
BROUGHT TO YOU IN PARTNERSHIP WITH

1

379

REFCARD | JUNE 2022

Getting Started With
Serverless Application
Architecture
RAIN LEANDER
DEVELOPER ADVOCATE, COCKROACH LABS

CONTENTS

• 	 When to Build With a Serverless
Database

• 	 Building a Sample Serverless
Application

− 	 Build Out the App's Back End

− 	 Add the Serverless Database

− 	 Build Out the App's Front End

− 	 Add Items

− 	 Deploy to Heroku

• 	 Conclusion

Before getting your hands in the soil, it's important to review what

"serverless" actually means. Of course, servers are still present in

serverless computing; in a serverless architecture, DevOps teams

don't have to worry about building out, configuring, and managing

the hardware. And for developers, serverless means that they can

communicate with the database as if it was a single API endpoint

in a cloud environment. All of which is to say: "Serverless" removes

application architecture maintenance, which creates more room for

innovation.

The intention of this Refcard is to help you easily get started with

serverless application architecture by jumping right into a hands-on

tutorial for building a serverless Java web application.

WHEN TO BUILD WITH A SERVERLESS
DATABASE
Almost all modern cloud-native applications require persistent

data storage. However, storing data becomes more challenging in

serverless architectures where each service is deployed independently.

Specifically, transactions in serverless apps require consistency so

that they can eventually be reconciled, but the applications also need

to scale effectively without being hampered by fragmented data.

For these reasons, it's important to use a serverless database

because it will allow for rapid development of scalable data stores for

modern applications.

For the following tutorial, we're going to use CockroachDB Serverless,

but there are a handful of other serverless databases available, such

as Fauna DB and Amazon Aurora Serverless. CockroachDB is easy to

use with Quarkus and offers support for Hibernate ORM, and Quarkus

works particularly well with Hibernate, thanks to Panache. To

implement a serverless solution, you only need to create the cluster

and connect your application to the database, similar to how you would

add any other SQL database. This means you can start building your

application in minutes.

BUILDING A SAMPLE SERVERLESS
APPLICATION
In this tutorial, we'll demonstrate how to build a serverless Java

application by creating the leaderboard app shown below:

Figure 1

https://www.cockroachlabs.com/lp/serverless?utm_source=dzone&utm_medium=sponsor&utm_campaign=brand-pipe-serv-launch-beta&utm_content=lp-static-dzone-serverless-box-ad-start-instantly-native&utm_term=-refcard-box-ad
https://quarkus.io/
https://hibernate.org/orm/
https://quarkus.io/guides/hibernate-orm-panache

Build what you dream.
Never worry about your database again.

/* Power your apps with the serverless SQL database built for
developers. Elastic scale, zero operations and free forever. */

A hassle-free SQL
database

Give your apps a distributed
platform that’s always available

— with none of the hassle.

Elastic scale that won’t
break your budget

Scale automatically to grow
along with your apps.

Pay for only for what you use,
when you use it.

Compatible with
PostgreSQL

Standard SQL for developer
familiarity, transactional

consistency, and relational
schema efficiency.

cockroachlabs.com/serverless

Start instantly

https://www.cockroachlabs.com/lp/serverless?utm_source=dzone&utm_medium=sponsor&utm_campaign=brand-pipe-serv-launch-beta&utm_content=lp-static-dzone-serverless-one-page-ad-start-instantly-native&utm_term=-refcard-one-page-ad

BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | GETTING STARTED WITH SERVERLESS APPLICATION ARCHITECTURE

REFCARD | JUNE 2022 3

We'll first build the app's back end using Quarkus to enable CRUD

operations on CockroachDB Serverless, which we will then use to store

leaderboard items displayed on the front end. We'll build the front

end using Node.js and React, enabling users to display and add new

leaderboard items. Then, we will deploy the entire solution to Heroku

to make it globally available.

You can follow along using the companion repository on GitHub.

Examples were created in Visual Studio Code on macOS, but we've

included instructions for other operating systems where necessary.

Note: We're assuming you have at least an intermediate level of Java

programming skills and are familiar with Quarkus. If you're unfamiliar

with JPA and MVC in Java, please check the following tutorial: "Learn

JPA & Hibernate."

