

BROUGHT TO YOU IN PARTNERSHIP WITH

Getting Started
With Kubernetes

1

ALAN HOHN
LOCKHEED MARTIN FELLOW

CONTENTS

∙ Introduction

∙ What Is Kubernetes?

∙ Key Kubernetes Concepts

∙ Getting Started With Kubernetes

∙ Run Your First Container

∙ Example Application

∙ Conclusion

INTRODUCTION
Containers are a great way to package, deploy, and manage

applications. However, to build a reliable, scalable containerized

application, you need a place to host your containers, update

them, and provide them with networking and storage. Kubernetes

has become the most popular container orchestration system.

It simplifies deploying, monitoring, and scaling application

components, making it easy to develop flexible, reliable applications.

WHAT IS KUBERNETES?
Kubernetes (also known by its abbreviation “k8s”) is an open

source container orchestration system. It manages a “cluster” of

multiple hosts that are used to deploy, monitor, and scale containers.

Originally created by Google in March of 2016, it was donated to the

Cloud Native Computing Foundation (CNCF).

Kubernetes is declarative. This means that you can create and

update “resources” that describe which containers to run, how to

configure them, and how to route network tra�ic to them.

Kubernetes continuously updates and monitors the cluster to ensure

it matches the desired state, including auto-restart, re-scheduling,

and replication to ensure applications start and remain running.

Kubernetes is available as a standalone installation via cloud

providers including Google, Amazon, and Microso�, or in a variety of

distributions including Red Hat OpenShi�, Rancher Kubernetes, and

VMWare Tanzu.

KEY KUBERNETES CONCEPTS
Because Kubernetes is declarative, getting started in Kubernetes

mostly means understanding what resources we can create and how

they are used to deploy and configure containers in the cluster.

To define resources, we use YAML format. The available resources

and the fields for each resource may change with new Kubernetes

versions, so it’s important to double-check the API reference for

your version to know what’s available. It’s also important to use the

correct apiVersion that matches your version of Kubernetes.

This Refcard uses the API from Kubernetes 1.18, released 23 April

2020. Kubernetes 1.19 was released on 25 September but there are

still many clusters using 1.18.

https://www.cockroachlabs.com/product/kubernetes/?utm_source=dzone&utm_medium=sponsor&utm_campaign=refcard-getting-started-kubernetes&utm_content=kubernetes-native-db-980-780
http://kubernetes.io/
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/eks/?whats-new-cards.sort-by=item.additionalFields.postDateTime&whats-new-cards.sort-order=desc&eks-blogs.sort-by=item.additionalFields.createdDate&eks-blogs.sort-order=desc
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://www.openshift.com/
https://rancher.com/
https://tanzu.vmware.com/tanzu
http://yaml.org/
https://kubernetes.io/docs/reference/#api-reference

Scale elastically
with distributed SQL

Say goodbye to sharding
and time-consuming

manual scaling.

Survive anything with
bullet-proof resilience

Rest easy knowing your
application data is always on

and always available.

Build fast with
PostgreSQL compatibility

CockroachDB works with
your current applications and

fits how you work today.

Trusted by innovators

Get started for free today
cockroachlabs.com/k8s

K8s + CockroachDB =
E ortless App Deployment

Run your application on the cloud-native database
uniquely suited to Kubernetes.

https://www.cockroachlabs.com/product/kubernetes/?utm_source=dzone&utm_medium=sponsor&utm_campaign=refcard-getting-started-kubernetes&utm_content=k8s-effortless-one-page

3 BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | GETTING STARTED WITH KUBERNETES

POD

A pod is a group of one or more containers. Kubernetes will schedule

all containers for a pod into the same host, with the same network

namespace, so they all have the same IP address and can access

each other using localhost. The containers in a pod can also share

storage volumes.

We don’t typically create pod resources directly. Instead, we have

Kubernetes manage them through a deployment, so we get fault

tolerance, scalability, and rolling updates.

DEPLOYMENT

A deployment manages one or more identical pod instances.

