval, respectively. A dataset containing synthetic and real
mixture videos with light flickering is built for network train-
ing and testing. The effectiveness of the proposed method is
demonstrated by the comprehensive evaluation on synthetic
and real data, the application for video flickering removal,
and the exploratory experiment on high-speed scenes.
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1 Introduction

When photographing through a piece of glass (e.g., a glass
window or a showcase), the captured images or videos are
often contaminated by reflections. Reflection removal aims
at removing undesired reflection layers and recovering clear
transmission layers from contaminated mixture images or
videos, which is one of the fundamental problems in com-
puter vision and computational photography. By assuming
that reflections are out of focus and appear with much weaker
edges than transmission layers (Fan et al, 2017; Wan et al,
2018b; Zhang et al, 2018b; Wan et al, 2019), single-image
reflection removal methods (e.g., Li et al (2020a) and Dong
et al (2021), denoted as IBCLN and DX211, respectively) are
popular choices due to the convenient capturing setup. How-
ever, reflections with clear edges could sometimes dominate
image contents, which makes the two layers indistinguishable
if depending solely on the edges. Therefore, it is a natural
choice to introduce auxiliary information for such challeng-
ing cases to tell the reflection and transmission layers apart.

Due to additional constraints involved, reflection removal
methods which use multiple images generally provide more
stable solutions. A typical category utilizes images captured
with active light sources like the flash (Chang et al, 2020; Lei
and Chen, 2021) which provide distinctive clues about trans-
mission layers to facilitate reflection removal. However, these
methods are primarily designed for static scenes and rely on a
stationary camera setup, rendering them unsuitable for more
general scenes which contain dynamic contents caused by
motions. Moreover, constrained by the illumination power
of active light sources, these methods often encounter diffi-
culties when dealing with distant transmission scenes (e.g.,
capturing outdoor buildings from indoors through windows),

1 In this paper, when a method is not explicitly named, we adopt the
convention of using “the initials of the surnames of the first two authors
+ year” as synonyms of it.
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Fig. 1 (a) Illustration of the image formation process when one side of the glass (take the transmission scene as an example) is illuminated by a
light source with light flickering. (b) Examples of mixture videos with light flickering at different sides of the glass and our layer separation results.
For each group of data, we show three frames with different brightness from the mixture video in sequential order (with a brightness variation curve
at the left lower of each frame that qualitatively points out the current brightness) to represent the video, and we show the corresponding layer
separation results at the bottom.

which indicates their limitation of applying varying illumi-
nations only for the transmission layer. Consequently, it is
imperative to explore an alternative way that can exploit illu-
mination variations at an arbitrary side of the glass to provide
contextual clues for reflection removal in more general cases.

If we change the flash, a pulse-like illumination varia-
tion at one side of the glass, to a periodically continuous
one, reflection removal could potentially be solved for gen-
eral scenes containing dynamic contents. Fortunately, there
exists a commonly overlooked yet widespread continuous
illumination variation in daily life that can be leveraged for
this purpose, and we denote it as light flickering in this pa-
per. Specifically, existing residential light sources, such as
incandescent, fluorescent, and LED lamps powered by the
alternating current (AC) supply, as well as DC (battery)-
powered LED flashlights controlled by pulse width modula-
tion (PWM), are all able to produce high-frequency (e.g., 100
or 120 Hz) light flickering. Though human vision systems are
insensitive to such high-frequency light flickering due to the
persistence of vision (Wells et al, 2001), digital cameras can
record this by capturing discrete frames with short exposures
(e.g., < 10 ms). As shown in Fig. 1(a), when one side of the
glass is illuminated by a flickering light source, the corre-
sponding layer becomes flickering while the brightness of the
other layer (with steady ambient illumination) is temporally
consistent. This observation indicates that whether light flick-
ering occurs in transmission or reflection scenes, disparities
in the temporal brightness variation between the two layers
can serve as an effective clue for reflection removal.

For a mixture video captured in a light flickering environ-
ment, it can be decomposed into a fluctuant and a consistent
component. The fluctuant component refers to the video
whose intensity is only influenced by the fluctuant part of the
light source, thus it provides contextual information about the
scene at the side with light flickering. The consistent compo-

nent indicates the stable counterpart, which is identical to the
video captured in a steady illumination (removing the fluctu-
ant part). It is intuitive that the fluctuant component which is
only correlated to either the transmission or reflection layer
can facilitate reflection removal, while directly extracting
and exploiting it from a mixture video containing dynamic
contents is challenging, since motions and light flickering
jointly result in the frame intensity variation in such cases.
Besides, recovering the brightness-consistent transmission
and reflection layer under the guidance of the rapidly-varying
fluctuant component is also an untouched problem that has
to be settled.

To tackle the above issues, we analyze the image forma-
tion model with the interference of reflection contaminations
and light flickering, and investigate the feasibility of lever-
aging light flickering for reflection removal by considering
ideal static scenes. For real scenes containing dynamic con-
tents, we propose a learning-based framework named LIght
flicKEring guide reflection removal Network (LIKE-Net)
which utilizes short-term and long-term observations of mix-
ture videos to exploit the one-side contextual clues in fluctu-
ant components and brightness-consistent clues in consistent
components for achieving layer separation and flickering re-
moval, respectively. A dataset containing synthetic and real
mixture videos with light flickering is collected for compre-
hensive validations of the proposed method. Fig. 1(b) shows
examples from the dataset and our layer separation results.
Besides, we further demonstrate the effectiveness of the pro-
posed method by applying it to video flickering removal and
exploring its reflection removal performance on high-speed
scenes containing fast motions with a high-speed spiking
camera (Huang et al, 2023). This paper contributes in the
following aspects:

– introducing light flickering to achieve high-fidelity reflec-
tion removal for challenging real dynamic scenes;
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– proposing a learning-based framework for light flickering
guided reflection removal;

– demonstrating the applicability for video flickering re-
moval and the capability for reflection removal in high-
speed scenes with fast motions; and

– building a dataset containing synthetic and real videos
with light flickering for validating current methods and
inspiring future research.

2 Related work

2.1 Single-image reflection removal

Single-image reflection removal methods mainly rely on the
assumption that transmission and reflection layers have dif-
ferent distributions, e.g., edges of reflection layers are more
likely to be blurred. Conventional mathematical models use
priors of edges in their optimization algorithms, e.g., the
gradient sparsity prior (Levin and Weiss, 2007; Wan et al,
2016), relative smoothness (Li and Brown, 2014), ghosting
cues (Shih et al, 2015), image content (Wan et al, 2018a),
and penalty on the gradient of restored transmission lay-
ers (Yang et al, 2019). Fan et al (2017) propose to use deep
neural networks for recovering transmission layers in an
end-to-end manner. Subsequently, a series of learning-based
strategies are proposed, e.g., using concurrent or cooperative
network structures (Wan et al, 2018b, 2019), employing gen-
erative adversarial network (Goodfellow et al, 2014) based
models (Wei et al, 2019; Ma et al, 2019), and training with
the perceptual loss (Zhang et al, 2018b). IBCLN (Li et al,
2020a) uses a cascaded refinement strategy to iteratively re-
fine transmission layers. Dong et al (2021) regress reflection
confidence maps and achieve reflection removal. Hong et al
(2021) and Hong et al (2023b) relieve the content ambiguity
by using panoramic images. Zhong et al (2024) introduce
language descriptions to provide high-level semantic infor-
mation for reflection removal. We refer readers to Wan et al
(2023) for a comprehensive and up-to-date survey on single-
image reflection removal.