Here is a list of tools you will need:

• 	 Visual Studio Code with the Extension Pack for Java

 	 − Check out Managing Extensions to learn how to install

the extension.

• 	 Java version 16.0.2, 2021-07-20

• 	 curl for app testing (you can use another testing tool if

you prefer)

• 	 Node.js, since we will be using npm to build out React front end

• 	 Git for version control

• 	 Maven, the build tool

• 	 A free Heroku account

BUILD OUT THE APP'S BACK END

We'll start by creating the Quarkus back end. Let's go to the Quarkus

project generator and set up our application's extensions, which we

can think of as dependencies.

In the Group field, enter "org.db." In the Artifact field, enter

"cockroach-serverless." In the Build Tool field, enter "Maven." Next,

select the following four packages:

• 	 RESTEasy Classic

• 	 RESTEasy Classic JSON-B

• 	 REST resources for Hibernate ORM with Panache [quarkus-

hibernate-orm-rest-data-panache]

• 	 JDBC Driver – PostgreSQL [quarkus-jdbc-postgresql]

Once the project is configured, select Generate your application.

Quarkus then displays another window where you can download the

source code (Figure 2).

SEE FIGURE 2 IN NEXT COLUMN

Figure 2

Download the zip file to receive the Java project with a static page,

an index.html file (in src/main/resources), one REST API, a

GreetingResource.java file (in src/main/java/org/db), some

unit tests, and some Docker files.

The GreetingResource.java file implements a simple /hello

endpoint with one GET method, which returns the static string,

Hello RESTEasy:

@Path("/hello")

public class GreetingResource {

 @GET

 @Produces(MediaType.TEXT_PLAIN)

 public String hello() {

 return "Hello RESTEasy";

 }

}

To see this code at work, navigate to the unzipped file, /path/to/

cockroach-serverless/, and enter the following command in

your terminal:

./mvnw quarkus:dev

Next, use your browser and navigate to localhost:8080. You will see

index.html being rendered. You can ignore any test output generated

in the log.

https://github.com/dawidborycki/cockroach-leaderboard
https://www.infoworld.com/article/3379043/what-is-jpa-introduction-to-the-java-persistence-api.html
https://www.edureka.co/blog/mvc-architecture-in-java/
https://www.baeldung.com/learn-jpa-hibernate
https://www.baeldung.com/learn-jpa-hibernate
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-pack
https://code.visualstudio.com/docs/editor/extension-marketplace
https://www.java.com/en/download/help/download_options.html
https://curl.se/
https://nodejs.org/en/
https://git-scm.com/
https://spring.io/guides/gs/maven/
https://signup.heroku.com/
https://code.quarkus.io/?g=org.db&a=cockroach-serverless

BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | GETTING STARTED WITH SERVERLESS APPLICATION ARCHITECTURE

REFCARD | JUNE 2022 4

Figure 3

Append the request to the /hello endpoint to see the static

string, Hello RESTEasy. Once this is done, we can add the class

implementing the actual REST API for our leaderboard app. Create a

file called LeaderboardItem.java in src/main/java/org/db and

add the following code:

package org.db;
import javax.enterprise.inject.Produces;
import javax.persistence.Column;
import javax.persistence.Entity;

import io.quarkus.hibernate.orm.panache.
PanacheEntity;

@Entity
public class LeaderboardItem extends PanacheEntity {
 @Column
 public String name;
 @Column
 public double points;
}

This will represent the items on the leaderboard.

The LeaderboardItem class has two fields: name and points. The

class derives from PanacheEntity, so the getters and setters for

name and points fields will be generated automatically. Additionally,

PanacheEntity provides a default identifier, id, which helps to keep

the definition of the LeaderboardItem class clean and simple.

Next, let's implement the actual REST resource for the leaderboard

items. Add the LeaderboardResource.java class in the src/main/

java/org/db directory:

package org.db;

import io.quarkus.hibernate.orm.rest.data.panache.
PanacheEntityResource;

public interface LeaderboardResource extends
PanacheEntityResource
 <LeaderboardItem, Long> {
}

PanacheEntityResource, used as a base class, is generic and

implements our CRUD operations. It will work for instances of

LeaderboardItem and identify particular database objects using the

default identifier, Long (from the PanacheEntity class). Also note

that LeaderboardResource will automatically generate the REST

API endpoint exposed at the /leaderboard path.