Kubernetes will make sure that the specified number of pods is

running, and on a rolling update, it will replace pod instances one at

a time, allowing for application updates with zero downtime. Here is

an example deployment:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment

 labels:

 app: nginx

spec:

 replicas: 3

 selector:

 matchLabels:

 app: nginx

 template:

 metadata:

 labels:

 app: nginx

 spec:

 containers:

 - name: nginx

 image: nginx:1.19.3-alpine

 volumeMounts:

 - mountPath: /usr/share/nginx

 name: www-data

 readOnly: true

 ports:

 - containerPort: 80

 initContainers:

 - name: git-clone

 image: alpine/git

 args: ["clone", "https://github.com/AlanHohn/

hello-world-static.git", "/www/html"]

 volumeMounts:

 - mountPath: /www

 name: www-data

 volumes:

 - name: www-data

 emptyDir: {}

The “template” section of the deployment specifies exactly what

the created pods should look like. Kubernetes will automatically

create the required number of pods from the template. When a pod

is created, Kubernetes will monitor it and automatically restart it if

the container terminates. In addition, Kubernetes can be configured

to attempt to connect to a container over the network to determine if

the pod is ready (readinessProbe) and still alive (livenessProbe).

The example above defines one container in the pod and also defines

an “init container”. The init container runs before the main pod

container starts. In this case, it uses Git to populate the files that the

NGINX web server should serve. We use an “init container” because

Git runs once and then exits, so it cannot be a regular container or

Kubernetes will think the pod has failed.

Deployments identify the pods they should manage using the

matchLabels selector field. This field must always have the

same data as the metadata.labels field inside the template. The

deployment will take ownership of any running pods that match the

matchLabels selector, even if they were created separately, so keep

these names unique.

SERVICE

A service provides load balancing to a group of pods. Every time

Kubernetes creates a pod, it is assigned a unique IP address. When a

pod is replaced, the new pod typically receives a new IP. By declaring

a service, we can provide a single point of entry for all the pods in a

deployment. This single point of entry (hostname and IP address)

remains valid as pods come and go, and the Kubernetes cluster even

provides a DNS server so that we can use service names as regular

hostnames.

kind: Service

apiVersion: v1

metadata:

 name: nginx-service

spec:

 selector:

 app: nginx

 ports:

 - protocol: TCP

 port: 80

Services and deployments can be created in any order. The service

actively monitors Kubernetes for pods matching the selector field.

In this case, the service will match pods with metadata.labels

content of app: nginx, like the one shown in the deployment

example above.

Services rely on Kubernetes to provide a unique IP address and

route tra�ic, so the way services are configured can be di�erent

depending on how your Kubernetes installation is configured. The

4 BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | GETTING STARTED WITH KUBERNETES

most common type of service is ClusterIP. This means the service

has an IP address accessible only from within the Kubernetes cluster;

exposing the service outside the cluster requires another resource

like an ingress.

It’s important to know that when network tra�ic is sent to a service

address and port, Kubernetes uses port-forwarding to route tra�ic to

a specific pod. Only the declared protocols and ports are forwarded,

so other kinds of tra�ic (like ICMP ping) will not work to a service

address, even within the cluster.

INGRESS

An ingress is one approach for routing tra�ic from outside the cluster.

(An alternate and more advanced approach is a service mesh such

as Istio.) To use an ingress, a cluster administrator first deploys an

“ingress controller”. This is a regular Kubernetes deployment, but it

registers with the Kubernetes cluster to be notified when an Ingress

resource is created, updated, or deleted. It then configures itself to

route tra�ic based on the ingress resources.

The advantage of this approach is that only the ingress controller

needs an IP address that is reachable from outside the cluster,

simplifying configuration and potentially saving money. Here is an

example ingress:

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

 name: nginx-ingress

spec:

 rules:

 - http:

 paths:

 - path: /

 backend:

 serviceName: nginx-service

 servicePort: 80

This example routes all tra�ic in the cluster to our NGINX service, so it

is only useful for getting started. In a production cluster, you can use

DNS to route many hostnames to the same ingress IP address, and

then use host rules to route tra�ic to the correct application.