2.2 Multi-image reflection removal

Multiple-image reflection removal methods usually lever-
age the auxiliary information introduced by additional im-
ages. Polarization-based methods distinguish reflection and
transmission layers by using images captured through dif-
ferent angles of polarizers (Nayar et al, 1997; Schechner
et al, 2000; Diamant and Schechner, 2008; Kong et al, 2012;
Lyu et al, 2019; Lei et al, 2020; Lyu et al, 2023). However,
manually rotating a polarizer or using special polarization
cameras (Li et al, 2020b) are needed to obtain polarized
images, which narrows the applicability of such methods.

Flash-based methods adopt active light sources (Chang et al,
2020; Lei and Chen, 2021; Hong et al, 2020, 2023a) to il-
luminate transmission scenes for obtaining reflection-free
guidance. Sheinin et al (2017) propose to separate layers by
using varying illuminations with a special coded imaging
technique. Whereas, requirements on the spatial alignment of
captured images prevent these methods from being applied
to dynamic scenes. By utilizing multiple images (Li and
Brown, 2013; Simon and Kyu Park, 2015; Liu et al, 2020) or
videos (Nandoriya et al, 2017) captured from different view-
points, motion-based methods exploit motion differences of
transmission and reflection layers to achieve their separation,
while these methods are sensitive to varying illuminations as
the motion estimation may fail in such cases. In this paper,
we leverage periodically-varying illuminations to achieve
reflection removal for general dynamic scenes.

3 Problem formulation

3.1 Image formation model

For periodically varying illuminations such as AC-powered
(usually 50 or 60 Hz) light sources or PWM-controlled flash-
lights, we can measure their characteristics of light flickering.
Intensity profiles of two typical types of residential lamps
(i.e., fluorescent and LED) and a LED flashlight are illus-
trated in Fig. 2(a). It can be observed that intensities of light
sources fluctuate with a fixed frequency (determined by the
frequency of the AC power or PWM controller). As shown
in Fig. 2(b), in the condition that camera shutters are asyn-
chronous with light sources and the exposure time is unequal
to integer multiples of the light flickering cycle, digital cam-
eras can record light flickering in a video.

We first consider the formation model of a mixture video
{Ii}N−1

i=0 , where N and i denote the total number of frames
in the video and the frame index, respectively. When the
transmission scene is captured through a piece of glass, each
mixture frame Ii in the video {Ii}N−1

i=0 is the combination of
the transmission layer Ti and reflection layer Ri: Ii = Ti +

Ri. We denote the videos composed of transmission layers
and reflection layers as the transmission video {Ti}N−1

i=0 and
the reflection video {Ri}N−1

i=0 , respectively.
When light flickering at one side of the glass is intro-

duced into the formation model, the brightness variation
between frames needs to be considered. Without losing gen-
erality, we assume that the transmission scene is with light
flickering and the reflection scene is under a steady illu-
mination, thus {Ti}N−1

i=0 can be formulated as the sum of
a brightness-varying fluctuant component {T∼

i }N−1
i=0 and a

brightness-invariant consistent component {T−
i }N−1

i=0 :

Ti =

∫
te

ΩT rT (t)dt = T∼
i + T−

i , (1)
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Fig. 2 (a) Intensity profiles of three examples of light flickering. We
capture them by using a high-speed camera (Huang et al, 2023), with
the frame rate of 20K FPS. (b) Illustration of how a camera records a
video with light flickering, where f , te, and τ are the frequency of light
flickering, the exposure time of the camera, and the interval between
two adjacent frames, respectively.

where te denotes the exposure time of the camera, ΩT de-
notes the refractive coefficient map (Lyu et al, 2019), and
rT (t) denotes the received transient radiance of the transmis-
sion scene which varies with time t due to the flickering light
sources. Correspondingly, the reflection video {Ri}N−1

i=0 is
only composed of a brightness-invariant consistent compo-
nent {R−

i }
N−1
i=0 :

Ri =

∫
te

ΩRrRdt = R−
i , (2)

where ΩR denotes the reflective coefficient map (Lyu et al,
2019) and rR denotes the received consistent radiance of the
reflection scene due to the time-invariant illumination. There-
fore, the captured mixture video {Ii}N−1

i=0 is also composed
of the fluctuant and consistent component:

Ii = T∼
i + T−

i +R−
i = I∼

i + I−
i . (3)

For the case that the transmission scenes is with light
flickering, it is apparent that the fluctuant component {I∼

i }
N−1
i=0

is only related to the transmission layer (i.e., I∼
i = T∼

i ),
whereas the consistent component {I−

i }
N−1
i=0 is blended (i.e.,

I−
i = T−

i +R−
i ). The extraction and exploitation of the fluc-

tuant component in a mixture video plays a critical role for
the following reflection removal task, since it can provide
one-side contextual clues for telling the two layers apart. Con-
versely, the fluctuant component will be reflection-dominated
if the reflection scene is with light flickering, and the image
formation model in Eqn. (3) can be easily modified to fit this
case:

Ii = R∼
i +R−

i + T−
i = I∼

i + I−
i . (4)

which also provides reflection-aware clues for reflection re-
moval.

3.2 Feasibility analysis

To analyze the feasibility of employing light flickering for
reflection removal and investigate the one-side contextual
clues in fluctuant components, we use ideal static scenes for
instance, which are free from inter-frame motions and corre-
spond to the case that the camera is fixed on a tripod. When
capturing such scenes, there does not exist any other factor
except light flickering at one side of the glass that causes
temporal variations of captured image intensities. We pick
the case that the transmission scene is with light flickering
for example. Following Eqn. (3), mixture videos {Ii}N−1

i=0

can be divided into a brightness-varying fluctuant compo-
nent {I∼

i }
N−1
i=0 and a brightness-invariant blended consistent

component {I−
i }

N−1
i=0 , in which the fluctuant component is

only concerned with transmission layers that containing light
flickering.

Since the illuminance of flickering light sources changes
periodically, the captured mixture video also varies period-
ically across video frames. To analyze the temporal period-
ical property caused by light flickering, we utilize Discrete
Fourier Transform (DFT, denoted as F ) (Cooley and Tukey,
1965) to transform the time-domain mixture video {Ii}N−1

i=0

into its frequency-domain counterpart {Îk}N−1
k=0 :

Îk = F ({Ii}N−1
i=0 , k), (5)

where k is the index in the frequency domain. According
to Eqn. (3), the temporal periodical property of the mixture
video is from the fluctuant component, thus in the frequency
domain, the fluctuant component owns values at non-zero
frequencies. We denote these frequencies as {kf |Îkf

> ϵ},
where ϵ is a small value to prevent the impact of the noise
among video frames. Conversely, the consistent component
only owns value at the zero frequency since its brightness is
time-invariant.