We are now ready to create the CockroachDB database and connect it

to our back end.

ADD THE SERVERLESS DATABASE

If you do not have a free CockroachDB account, you will need to

create one. After signing up, you will be redirected to the dashboard.

Select Create Cluster, and in the display that pops up, choose

Serverless. The Serverless option requires you to choose your cloud

provider and its region: Set AWS as your provider and use the region

closest to your physical location. Optionally, you can modify the

cluster name, though we are using the default value, fluffy-possum.

Select Create your free cluster to begin the process of creating

the cluster. In a few seconds, you will see a window containing your

connection info:

Figure 4

Be sure to note your database password at this point, as this is the

only place where you can reveal it. Otherwise, you'll need to reset the

password using the CockroachDB dashboard, found in: SQL Users >

Action > Change Password. While you have this window open, you

will also want to grab a few more values that you'll soon need to

configure the application.properties class.

https://cockroachlabs.cloud/signup

BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | GETTING STARTED WITH SERVERLESS APPLICATION ARCHITECTURE

REFCARD | JUNE 2022 5

Select the Parameters Only dropdown and note the values it presents

(username, host, database, and port):

Figure 5

Next, open src/main/resources/application.properties and

enter the following code. Replace the username, password, host, port,

and database with the values taken from CockroachDB Serverless. Use

the cluster name in the JDBC URL:

configure your datasource

quarkus.datasource.db-kind = postgresql

quarkus.datasource.username = dev

quarkus.datasource.password = <your password>

quarkus.datasource.jdbc.url =

jdbc:postgresql://<your host>:26257/<cluster-

name>.<your database>

quarkus.hibernate-orm.database.generation = update

We are now ready to test the application. Go ahead and run the app

again by entering the following command in your terminal:

./mvnw quarkus:dev

Then, navigate to localhost:8080/leaderboard. The resource

returns an empty collection. We can add one item using curl:

curl -i -X POST -H "Content-Type:application/json"

-d "{ \"name\" : \"Dave\", \"points\" : \"100\"}"

http://localhost:8080/leaderboard

The resource should respond with a 201 HTTP status code:

Figure 6

The item was successfully added to the database. We can check this

by sending a GET request to http://localhost:8080/leaderboard,

either using curl or a web browser:

Figure 7

BUILD OUT THE APP'S FRONT END

With the back end ready, let's add the front end. Because we will build

using React, we'll need to make sure we also have Node.js. Install it now

if necessary.

First, open your terminal and go to the project's directory. Create a new

directory called webapp in /src/main. Then, create the React project

by entering the following command:

npx create-react-app src/main/webapp/

Figure 8

Enter y to proceed. The React web application will be bootstrapped

in src/main/webapp. You can preview the app by changing your

working directory to src/main/webapp and then entering the

following command:

npm start

You will see the following welcome screen:

Figure 9

https://nodejs.org/en/download/

BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | GETTING STARTED WITH SERVERLESS APPLICATION ARCHITECTURE

REFCARD | JUNE 2022 6

Let's now customize our web app and add the leaderboard. We will use

the PatternFly package to create the table.

Install the PatternFly npm package by invoking the following command

from the src/main/webapp directory:

npm install @patternfly/patternfly –save

Then, import patternfly.css in index.js:

import React from 'react';

import ReactDOM from 'react-dom';

import './index.css';

import App from './App';

import reportWebVitals from './reportWebVitals';

import '@patternfly/patternfly/patternfly.css';

Next, create a subdirectory named components in the webapp/src

directory. Then, in webapp/src/components, create a leaderboard.

jsx file and add the following code:

import React from 'react'

const Leaderboard = ({ items }) => {

 return (

 <div>

 <center><h1>Leaderboard</h1></center>

 <table className="pf-c-table pf-m-

grid-md">

 <thead>

 <tr role="row">

 <th

role="columnheader">Name</th>

 <th

role="columnheader">Points</th>

 </tr>

 </thead>

 {items.map((item) => (

 <tbody role="rowgroup">

 <tr role="row">

 <td role="cell">{item.

name}</td>

 <td role="cell">{item.

points}</td>

 </tr>

 </tbody>

))}

 </table>

 </div>

)

};

export default Leaderboard

This component, when given the list of leaderboard items, will render

them as the two-column table we want to display:

Figure 10

To that end, the Leaderboard component iterates over the items

collection and displays each item as a table row.