PERSISTENT VOLUME CLAIM

Kubernetes has multiple types of storage resources. The deployment

above shows the simplest, an empty directory mounted into multiple

containers in the same pod. For truly persistent storage, the most

flexible approach is to use a “persistent volume claim”.

A persistent volume claim requests Kubernetes to dynamically

allocate storage from a “storage class”. The storage class is typically

created by the administrator of the Kubernetes cluster and must

already exist. Once the persistent volume claim is created, it can

be attached to a pod. Kubernetes will keep the storage while the

persistent volume claim exists, even if the attached pod is deleted.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: web-static-files

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 8Gi

The above YAML declares a persistent volume claim. We would then

use this persistent storage in a deployment similar to the example

above. Only the volumes section would change:

 volumes:

 - name: www-date

 persistentVolumeClaim:

 claimName: web-static-files

For more information on the available providers for Kubernetes

storage classes, and for multiple examples on configuring persistent

storage, see the DZone Refcard Persistent Container Storage.

KUBERNETES ARCHITECTURE
Kubernetes uses a client-server architecture, as seen here:

A Kubernetes cluster is a set of physical or virtual machines and

other infrastructure resources that are used to run applications.

The machines that manage the cluster are called masters, and the

machines that run the containers are called nodes.

MASTER

The master runs services that manage the cluster. The most

important is kube-apiserver, which is the primary service that

clients and nodes use to query and modify the resources running

in the cluster. The API server is assisted by: etcd, a distributed

key-value store used to record cluster state; kube-controller-

manager, a monitoring program that decides what changes to

https://istio.io/
https://dzone.com/refcardz/persistent-container-storage

5 BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | GETTING STARTED WITH KUBERNETES

make when resources are added, changed, or removed; and kube-

scheduler, a program that decides where to run pods based on the

available nodes and their configuration.

In a highly-available Kubernetes installation, there will be multiple

masters, with one acting as the primary and the others as replicas.

NODE

A node is a physical or virtual machine with the necessary services to

run containers. A Kubernetes cluster should have as many nodes as

necessary for all the required pods. Each node has two Kubernetes

services: kubelet, which receives commands to run containers and

uses the container engine (e.g. Docker) to run them; and kube-

proxy, which manages networking rules so connections to service IP

addresses are correctly routed to pods.

As shown in the picture, each node can run multiple pods, and

each pod can include one or more containers. The pod is purely a

Kubernetes concept; the kubelet configures the container engine to

place multiple containers in the same network namespace so those

containers share an IP address.

GETTING STARTED WITH KUBERNETES
CREATING A DEVELOPMENT CLUSTER

Running a production Kubernetes cluster is a complex job. Unless

you’re deeply familiar with Kubernetes configuration, it’s best to use

one of the many cloud options or distributions above. Kubernetes is

capable of running anything that can be packaged in a container, so

insecure public clusters are quickly exploited for Bitcoin mining or

other nefarious purposes.

For a development environment, there are many great options,

including Microk8s or Rancher k3s. This guide shows k3s as the setup,

which is the same on any system with a working Docker installation.

However you set up your cluster, you will interact with it using the

standard Kubernetes command-line client program kubectl.

K3S

K3s is a lightweight Kubernetes distribution in a single binary. While

it can be run directly, we will use k3d to run it inside Docker. First,

install Docker, kubectl, and k3d. Then run:

k3d cluster create -p "8081:80@loadbalancer"

This will create the cluster and configure kubectl to communicate

with it. The extra “-p” option tells k3d to forward port 80 to the

internal load balancer from port 8081 on our host machine. This

allows us to access the Traefik ingress controller that is part of k3s.