To extract the consistent and fluctuant component for ob-
serving and validating their reflection-correlated properties,
we first utilize low-pass or band-pass filters with narrow band-
widths for filtering peaks in the frequency domain. As shown
in Fig. 3(b), in the frequency domain, the fluctuant com-
ponent {Î∼

k }
N−1
k=0 and the consistent component {Î−

k }
N−1
k=0

can be extracted by applying band-pass filters centered at
the non-zero frequencies {kf} and a low-pass filter at the
zero frequency on {Îk}N−1

k=0 , respectively. Specifically, for
each band-pass filter centered at non-zero frequencies {kf},
we define its frequency range as [kf − 0.5, kf + 0.5], which
only allows the frequency within the frequency range to pass
through while blocking frequencies outside of this range by
setting values to be zero. Similarly, the low-pass filter only
allows the frequency lower than a cutoff frequency to pass
through, and we set the cutoff frequency at k = 0.5, thus in
fact filtering the zero frequency. Then through Inverse Dis-
crete Fourier Transform (IDFT) (Cooley and Tukey, 1965),
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Fig. 3 (a) A mixture video recording a static scene with light flickering.
We select two frames with maximum brightness discrepancy in the
mixture video (due to light flickering) and show half of each frame at
one side of the diagonal line respectively to represent the video. (b)
Illustration of filtering the consistent and fluctuant component in the
frequency domain. We use a low-pass filter and several band-pass filters
to obtain the consistent component {Î−

k}
N−1
k=0 and fluctuant component

{Î∼
k}

N−1
k=0 in the frequency domain. (c) and (d) are the averaged con-

sistent and fluctuant components, respectively, which are obtained by
transforming the frequency-domain counterparts in (b) with IDFT and
average operations.

the time-domain fluctuant component {I∼
i }

N−1
i=0 and the con-

sistent component {I−
i }

N−1
i=0 can be obtained.

As frames in the captured video for static scenes are spa-
tially aligned and free from motions, thus for each pixel in
the fluctuant component {I∼

i }
N−1
i=0 and the consistent com-

ponent {I−
i }

N−1
i=0 , we calculate their temporal average and

then two frames (denoted as I∼ and I−) are generated to
represent the two components respectively, which are shown
in Fig. 3(c) and (d). It can be observed that the averaged fluc-
tuant frame I∼ is free from reflection contaminations (since
the transmission layer is with light flickering in this case),
which validates the capability of the fluctuant component
for providing one-side contextual clues, and further indicates
the feasibility of introducing light flickering into reflection
removal.

Unfortunately, though the above analysis shows the po-
tential of leveraging light flickering for reflection removal, it
is based on the ideal static scene assumption. In more general
real scenes where mixture videos contain dynamic contents,
separating and exploiting the fluctuant component through
the simple Fourier transform becomes more challenging since
motions and light flickering jointly result in intensity vari-
ation across frames. To address this challenge, we propose
to leverage the modeling capabilities of data-driven deep
learning methods. However, there is currently no existing
dataset suitable for training and evaluating methods for light
flickering guided reflection removal. Therefore, we create
a new dataset that includes both synthetic and real data to
fulfill this purpose.

3.3 Data preparation

As shown in Fig. 5, we create a dataset for light flickering
guided reflection removal, which consists of both synthetic
and real data and considers two distinct conditions as fol-
lows: (i) Transmission-flickering scenarios, where transmis-

sion scenes are with light flickering and reflection scenes are
with temporally stable illuminations, and a typical example
is capturing videos from outdoors to indoors; (ii) Reflection-
flickering scenarios, as the conjugated case of (i), involve
reflection scenes with light flickering and transmission scenes
with temporally steady illuminations. An example of these
cases is capturing videos from indoor to outdoor scenes
through a piece of glass.

To facilitate the introduction of data preparation, for each
mixture frame, we denote the image layer influenced by light
flickering as the flickering layer (L∼) and the image layer dis-
playing the side with temporally stable illuminations as the
constant layer (L−). We further denote a deflickering layer
(L≃) to represent the consistent component of the flickering
layer (i.e., removing the fluctuant component from the flick-
ering layer). For example, in scenarios where transmission
scenes are with light flickering (Eqn. (3)), the transmission
layer Ti corresponds to the flickering layer, the reflection
layer Ri corresponds to the constant layer, and the consistent
component of the transmission layer T−

i corresponds to the
deflickering layer. Details of our dataset are as follows.
Synthetic data. Since it is challenging to obtain ground
truths of mixture videos when light flickering and motions
both exist, we opt to use synthetic data for network training
and quantitative evaluation. We select a flash dataset (Aksoy
et al, 2018) containing flash-only and no-flash image pairs
to synthesize sequential flickering layers. The pipeline for
our synthetic data is shown in Fig. 4. Since the flash dataset
only contains flash-only and no-flash image pairs that are
captured in static scenes, to simulate motions in dynamic
scenes, at each step, we randomly generate a warping and
motion operation for the image pairs:

Iai = Wi(I
a
i−1),

I fi = Wi(I
f
i−1), (6)

where Iai and I fi are the no-flash and flash-only images at
timestamp i, Wi(·) is the warping and motion operation for
the current frame, where the warping function is realized by
randomly generating a sequence of flow masks and motions
are simulated by image cropping using a randomly generated
trajectory. We then synthesize the flickering layer by L∼

i =

αiI
f
i + βIai , where αi is a fluctuant coefficient applied to I fi

at each step and β is a constant. For the fluctuant coefficient,
we find that utilizing a sine function is efficient to represent
the light flickering phenomenon:

αi = sin(2τfiπ + ϵ) + 1, (7)

where f and τ are the frequency of flickering light and the
frame interval, respectively, and ϵ is a random value to sim-
ulate the starting time for capturing. In this work, f and τ

have two settings: 100 Hz - 1/30 s and 120 Hz - 1/50 s, which
will result in the flickering cycle being 3 frames and 5 frames,
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Fig. 4 The pipeline for synthesizing a mixture flickering video from a pair of flash/no-flash images. We first use a sequence of randomly generated
masks to warp the flash/no-flash image pair, thereby obtaining a pair of flash/no-flash videos. Subsequently, the videos are cropped by using a
randomly generated trajectory. Then, the flickering video is obtained by linearly combining the flash/no-flash videos. Finally, we linearly combine
the flickering layer L∼ and consistent layer L− to obtain a mixture flickering video. Note that we randomly apply the defocus blur and ghosting
effect to videos selected as reflection layers following previous works (Shi et al, 2015; Li et al, 2020a), which is not displayed in this figure.

respectively2. By dropping a proportion of frames, a variety
of flickering cycles can be simulated, causing the bright-
ness variation of flickering frames to not strictly adhere to a
regular sinusoidal waveform pattern. Besides, we randomly
drop a part of the frames to simulate aperiodic flickers. The
deflickering layer L≃

i is a linear combination of Iai and I fi ,
with fixed coefficients. Flickering and deflickering layers are
shown in the first and second row of Fig. 5, respectively. We
synthesize mixture videos with 1300 videos as transmission
layers and 1365 videos as reflection layers. 2675 synthetic
videos are selected as the training data, and 100 videos are
used for testing.

In addition, we have collected a set of flicker-free videos
that exhibit object motions. These videos are captured using
a standard industrial camera and serve as the constant layer
L−
i . The third row of Fig. 5 displays examples from this

dataset. This dataset also contains two subsets: 100 groups of
transmission scenes captured without glass and 100 groups
of reflection scenes captured with a piece of glass and a
black cloth. Furthermore, we randomly cropped the videos to
ensure that the number of constant layers is equivalent to that
of flickering layers. Finally, the mixture frame Ii is defined
as γL∼

i + ηL−
i . Note that for videos selected as reflection

layers, we apply random defocus blur and ghosting effect
following previous works (Shi et al, 2015; Li et al, 2020a),
as shown in the upper right example of Fig. 5. All videos for
training and testing consist of 90 frames. In the fourth row of
Fig. 5, we present two examples of synthetic mixture videos.