Let's now use the Leaderboard component in App.js:

import React, {Component} from 'react';

import Leaderboard from './components/leaderboard';

class App extends Component {

 state = {

 items: []

 }

 componentDidMount() {

 fetch('http://localhost:8080/leaderboard')

 .then(res => res.json())

 .then((data) => {

 this.setState({ items: data.

sort((a,b)=>{return a.points < b.points}) })

 })

 .catch(console.log)

 }

 render () {

 return (

 <Leaderboard items={this.state.items} />

);

 }

}

export default App;

The App component will send a GET request to our Leaderboard

resource, which we've implemented using the Quarkus REST API. The

collection of items retrieved from the API is stored in state.items and

then passed to the Leaderboard React component. Importantly, the

items are also sorted in descending order by their points property.

To make this work, we need to configure cross-origin resource sharing

(CORS). By default, the front end is exposed on the localhost at port

3000, while the REST API is exposed at port 8080. This could prevent

fetching data from the API — the web browser could block a request due

to misconfigured CORS.

https://www.patternfly.org/v4/

BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | GETTING STARTED WITH SERVERLESS APPLICATION ARCHITECTURE

REFCARD | JUNE 2022 7

To enable CORS, add the following line to application.properties

in the Quarkus project:

quarkus.http.cors=true

Now, run the REST API project again by running ./mvnw quarkus:dev

and restart the web application by running npm start. Then, open

localhost:3000/leaderboard.

You should see something like this:

Figure 11

At this point, we can add items using curl or any other REST API client.

Let's see how to do this.

ADD ITEMS

We'll now add a form that enables users to add new entries to the

leaderboard through REST API. The application will also contain two

links that enable the user to switch between the Leaderboard and

Form screens:

Figure 12

We start by supplementing the React app with the react router. To do

so, install the react-router-dom npm package:

npm install react-router-dom

Then, in the components directory, add an AddItem.css file:

input {

 margin: 5px;

}

Next, implement the AddItem.jsx component with the code below:

import React from 'react';

import './AddItem.css'

class AddItem extends React.Component {

 constructor(props) {

 super(props);

 this.state = { name: '', points: 0 };

 }

 handleChange = (event) => {

 this.setState({[event.target.name]: event.

target.value});

 console.log(this.state);

 }

 handleSubmit = (event) => {

 console.log(JSON.stringify(this.state));

 fetch('http://localhost:8080/leaderboard', {

 method: 'POST',

 body: JSON.stringify(this.state),

 headers: {

 'Content-Type': 'application/json'

 },

 }).then(function(response) {

 return response.json();

 });

 event.preventDefault();

 }

 render() {

 return (

 <form onSubmit={this.handleSubmit}>

 <input type="text" value={this.state.

value}

 name="name" onChange={this.

handleChange} placeholder="Name"/>

 <input type="text" value={this.state.

value}

 name="points" onChange={this.

handleChange}placeholder="Points"/>

 <input type="submit" value="Submit" />

 </form>

);

 }

 }

 export default AddItem

The AddItem component consists of a form with two text fields.

BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | GETTING STARTED WITH SERVERLESS APPLICATION ARCHITECTURE

REFCARD | JUNE 2022 8

The values of these text fields are used to update the state of the

component. When the user selects the Submit button, a POST request

is sent to our back end.

Finally, we modify App.js to include links to Leaderboard and

AddItem components:

import React, {Component} from 'react';

import {BrowserRouter as Router, Routes, Route,

Link} from 'react-router-dom'

import Leaderboard from './components/Leaderboard';

import AddItem from './components/AddItem';

class App extends Component {

 state = {

 items: []

 }

 componentDidMount() {

 fetch('http://localhost:8080/leaderboard')

 .then(res => res.json())

 .then((data) => {

 this.setState({ items: data.

sort((a,b)=>{return a.points < b.points}) })

 })

 .catch(console.log)

 }

 render () {

 return (

 <Router>

 <div style={{padding: "5px"}}>

 <Link to="/">Leaderboard</Link>

 <Link to="/addItem" >Add item</Link>

 </div>

 <hr/>

 <Routes>

 <Route exact path='/'

 element={<Leaderboard items={this.

state.items}/>} />

 <Route exact path='/addItem'

 element={< AddItem />} />

 </Routes>

 </Router>

);

 }

}

export default App;

Now, run the web app again. You can see the links at the top of the

Leaderboard window.