To verify that the cluster is running as expected, run kubectl

version as shown here:

kubectl version

Client Version: version.Info{Major:"1",

Minor:"19", GitVersion:"v1.19.2",

GitCommit:"f5743093fd1c663cb0cbc89748f730662345d44d",

GitTreeState:"clean", BuildDate:"2020-09-16T13:41:02Z",

GoVersion:"go1.15", Compiler:"gc", Platform:"linux/

amd64"}

Server Version: version.Info{Major:"1",

Minor:"18", GitVersion:"v1.18.9+k3s1",

GitCommit:"630bebf94b9dce6b8cd3d402644ed023b3af8f90",

GitTreeState:"clean", BuildDate:"2020-09-17T19:05:07Z",

GoVersion:"go1.13.15", Compiler:"gc", Platform:"linux/

amd64"}

This will report the exact version in use, which is valuable in making

sure you are using the correct API documentation.

Finally, to stop the cluster, you can run:

k3d cluster delete

KUBECTL

kubectl is a command-line utility that controls the Kubernetes

cluster. Commands use this format:

kubectl [command] [type] [name] [flags]

• [command] specifies the operation that needs to be per-

formed on the resource. For example, create, get, de-

scribe, delete, or scale.

• [type] specifies the Kubernetes resource type, including

pod(po), service(svc), deployment(deploy), ingress, or

PersistentVolumeClaim (pvc). Resource types are case-in-

sensitive and found in singular, plural, or abbreviated forms.

• [name] specifies the name of the resource, if applicable.

Names are case-sensitive. If the name is omitted, details for

resources are displayed (for example, kubectl get pods).

• [flags] Options for the command.

Some examples of kubectl commands and their purpose:

COMMAND PURPOSE

kubectl apply -f
nginx.yaml

Create or update the resources specified
in the YAML file. Kubernetes records the
state of the resource when it was last
applied so that it can figure out what
changes were made.

kubectl delete -f
nginx.yml

Delete the resources specified in the YAML
file. If any resources do not exist, they are
ignored.

Continued on next page

https://microk8s.io/
https://k3s.io/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://k3d.io/
https://traefik.io/

6 BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | GETTING STARTED WITH KUBERNETES

kubectl get pods
List all pods in the default namespace.
See below for more information on
namespaces.

kubectl describe
pod nginx

Show metadata for the nginx pod. The
name must match exactly.

RUN YOUR FIRST CONTAINER
Most of the time when using kubectl, we create YAML resource files,

so we can configure how we want our application to run. However,

we can create a simple deployment using kubectl without using a

YAML file:

kubectl create deployment nginx --image=nginx

deployment.apps/nginx created

This command will start a deployment to manage pods containing a

Docker container. The Docker container will run an NGINX web server.

We can use kubectl to get the status of the deployment:

kubectl get deploy

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE

AGE

nginx 1 1 1 1 1m

As described above, the deployment automatically creates a pod. To

see the pod, run:

kubectl get po

NAME READY STATUS RESTARTS

AGE

nginx-65899c769f-kp5c7 1/1 Running 0

1m

Of course, most of the time, we will use a YAML configuration file; for

example:

kubectl apply -f deploy.yaml

SCALE APPLICATIONS

Deployments can be scaled up and down:

kubectl scale --replicas=3 deploy/nginx

deployment.extensions/nginx scaled

The Kubernetes controller will then work with the scheduler to create

or delete pods as needed to achieve the requested number. This is

reflected in the deployment:

kubectl get deploy

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE

AGE

nginx 3 3 3 3 3m

You can verify there are three pods by running:

kubectl get po

NAME READY STATUS RESTARTS

AGE

nginx-65899c769f-c46xx 1/1 Running 0

38s

nginx-65899c769f-j484j 1/1 Running 0

38s

nginx-65899c769f-kp5c7 1/1 Running 0

3m

You can also scale the deployment by editing the replicas field in the

YAML and re-running “kubectl apply -f <file>”.

DELETE APPLICATIONS

Once you are done using the application, you can destroy it with the

delete command.

kubectl delete deployment nginx

deployment.extensions "nginx" deleted

Because Kubernetes monitors pods to achieve the desired number of

replicas, we must delete the deployment to remove the application.