Real data for static scenes. For quantitative evaluation on
real data, we collect a dataset denoted as STAFLIC which
contains 20 groups of real data captured by an ordinary in-

2 Since the cycle of sin(2πi+ϵ) is 1, when f = 100 and τ = 1/30,
the cycle of sin(20/3πi+ ϵ) becomes 3.

dustrial camera3 and a tripod in static scenes with one-side
light flickering (i.e., 10 groups of transmission-flickering and
10 groups of reflection-flickering scenes), as shown in Fig. 5.
Each group of data contains a mixture video with light flicker-
ing, the video of flickering layers with light flickering, and the
video of constant layers without light flickering. Each video
contains 30 frames. Since there do not exist motions (i.e.,
spatial misalignments between frames) in the captured static
data, we obtain deflickering layers by computing the tempo-
ral average of flickering layers. Note that correspondences
between transmission and reflection layers to deflickering
and constant layers vary across different data groups due to
the light flickering at different sides.
Real data for dynamic scenes. To validate the effective-
ness on dynamic scenes, we further capture a real dynamic
dataset denoted as DYNFLIC which contains 20 groups of
mixture videos (i.e., 10 groups of transmission-flickering and
10 groups of reflection-flickering scenes) with one-side light
flickering caused by AC light sources or PWM-controlled
flashlights, as shown in Fig. 5. The lengths of videos in the
DYNFLIC dataset range from 90 to 180 frames. Note that the
captured mixture videos do not have corresponding ground
truths since it is not feasible to record the same motion after
removing the glass. As a result, the DYNFLIC dataset is only
utilized for qualitative evaluation.

4 Proposed method

For a mixture video captured in a general case where light
flickering and dynamic contents caused by motions both ex-
ist, the intensity variation for the same spatial position across

3 https://www.edmundoptics.com/p/CM3-U3-50S5C-CS-2-3inch-
Chameleon3-Color-Camera/37032
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Fig. 5 Examples of our dataset for light flickering guided reflection removal. Top part: Examples from the synthetic dataset which contain flickering
layers L∼, constant layers L−, deflickering layers L≃, and mixture videos I . Middle part: Examples from the real static dataset STAFLIC which
contain constant layers L−, deflickering layers L≃, and mixture videos I . Bottom part: Examples from the real dynamic dataset DYNFLIC which
only contain mixture videos I since it is infeasible to collect the ground truths. We pick three frames at different moments with brightness variations
to show dynamic data and we represent static data as in Fig. 3(a).

video frames is not only related to light flickering but also the
global and local motions. A video can be regarded as an obser-
vation of the captured scene, and the number of video frames
corresponds to the observation time. For the mixture video
with dynamic contents, the longer the observation time is, the
more obvious the spatial misalignments across video frames
are, and the more challenging to leverage the brightness
variation caused by one-side light flickering. Since spatial
misalignments in a short-term observation (several adjacent
frames) is relatively mild, exploring the brightness variation
within a short-term observation to provide one-side contex-
tual clues is easier than using a long-term observation with
more frames, i.e., using the short-term observation is more

beneficial for exploiting the fluctuant component. However,
a short-term observation only involves several frames that
may not cover the unknown cycle of the brightness variation
caused by light flickering, thus lacking priors for removing
the flickering effect across frames. Fortunately, a long-term
observation with more frames enables a more comprehensive
analysis of the brightness variation, which facilitates robust
flickering removal.

In this section, we propose a learning-based framework
named LIght flicKEring guide reflection removal Network
(LIKE-Net) which utilizes short-term and long-term obser-
vations of mixture videos to exploit the one-side contextual
clues in fluctuant components and brightness-consistent clues
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in consistent components for achieving layer separation and
flickering removal, respectively. The pipeline of the proposed
method is shown in Fig. 6. In Sec. 4.1, we will describe how
to leverage one-side contextual clues in fluctuant components
by using a short-term observation. Sec. 4.2 describes how to
exploit brightness-constant clues in consistent components
from a long-term observation. With the guidance of the above
clues from fluctuant and consistent components, we explore
a Layer separation and Flickering removal Module (LFM)
described in Sec. 4.3 to jointly achieve layer separation and
flickering removal.

4.1 One-side contextual clues from short-term observation

To exploit the one-side contextual clues in fluctuant com-
ponents, as shown in the upper part of Fig. 6 (with light
red background), for each frame Ii in the mixture video
{Ii}N−1

i=0 , we select its two adjacent frames Ii−1 and Ii+1 to
form a short-term observation. Though we have selected the
observation time as short as possible, the spatial misalign-
ment between frames is still inevitable as long as motions
exist. To ensure that the obtained contextual information is
solely related to the brightness variation of light, rectifying
inter-frame misalignment becomes an essential procedure.
For aligning video frames with brightness variation, we take
inspiration from high dynamic range (HDR) imaging meth-
ods (Yan et al, 2019; Wu et al, 2018) with the setting of
exposure bracketing, which unifies the brightness at first and
then align pixels in the feature space.

To map the adjacent mixture frames in a short-term ob-
servation into the feature space, we use a shared CNN-based
encoder to process input frames in parallel, and the encoded
mixture features are denoted as {Fj}i+1

j=i−1. We conduct
brightness unification (denoted as U(·)) and spatial alignment
(denoted as A(·)) for the mixture features, and an average
feature is obtained to indicate the average brightness of the
current short-term observation:

F avg
i =

1

N

i+1∑
j=i−1

A[U(Fj)], (8)

where N = 3 is the number of frames in a short-term obser-
vation. A fluctuant feature (denoted as F∼

i ) which contains
one-side contextual clues is then extracted from the combi-
nation of the center feature Fi and the average feature F avg

i :

F∼
i = T (Fi, F

avg
i ), (9)

where T (·) is composed of a concatenation operator and
several convolutional layers for channel reduction and infor-
mation refinement. Details of the brightness unification and
spatial alignment module will be described as follows.

Brightness unification. Inspired by HDR imaging tech-
niques that aim to harmonize the varying brightness levels
in alternating exposure images, we integrate attention blocks
with a structure similar to those used in Yan et al (2019) to
achieve brightness unification among the frames in the input
short-term observation. However, unlike the approach in Yan
et al (2019) which selects the middle-exposure image as the
reference, our study acknowledges that each frame during the
processing of flickering videos may not consistently exhibit
a mid-level brightness. Consequently, as shown in Fig. 6, we
opt to utilize the accumulated brightness of frames in the
short-term observation as our reference to guide the bright-
ness unification. We first accumulate mixture features as the
reference feature: F ref =

∑i+1
j=i−1 Fj . Then F ref is concate-

nated with each mixture feature and fed into the attention
block to learn the corresponding attention map, respectively.
Finally, we multiply the attention maps with mixture features
to obtain the unified features {F uni

j }i+1
j=i−1. The above pro-

cedures of brightness unification U(·) can be described as:

F uni
j = U(Fj) = S(Att(F

ref , Fj)⊙ Fj , (10)

where S(·) denotes the Sigmoid function, Att(·) denotes the
attention block, and ⊙ denotes the element-wise multiplica-
tion operation.
Spatial alignment. We use the deformable convolution (Dai
et al, 2017) to rectify spatial misalignment across adjacent
frames. As shown in Fig. 6, we first select the centered uni-
fied feature F uni

i as the reference feature, thus learning two
collections of offsets for its neighbors F uni

i−1 and F uni
i+1. Sub-

sequently, the features are aligned by applying the learned
offsets to the corresponding deformable convolutional layers.
After the spatial alignment, we obtain the average feature
F avg
i by calculating the average of the aligned features. Since

the brightness of the center feature Fi is not certain in a short-
term observation (i.e., it is likely to be either the brightest,
the darkest, or in the middle), the brightness discrepancy
between Fi and the average feature F avg

i owns the potential
to indicate the information about the fluctuant component,
which further provides one-side contextual clues. Thus we
concatenate Fi and F avg

i and feed them into several convo-
lutional layers to obtain a fluctuant feature F∼

i as described
in Eqn. (9), which is then fed to LFM (details in Sec. 4.3) to
facilitate layer separation.

4.2 Brightness-consistent clues from long-term observation

When recording a video with light flickering, the frame rate
of the camera and frequency of light flickering both influ-
ence the cycle of the flickering effect in the mixture video.
However, these two parameters vary with different capturing
conditions and devices, resulting in the flickering cycle also
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Fig. 6 LIKE-Net is a recurrent CNN-based network that simultaneously separates flickering and constant layers. At each step i, we extract the
fluctuant feature F∼

i from a short-term observation for one-side contextual clues. To achieve this goal, we leverage a shared CNN-based encoder to
extract multi-scale features {Fi−1, Fi, Fi+1}, utilize an attention block to rectify their uneven brightness, and align unified features by a spatial
alignment block. Then the fluctuant feature is generated by applying the operations formulated in Eqn. (8) and Eqn. (9) successively. To obtain
flickering-free layers, we force the model to learn the consistent feature from a long-term observation. Finally, we design a layer separation and
flickering removal module (LFM) to simultaneously obtain the flickering layer O∼

i , the constant layer O−
i , and the deflickeirng layer O≃

i . More
details of LFM are shown in Fig. 7.

differing among videos. Hence, a robust flickering removal
procedure is required for recovering brightness-consistent
results from videos with various flickering cycles. To achieve
robust flickering removal, it is necessary to have a long-term
observation that can reveal as much brightness variation in-
formation within the cycle of the flickering effect as possible.
Considering the trade-off between the computational cost
and the performance, as shown in the lower part of Fig. 6
(with gray background), we set a long-term observation to
cover nine frames in total, which is composed of the current
frame and its eight adjacent frames.

Low-resolution observation. Though a long-term observa-
tion can provide information about the regularity of frame
brightness variation, it often exhibits more pronounced spa-
tial misalignments across frames compared with the short-
term observation, and rectifying such misalignments in a
long-term observation can be a laborious task. Since the goal
of using a long-term observation is for flickering removal, it
is crucial to ensure that the observation remains sensitive to
the flickering effect while being immune to misalignments
caused by motions. Fortunately, we find that the observation
on blurry or low-resolution frames still retains sensitivity to
flickering while being less affected by motions. For instance,
when one with high degrees of myopia is observing a distant
flickering scene, she (he) is more likely to be responsive to
the brightness variation of the scene while might pay less

attention to motions within the scene due to the unclarity.
Therefore, as shown in Fig. 6, we downsample the frames
in a long-term observation to a significantly low resolution
for preserving the information of the brightness variation and
diminishing the impact of inter-frame misalignments.

Learn brightness-consistent clues. To facilitate the removal
of the flickering effect in captured videos, we introduce
a permutation-invariant module to input with a long-term
observation on low-resolution frames and learn brightness-
consistent clues for the current frame Ii. As shown in Fig. 6,
we first flatten each frame in a long-term observation into
1D vectors. Then we employ a set of multi-layer perceptrons
(MLPs) with shared parameters to learn high-level neural
representations of the long-term observation, and by apply-
ing a max pooling layer, we obtain a permutation-invariant
vector that captures global information regarding the bright-
ness variation across the entire observation. Subsequently,
we concatenate the global vector with neural representations
of the long observation and use another set of MLPs with
shared parameters to learn the brightness-consistent clues
and transform the representations back to the 2D frame space.
We finally pick the frame at index i from the restored frames
as the consistent guidance (denoted as G−

i ) and feed it to the
layer separation and flickering removal module (Fig. 7, de-
scribed in the next section) to provide auxiliary information
on the brightness for flickering removal.
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Fig. 7 The detailed architecture of the layer separation and flickering
removal module (LFM).

4.3 Joint layer separation and flickering removal

We design a simple yet effective layer separation and flicker-
ing removal module (LFM) to jointly separate image layers
and remove the flickering effect with the guidance extracted
from short-term and long-term observations. As illustrated
in Fig. 7, LFM consists of three branches that work together
to accomplish our goal. A detailed description of each branch
is provided as follows.
Branch ①: This branch serves as the backbone of LFM and
outputs a flickering layer O∼

i . The fluctuant feature F∼
i ex-

tracted from the short-term observation has two scales, i.e.,
the original scale and the half scale. Initially, we feed the
half-scale feature of F∼

i to a number of ConvLSTM (Shi
et al, 2015) layers to learn the relationship between neighbor-
ing frames. Afterward, several residual dense blocks (RDBs)
are applied to further refine the features. Then, by using Pix-
elShuffle (Shi et al, 2016), we increase the spatial resolution
to the original scale while reducing the channel of features.
As low-level features retain more texture information, we
add a skip connection between the original scale feature of
F∼
i and the upscaled feature. In addition, like the aforemen-

tioned structure, we continuously apply a set of ConvLSTM
layers and RDBs. Finally, a set of convolutional layers are
employed to generate the flickering layer O∼

i .
Branch ②: This branch decodes the constant layer O−

i from
F uni
i and the feature from branch ①. This operation is intu-

itive since F uni
i contains the information of both the constant

and flickering layer, while F∼
i is only concerned with the

flickering layer. Therefore, it is reasonable to learn the con-
stant layer from these two features. We concatenate the two
features and use several convolutional layers to obtain O−

i .
Branch ③: This branch outputs a deflickering layer O≃

i at
each step, and it helps to obtain a flicker-free frame sequence
corresponding to flickering layers by collecting the outputs
step by step. Flickering removal is achieved through two
constraints: the consistent guidance learned from the long-

term observation and the guidance of previous output. The
consistent guidance is upscaled and then concatenated with
the feature from branch ①. By using a set of ConvLSTM
layers which have been proven to be effective in removing
flickering effects by feeding previous information (Chandran
et al, 2022), we generate temporally consistent output, i.e.,
the deflickering layer O≃

i .

4.4 Implementation details

Network training and loss functions. Loss functions of
three branches are denoted as L∼, L−, and L≃, respectively.
Each loss function of the corresponding branch is composed
of three equal-weighted inner loss functions: the MSE loss,
the SSIM loss (Wan et al, 2019), and the calibrated perceptual
loss (Zhang et al, 2018a) computed by the VGG model (Si-
monyan and Zisserman, 2014). The total loss at each step i

is formulated as:

Ltotal
i = L∼

i + ω1L−
i + ω2L≃

i , (11)

where ω1 and ω2 are coefficients that gradually increase from
0 to 1 during the training procedure. During training, we
unroll the recurrent units in the model for S steps. The to-
tal loss for the unrolled S steps is calculated by Ltotal =
1
S

∑i+S−1
j=i Ltotal

j . In our experiments, we set S = 2 to con-
duct gradient backpropagation with the average loss of two
consecutive steps, which stabilizes the loss and facilitates the
convergence of the network. However, during the inference
phase, LIKE-Net generates a single output frame at each
step without producing intermediate results. The model is
implemented using PyTorch (Paszke et al, 2019) and trained
with the batch size of 1. The initial learning rate is set as
10−4 and is gradually decayed to 10−7 after 50 epochs.