Simply deleting the pod will just cause Kubernetes to create another

pod.

EXAMPLE APPLICATION
Let’s put multiple Kubernetes features together to deploy an example

Todo application, written in Node.js, together with a PostgreSQL

database server. Here is the planned architecture:

7 BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | GETTING STARTED WITH KUBERNETES

We’ll work up from the bottom of the diagram. First, before we

deploy our PostgreSQL database, we’ll create persistent storage for

it:

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: postgresql-data

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 8Gi

Next, we’ll define the PostgreSQL deployment:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: postgresql

 labels:

 app: postgresql

spec:

 replicas: 1

 selector:

 matchLabels:

 app: postgresql

 template:

 metadata:

 labels:

 app: postgresql

 spec:

 containers:

 - name: postgresql

 image: postgres:13.0

 env:

 - name: POSTGRES_HOST_AUTH_METHOD

 value: "trust"

 - name: PGDATA

 value: "/data/pgdata"

 - name: POSTGRES_DB

 value: "todo"

 volumeMounts:

 - mountPath: /data

 name: postgresql-data

 volumes:

 - name: postgresql-data

 persistentVolumeClaim:

 claimName: postgresql-data

For a production system, you should choose a secure database

password and configure PostgreSQL to use it.

A Kubernetes Secret is a good way to insert protected environment

variables into your containers.

Even though there will only be one database instance, we will create

a Service so that the IP address will stay the same even if the

PostgreSQL pod is replaced.

kind: Service

apiVersion: v1

metadata:

 name: postgres-service

spec:

 selector:

 app: postgresql

 ports:

 - protocol: TCP

 port: 5432

Next, we create the deployment for the Node.js application:

kind: Deployment

apiVersion: apps/v1

metadata:

 name: todo

 labels:

 app: todo-deploy

spec:

 replicas: 3

 selector:

 matchLabels:

 app: todo

 template:

 metadata:

 labels:

 app: todo

 spec:

 containers:

 - name: todo

 image: alanhohn/todo

 env:

 - name: NODE_ENV

 value: "production"

 - name: DATABASE_URL

 value: "postgres://postgres:postgres@

postgresql/todo"

 ports:

 - containerPort: 5000

Note that we configure the application to use the hostname

“postgresql” for the database. This matches the name of the service

we created above. We can use the plain host name because this

deployment is in the same namespace as the database service (see

the section on namespaces below).

Next, we create the service that provides the user entry point for our

application:

https://kubernetes.io/docs/concepts/configuration/secret/

8 BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | GETTING STARTED WITH KUBERNETES

kind: Service

apiVersion: v1

metadata:

 name: todo

spec:

 selector:

 app: todo

 ports:

 - protocol: TCP

 port: 5000

Finally, we create an ingress to expose this service. Like the example

above, this ingress routes all tra�ic to a single service, so it is only

useful for a development cluster. Be sure to delete any other ingress

in the cluster before creating this one so that tra�ic will be routed

correctly.

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

 name: todo

spec:

 rules:

 - http:

 paths:

 - path: /

 backend:

 serviceName: todo

 servicePort: 5000

Now that you’ve deployed all of the components, you can visit

http://localhost:8081 in your browser and you should see the todo

application. If you’re having issues, use kubectl get to inspect all

the resources you created and the pods to see if one is failing. You

can use kubectl logs to see the output from any pod.

NAMESPACE, RESOURCE QUOTAS,
AND LIMITS
Kubernetes uses namespaces to avoid name collisions, to control

access, and to set quotas. When we created resources above, these

went into the namespace `default`. Other resources that are part

of the cluster infrastructure are in the namespace kube-system.