5 Experiments

5.1 Comparison with state-of-the-arts

We compare the proposed method with two single-image
reflection removal methods (i.e., IBCLN (Li et al, 2020a) and
DX21 (Dong et al, 2021)) and two flash-based methods (i.e.,
LC21 (Lei and Chen, 2021) and SDN (Chang et al, 2020))
for quantitative and visual quality evaluation. To make flash-
based methods (Lei and Chen, 2021; Chang et al, 2020)
originally designed for flash/no-flash image pairs applicable
in our setting that inputs with mixture videos containing light
flickering, for each frame in the input video, we select its
adjacent frame containing brightness variation as the other
input. Specifically, we select the brighter frame as the flash
image and the darker one as the no-flash image. To achieve
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Table 1 Quantitative comparisons on the synthetic dataset with light flickering at different sides of the glass. ↑ (↓) indicates larger (smaller) values
are better. Bold numbers indicate the best results. “–” indicates that the compared method cannot provide the required outputs.

Transmission-flickering Reflection-flickering

Method Transmission layer Reflection layer Transmission layer Reflection layer

PSNR↑ SSIM ↑ LPIPS↓ PSNR↑ SSIM ↑ LPIPS↓ PSNR↑ SSIM ↑ LPIPS↓ PSNR↑ SSIM ↑ LPIPS↓

IBCLN 22.29 0.815 0.284 16.89 0.634 0.597 22.51 0.822 0.277 17.12 0.621 0.637
DX21 22.56 0.828 0.273 19.15 0.702 0.519 22.67 0.836 0.260 19.41 0.719 0.488
LC21 22.12 0.823 0.268 15.64 0.543 0.682 22.86 0.842 0.259 16.97 0.684 0.554
SDN 21.43 0.812 0.298 - - - 21.30 0.813 0.294 - - -
LL20 23.28 0.830 0.265 19.79 0.721 0.485 23.61 0.848 0.251 19.47 0.726 0.483
Ours 31.96 0.922 0.154 23.78 0.823 0.277 32.31 0.919 0.145 24.12 0.827 0.271

Transmission Reflection

Ground truths

Transmission Reflection

DX21Input

Mixture

SDN

Transmission

Transmission Reflection

LC21

Transmission Reflection

LL20

Transmission Reflection

Ours

Transmission Reflection
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Transmission Reflection

DX21Input

Mixture

SDN

Transmission

Transmission Reflection

LC21

Transmission Reflection

LL20

Transmission Reflection

Ours

Fig. 8 Visual quality comparisons on the STAFLIC dataset, compared with several state-of-the-art reflection removal methods, including a single-
image method (i.e., DX21 (Dong et al, 2021)), two flash-based methods (i.e., LC21 (Lei and Chen, 2021) and SDN (Chang et al, 2020)), and a
motion-based method (i.e., LL20 (Liu et al, 2020)). Note that SDN (Chang et al, 2020) only estimates transmission layers. We show two groups of
examples captured with transmission-flickering (the top part) and reflection-flickering (the bottom part) scenarios, respectively, and input mixture
videos are shown in the same manner as Fig. 3(a).

comprehensive evaluation, we further compare with a motion-
based method (i.e., LL20 (Liu et al, 2020)) by using adjacent
frames as inputs.

Evaluation on synthetic data. Quantitative results on the
synthetic data are shown in Table 1. Following previous
works (Zheng et al, 2021; Lei and Chen, 2021), we adopt
PSNR (Huynh-Thu and Ghanbari, 2008), SSIM (Wang et al,
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Table 2 Quantitative comparisons on the STAFLIC dataset for static scenes with light flickering at different sides of the glass. ↑ (↓) indicates larger
(smaller) values are better. Bold numbers indicate the best results. “-” indicates that the compared method cannot provide the required outputs.

Transmission-flickering Reflection-flickering

Method Transmission layer Reflection layer Transmission layer Reflection layer

PSNR↑ SSIM ↑ LPIPS↓ PSNR↑ SSIM ↑ LPIPS↓ PSNR↑ SSIM ↑ LPIPS↓ PSNR↑ SSIM ↑ LPIPS↓

IBCLN 22.49 0.843 0.254 16.71 0.523 0.598 24.21 0.848 0.249 16.94 0.546 0.662
DX21 24.03 0.850 0.243 17.59 0.562 0.573 23.70 0.840 0.262 17.09 0.538 0.687
LC21 25.13 0.871 0.211 20.01 0.702 0.495 24.78 0.883 0.202 19.57 0.697 0.521
SDN 25.09 0.859 0.228 - - - 23.97 0.862 0.234 - - -
LL20 23.72 0.845 0.249 17.12 0.538 0.655 24.01 0.843 0.255 17.25 0.604 0.644
Ours 27.27 0.898 0.176 22.78 0.814 0.292 27.85 0.912 0.159 22.41 0.808 0.353

Table 3 Comparisons on the inference time and the model size (with
the video resolution equal to 240× 320).

Metric
Method

IBCLN DX21 LC21 SDN LL20 Ours

Time (s/frame) 0.034 0.044 0.154 0.167 1.532 0.311
Params (M) 21.61 10.93 52.49 5.93 42.41 25.38

2003), and LPIPS (Zhang et al, 2018a) as evaluation metrics.
Due to the lack of ground truths for real dynamic videos,
quantitative comparisons for dynamic scenes are only con-
ducted on synthetic data as the previous method did (Liu et al,
2020). It can be seen that the proposed method achieves the
best performance among all metrics, which demonstrates the
feasibility of the unified setting that introduces light flicker-
ing into reflection removal.
Evaluation on real data. To validate the effectiveness of
introducing one-side light flickering into reflection removal,
we first conduct quantitative and qualitative experiments on
the collected real dataset STAFLIC which is captured with
static scenes. As results shown in Table 2 and Fig. 8, single-
image methods (Li et al, 2020a; Dong et al, 2021) encounter
challenges in distinguishing transmission and reflection lay-
ers, while flash-based methods (Chang et al, 2020; Lei and
Chen, 2021) especially LC21 (Lei and Chen, 2021) achieves
acceptable reflection removal results since in static scenes the
brightness differences between frames play a similar role as
flash-only images for providing helpful content information.
The motion-based method LL20 (Liu et al, 2020) fails in
static scenes as it requires observations of the same scene
from different viewpoints to exploit distinguishable motions
of transmission and reflection layers. The proposed method
outperforms other methods in both qualitative metrics and
visual quality, demonstrating the efficacy of leveraging one-
side contextual clues introduced by light flickering and the
effectiveness of our synthetic data for network training.

We conduct visual quality comparisons on the real-word
dataset DYNFLIC captured with dynamic scenes to evaluate
the performance of the proposed method and other state-
of-the-art reflection removal methods. Results are shown

in Fig. 9 and Fig. 10, which display cases when transmission
and reflection layers are with light flickering, respectively. It
can be observed that the single-image method (Dong et al,
2021) can not effectively remove strong reflections due to
the lack of auxiliary contextual information, and flash-based
methods (Lei and Chen, 2021; Chang et al, 2020) designed
for aligned flash/no-flash image pairs generate results with
ghosting artifacts, since spatial misalignment commonly ex-
ists for dynamic scenes. The motion-based method LL20 (Liu
et al, 2020) also fails to remove reflections, as the brightness
variation caused by light flickering interferes with the motion
estimation of transmission and reflection layers and further
hinders the performance of reflection removal. In general,
by exploiting reflection-aware information from one-side
light flickering, the proposed method achieves high-fidelity
layer separation and flickering removal for general dynamic
scenes. Besides, we show an example of real data captured
by a mobile phone (i.e., HUAWEI P40 Pro) in Fig. 11, which
demonstrates the robustness of the proposed method.