To see pods in kube-system, we can run:

$ kubectl get po -n kube-system

NAME READY STATUS RESTARTS

AGE

…

coredns-7944c66d8d-rmxnr 1/1 Running 0

64m

…

RESOURCE ISOLATION

A new namespace can be created from a YAML resource definition:

apiVersion: v1

kind: Namespace

metadata:

 name: development

 labels:

 name: development

Once we’ve created the namespace, we can create resources in

it using the `--namespace` (`-n`) flag, or by specifying the

namespace in the resource’s metadata:

apiVersion: v1

kind: Pod

metadata:

 name: webserver

 namespace: development

…

By using separate namespaces, we can have many pods called

webserver and not have to worry about name collisions. Also,

Kubernetes DNS works with namespaces. Simple host names look

for services in the current namespace, but we can use the full name

for services in other namespaces. For example, we could find our

PostgreSQL database from outside the default namespace by using

postgresql.default.svc.

ACCESS CONTROL

Kubernetes supports Role Based Access Control (RBAC).

Here’s an example that limits developers to read-only access for

pods in production. First, we create a cluster role, a common set of

permissions we can apply to any namespace:

kind: ClusterRole

apiVersion: rbac.authorization.k8s.io/v1

metadata:

 name: pod-read-only

rules:

- apiGroups: [""] # "" indicates the core API group

 resources: ["pods"]

 verbs: ["get", "watch", "list"]

Next, we use a role binding to apply this cluster role to a specific

group in a specific namespace:

kind: RoleBinding

apiVersion: rbac.authorization.k8s.io/v1

metadata:

 name: read-only

 namespace: production

subjects:

- kind: Group

Continued on next page

9 BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | GETTING STARTED WITH KUBERNETES

 name: developers

 apiGroup: rbac.authorization.k8s.io

roleRef:

 kind: ClusterRole

 name: pod-read-only

 apiGroup: rbac.authorization.k8s.io

Alternatively, we can use a cluster role binding to apply a role to a

user or group in all namespaces.

RESOURCE QUOTAS

By default, pods have unlimited resources. We can apply a quota to a

namespace:

apiVersion: v1

kind: ResourceQuota

metadata:

 name: compute-resources

 namespace: sandbox

spec:

 hard:

 cpu: "5"

 memory: 10Gi

Kubernetes will now reject unlimited pods in this namespace.

Instead, we need to apply a limit:

apiVersion: v1

kind: Pod

metadata:

 name: webserver

 namespace: sandbox

spec:

 containers:

 - image: nginx

 name: nginx

 resources:

 limits:

 memory: "128Mi"

 cpu: "500m"

Note that we can request fractions of a CPU and use varying units for

memory.

CONCLUSION
Kubernetes is the most popular container orchestration framework.

It is a powerful and reliable way to run containerized applications in

production, providing reliability and scalability.

This Refcard has shown a few of the most important resource types in

Kubernetes to help you get started deploying applications, and with

what you’ve learned here, you can start exploring all that Kubernetes

has to o�er.

WRITTEN BY ALAN HOHN,
LOCKHEED MARTIN FELLOW

Alan Hohn is a Lockheed Martin Fellow who has
worked as a so�ware architect, lead, and manager.
He is an advocate, trainer, and coach for Agile and DevSecOps,
and is the author of video courses on Ansible and GitLab. A�er
many years writing and teaching Java, he now mostly works in
Go and Python.

Devada, Inc.
600 Park O�ices Drive
Suite 150
Research Triangle Park, NC 27709

888.678.0399 919.678.0300

Copyright © 2020 Devada, Inc. All rights reserved. No part
of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by means of electronic,
mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

DZone, a Devada Media Property, is the resource so�ware
developers, engineers, and architects turn to time and
again to learn new skills, solve so�ware development
problems, and share their expertise. Every day, hundreds of
thousands of developers come to DZone to read about the
latest technologies, methodologies, and best practices. That
makes DZone the ideal place for developer marketers to
build product and brand awareness and drive sales. DZone
clients include some of the most innovative technology and
tech-enabled companies in the world including Red Hat,
Cloud Elements, Sensu, and Sauce Labs.

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#clusterrolebinding-example

	Dzone Refcard 2 Cover_Getting Started with Kubernetes-resized.pdf
	14140908-refcard-233-update-getting-started-kubernetes-2020.pdf