We further compare the inference time and model size
(number of parameters) of the proposed LIKE-Net with state-
of-the-art reflection removal methods. As shown in Table 3,
for a video with the resolution of 240×320, LIKE-Net spends
more time processing the video than single-image (Li et al,
2020a; Dong et al, 2021) and flash-based methods (Chang
et al, 2020; Lei and Chen, 2021) since LIKE-Net estimates
frames from short-term and long-term observations, but it is
still more efficient than the motion-based method (Liu et al,
2020). Besides, the model size of LIKE-Net is comparable
with the single-image method IBCLN (Li et al, 2020a), yet
smaller than both the flash-based method LC21 (Lei and
Chen, 2021) and the motion-based method LL20 (Liu et al,
2020), indicating that the proposed method achieves a trade-
off between the model performance and inference efficiency.

5.2 Ablation study

Effectiveness of short/long-term observations. To verify
the effectiveness of the short/long-term observations, we com-
pare the proposed method with its two variants: ‘W/o short’
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Fig. 9 Visual quality comparisons on real data captured with transmission-flickering scenarios, compared with several state-of-the-art reflection
removal methods, including a single-image method (i.e., DX21 (Dong et al, 2021)), a motion-based method (i.e., LL20 (Liu et al, 2020)), and two
flash-based methods (i.e., LC21 (Lei and Chen, 2021) and SDN (Chang et al, 2020)). Note that SDN (Chang et al, 2020) only estimates transmission
layers. We show two sets of data (captured with real-world indoor light sources by setting the exposure time as 1/200 s and the frame rate as 30
FPS) and pick three frames at different moments with brightness variations in each set.
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Fig. 10 Visual quality comparisons on real data captured with reflection-flickering scenarios, compared with several state-of-the-art reflection
removal methods, including a single-image method (i.e., DX21 (Dong et al, 2021)), a motion-based method (i.e., LL20 (Liu et al, 2020)), and two
flash-based methods (i.e., LC21 (Lei and Chen, 2021) and SDN (Chang et al, 2020)). Note that SDN (Chang et al, 2020) only estimates transmission
layers. We show two sets of data (captured with real-world indoor light sources by setting the exposure time as 1/200 s and the frame rate as 30
FPS) and pick three frames at different moments with brightness variations in each set.
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Table 4 Ablation study on the synthetic dataset with light flickering at different sides of the glass. ↑ (↓) indicates larger (smaller) values are better.
Bold numbers indicate the best results.

Transmission-flickering Reflection-flickering

Method Transmission layer Reflection layer Transmission layer Reflection layer

PSNR↑ SSIM ↑ LPIPS↓ PSNR↑ SSIM ↑ LPIPS↓ PSNR↑ SSIM ↑ LPIPS↓ PSNR↑ SSIM ↑ LPIPS↓

Ours 31.96 0.922 0.154 23.78 0.823 0.277 32.31 0.919 0.145 24.12 0.827 0.271

W/o short 25.72 0.845 0.256 20.41 0.745 0.448 25.94 0.853 0.239 20.78 0.750 0.442
W/o long 28.31 0.889 0.207 22.23 0.798 0.397 28.65 0.891 0.215 22.84 0.787 0.428
W/o BU 28.97 0.896 0.184 22.56 0.790 0.402 29.65 0.889 0.188 22.03 0.802 0.376
W/o SA 30.15 0.914 0.172 22.95 0.818 0.293 30.28 0.907 0.161 23.34 0.815 0.315
W/o LFM 25.86 0.852 0.245 20.53 0.756 0.424 26.04 0.860 0.237 20.62 0.744 0.457
W/o ①-② 29.32 0.897 0.186 21.42 0.765 0.419 26.51 0.869 0.221 22.96 0.791 0.413
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Fig. 11 Visual quality results of data captured by a mobile phone (i.e.,
HUAWEI P40 Pro) in a transmission-flickering scene.

removes the extraction of F∼
i and directly feeds Fi to LFM;

‘W/o long’ removes the long-term observation and directly
feeds a low-resolution image of Ii to the LFM. Table 4 shows
quantitative evaluation results of the two variants. Due to
the lack of guidance from the reflection-aware short-term
observation, ‘W/o short’ suffers from severe performance
degradation compared with the complete model, indicating
the necessity of auxiliary information brought by light flicker-
ing. ‘W/o long’ also performs worse than the complete model,
since the unstable brightness among recovered frames will
lead to the degradation of image quality.

Furthermore, to investigate the influence of the number
of frames in long-term observations, we conduct an abla-
tion study by setting long-term observations to be composed
of 5, 7, 9, and 11 adjacent frames, respectively. The curves
shown in Fig. 12 indicate that the performance of the pro-
posed method improves as long-term observations utilize
more frames. Since the performances are similar when long-
term observations consist of 9 and 11 frames, we finally use
the version of 9 frames to achieve a trade-off of the perfor-
mance and computational cost.
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Fig. 12 Performance variation curves that illustrate the impact of vary-
ing the number of frames in long-term observations. Note that the y axis
denotes the variation rate of the performance on recovering transmission
layers, which selects the variant that uses 5 frames for long-term obser-
vations as the reference. Experiments are conducted on the synthetic
dataset with transmission-flickering and reflection-flickering scenes.

Effectiveness of network modules. We conduct ablation
studies on the network modules of LIKE-Net with the fol-
lowing variants: ‘W/o BU’ that excludes the brightness unifi-
cation module, ‘W/o SA’ that removes the spatial alignment
module, ‘W/o LFM’ that removes branches ② and ③ in the
LFM and directly estimates O∼

i , O−
i , and O≃

i with three
convolutional layers, and ‘W/o ①-②’ that removes the con-
nection between branches ① and ②. Note that ‘W/o LFM’
involves ‘W/o long’ since the long-term guidance is not uti-
lized in ‘W/o LFM’. As results shown in Table 4, compared
with the complete model, removing either the brightness uni-
fication module (‘W/o BU’) or the spatial alignment module
(‘W/o SA’) both result in the degradation of performance,
and ‘W/o LFM’ suffers from significant performance decline,
indicating the effectiveness of the network design of the
proposed method to exploit the auxiliary information from
the fluctuant components. Besides, the performance of ‘W/o
LFM’ degrades more than ‘W/o long’, indicating the effec-
tiveness of the ConvLSTM and convolutional layers in LFM.
In addition, removing the connection between branches ①
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Long-term observation

Only using MLPs

The proposed method

Fig. 13 Verification of the architecture for estimating consistent guid-
ance. Top row: An input long-term observation that shows brightness
variation. Middle row: The sequence obtained by replacing the proposed
architecture with MLPs. Bottom row: The sequence obtained by the
architecture of the proposed method.
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Fig. 14 Qualitative results on removing the flickering effect from clean
flickering videos without reflection contaminations.

and ② (‘W/o ①-②’) leads to a significant degradation to re-
cover layers with consistent illumination, which shows the
efficacy of the fluctuant feature. To validate the advantages of
the architecture of the sub-network for extracting brightness-
consistent clues from long-term observations, we replace the
sub-network with a set of MLPs, i.e., the layers after ‘Neural
presentations’ in Fig. 6 are removed. Fig. 13 illustrates the
comparison of consistent guidance extraction between the
proposed architecture and MLPs, which indicates that simply
using MLPs fails to extract the consistent guidance.

In addition, we conduct experiments on clean videos (i.e.,
no reflection contamination) with light flickering to investi-
gate the effectiveness of the employed brightness-consistent
clues from long-term observations. As shown in Fig. 14, the
brightness of results is more uniform compared with input
frames, which demonstrates the effectiveness of exploiting
consistent features in flickering videos to guide the brightness
unification and further indicates the potential of the proposed
method for video flickering removal.
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Fig. 15 Performance variation curves that illustrate the impact of un-
known flickering cycles by randomly dropping frames in input videos.
Note that the y axis denotes the variation rate of the performance on
recovering transmission layers, which selects the situation with no
dropping frames as the reference. Experiments are conducted on the
synthetic dataset with transmission-flickering and reflection-flickering
scenes.
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Fig. 16 Performance variation curves that illustrate the influence of
input video lengths. Note that the y axis denotes the variation rate
of the performance on recovering transmission layers, which selects
the situation where input videos contain 90 frames as the reference.
Experiments are conducted on the synthetic dataset with transmission-
flickering and reflection-flickering scenes.

Results on unknown flickering cycles. Given that the flick-
ering cycle of a mixture video is jointly influenced by two
variables, namely the frame rate and the light flickering cycle,
it is crucial for a method to effectively handle flickering in
unknown cycles. To validate the effectiveness of our method
on such flickers in an objective manner, we randomly drop
frames to disrupt the periodicity of the synthetic data. We set
the frame drop rate from 10% to 50% to observe the degra-
dation trend of quantitative evaluation metrics. We select
the metrics when the frame drop rate is 0 as the reference,
the degradation rate is defined as |Md −Mr|/Mr × 100%,
where Md is the observed metric, Mr is the reference metric.
In Fig. 15, it is evident that the performance of the method
progressively deteriorates as the frame drop rate increases.
Specifically, the degradation of PSNR and SSIM metrics re-
mains insignificant, whereas LPIPS exhibits a slightly higher
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Fig. 17 Illustration of the robustness of the proposed method on flickering and reflection removal with different lengths of input videos. (a) Example
frames from the input mixture video and recovered transmission video. (b) Visualization of the temporal brightness variation in the input mixture
and recovered transmission video with different lengths. Specifically, for each video, we combine regions at the same location (highlighted with blue
boxes in (a)) by the temporal order for better visualization.

degree of degradation. Nevertheless, the overall degradation
rate across the metrics remains relatively low, underscoring
the effectiveness of our method under unpredictable cycles
of light flickering.

Influence of input video lengths. We conduct ablation stud-
ies to investigate the influence of input video lengths. As
can be observed in Fig. 16, as the frame numbers of input
videos decrease, the performance of the proposed method
remains essentially unchanged. We further visualize the tem-
poral brightness variation of video frames in Fig. 17. For
different input video lengths, frames in input mixture videos
suffer from obvious brightness inconsistency while the re-
covered transmission videos remain consistent in brightness,
which demonstrates the capability of the proposed method to
achieve robust reflection and flickering removal.

Results on inconspicuous light flickering. To validate the
effectiveness of light flickering in removing reflections, it is
necessary to compare results estimated from mixture videos
with different degrees of light flickering. However, since
capturing real data in dynamic scenes with motions for com-
parative analysis lacks repeatability, we opt for synthetic data
to conduct qualitative evaluations. A qualitative experiment
is conducted with results shown in Fig. 18, compared with a
single-image reflection removal method (Dong et al, 2021).
It can be observed that when the degree of light flickering
becomes less conspicuous (the middle part), there is a slight
decline in the performance of the proposed method, yet a
more effective reflection removal is accomplished compared
with the single-image method, demonstrating the significance
of one-side contextual clues provided by light flickering. Be-
sides, when there is no light flickering (the bottom part),
the proposed method still correctly preserves the content of
transmission layers, which indicates our superiority.

Ablation study of S. During the training phase, we em-
ploy the recurrent structures and set the parameter S = 2 to
backpropagate the average loss over two consecutive steps,
aiming to stabilize the training process. We conduct an ab-

lation study by plotting the loss curves of setting S = 1 and
S = 2 to validate the effectiveness of the recurrent structure.
Curves in Fig. 19 reveal that using a backpropagation step
of S = 1 results in a relatively more unstable descent trend
of the total loss function than S = 2, which is likely caused
by the variations of the illumination brightness and reflection
intensity between adjacent frames in the mixture video with
light flickering.

5.3 Application to a high-speed camera

When the captured scenes with light flickering contain fast
motions, the performance of the proposed method may de-
grade due to the low frame rate of conventional digital cam-
eras (usually 30 or 60 FPS). Fortunately, we can extend the
application scope of the proposed method for such challeng-
ing cases by using a spiking camera (Huang et al, 2023;
Chang et al, 2023), which has the attractive high-speed char-
acteristic (perceiving scene radiance changes at 20K FPS
in the forms of spikes). As shown in Fig. 20, reflection re-
moval results using data captured by a conventional RGB
camera are severely degraded by blurry artifacts, whereas
the ones captured by the high-speed spiking camera are free
from reflections and show clear textures of the objects, which
demonstrates the effectiveness of the proposed method in
high-speed scenes.

6 Conclusion

By exploiting the widely observed light flickering, we achieve
reflection removal for general dynamic scenes with a unified
setting. We model the image formation process when one
side of the glass is under a periodically varying illumination,
and demonstrate that the fluctuant component can provide
one-side contextual clues. A learning-based framework is
proposed to tackle misalignment issues and accomplish layer
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Fig. 18 Qualitative results of recovered transmission layers from mix-
ture videos with different degrees of light flickering, compared with a
single-image reflection removal method (Dong et al, 2021). Top part:
The mixture video with light flickering and the reflection removal re-
sults. Middle part: The mixture video with less light flickering (the
intensity of flickering is set at 40% of that in the top part) and results.
Bottom part: The mixture video with no light flickering and results.

separation and flickering removal for general dynamic scenes.
Quantitative and qualitative results show the effectiveness of
the proposed method. Besides, additional experiments also
indicate the applicability of video flickering removal and the
capability for reflection removal in scenes with fast motions
(by using a high-speed camera).

0 0.5 1 1.5 2 2.5 3
104

0

0.5

1

1.5

2

S = 2
S = 1

steps

to
ta

l l
os

s

Fig. 19 Visualization of the total loss when training the proposed net-
work with S = 1 and S = 2.
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Fig. 20 We extend the proposed method by using a high-speed spiking
camera (Chang et al, 2023), which accomplishes clearer recovery of
transmission layers with less blurring compared with the situation that
uses a conventional camera.
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Fig. 21 A failure case of the proposed method, where both transmission
and reflection scenes exhibit light flickering.
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Limitations. Capturing videos with light flickering typically
requires short exposures, resulting in low-light imagery with
higher noise levels. Though we can enhance the brightness
through tone mapping techniques, the mitigation of noise is
not achieved. Nonetheless, in pursuing the goal of reflection
removal, our primary focus lies in minimizing the impact of
reflections. The decision to employ short exposures, despite
the associated increase in noise, represents a deliberate trade-
off aimed at achieving superior performance in reflection
removal. Besides, the proposed method leverages auxiliary
contextual clues from one-side light flickering, however, as
shown in Fig. 21, when both transmission and reflection
scenes exhibit light flickering, a decline in performance can
be observed. It is noteworthy that if the light flickering in the
two scenes is asynchronous, indicating that the two layers
reach their maximum brightness at different moments, this
inherently contains clues for layer separation. By further
analyzing phases of the light flickering, the above issue may
be tackled, which is left as our future work.
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