Select Add item, then fill in the form:

Figure 13

After submitting the form, select Leaderboard and refresh the page to

see the new item:

Figure 14

You can also use the setInterval JavaScript function to automatically

refresh the leaderboard at the predefined intervals.

DEPLOY TO HEROKU

In this section, we'll deploy our entire solution to Heroku, doing

so in a cloud-native way by deploying the back end and front end

independently. To complete all of the instructions, you will need

Heroku and Git accounts, as well as the Heroku CLI installed on your

development machine.

To install Heroku CLI on macOS, use brew:

brew install heroku/brew/heroku

On Ubuntu, use snap:

sudo snap install heroku --classic

On other Linux distributions, use a tarball.

On Windows, use one of the dedicated installers.

BACK-END DEPLOYMENT
First, let's deploy the back end through Heroku CLI and Git. Start by

logging into Heroku:

heroku login

https://devcenter.heroku.com/articles/heroku-cli#standalone-installation-with-a-tarball
https://devcenter.heroku.com/articles/heroku-cli#download-and-install

BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | GETTING STARTED WITH SERVERLESS APPLICATION ARCHITECTURE

REFCARD | JUNE 2022 9

Then, update your application.properties file with the following

configuration:

quarkus.http.port=${PORT:8080}

This updates the HTTP port on which our back end is listening for

requests so that it matches the port provided by Heroku. Next, create a

system.properties file:

echo "java.runtime.version=11" >> system.properties

We use this to set our JDK to version 11 to match the Quarkus

configuration. Next, create the Procfile, which Heroku uses to start

our application:

echo "web: java \$JAVA_OPTS -jar target/quarkus-app/

quarkus-run.jar" >> Procfile

Before we create our app, we need to collate everything through Git.

Initialize a local Git repository and commit all these files:

git init

git add .

git commit -am "Initial version"

Now, create the application on Heroku:

heroku create

Finally, deploy through Git:

git push heroku main

The output of this command should look similar to this:

Figure 15

To see the app running, enter heroku open. This opens the default web

browser and navigates to the Heroku application URL (Figure 16).

SEE FIGURE 16 IN NEXT COLUMN

Figure 16

Append the /leaderboard path to the URL to see the back end

communicate with CockroachDB and return the list of leaderboard

items. Note that this list matches what we had before because the

data is retrieved from the same database:

Figure 17

FRONT-END DEPLOYMENT
After ensuring that the back end works, let's deploy the front end.

We will start by updating the code with the Heroku app's URL. In our

case, that is https://afternoon-fortress-35863.herokuapp.

com/leaderboard. Your URL will be similar.

Update this section of the App.js file — in src/main/webapp/src —

with your URL:

componentDidMount() {

 fetch('https://afternoon-fortress-35863.herokuapp.

com/leaderboard')

 .then(res => res.json())

 .then((data) => {

 this.setState({ items: data.sort((a,b)=>{return

a.points < b.points}) })

 })
 .catch(console.log)

}

Then, update the URL in the AddItem.jsx file within src/main/

webapp/src/components:

handleSubmit = (event) => {

 console.log(JSON.stringify(this.state));

 fetch('https://afternoon-fortress-35863.herokuapp.

com/leaderboard', {

 method: 'POST',

 body: JSON.stringify(this.state),

 headers: {

 'Content-Type': 'application/json'

 },

 }).then(function(response) {

CODE CONTINUES ON NEXT PAGE

BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | GETTING STARTED WITH SERVERLESS APPLICATION ARCHITECTURE

REFCARD | JUNE 2022 10

 return response.json();

 });

 event.preventDefault();

}

Before proceeding, let's ensure everything works locally. Change your

working directory to src/main/webapp and then run using npm

start. Then, go to localhost:3000. Note that it may take longer than

before to retrieve leaderboard items. Now, we are ready to deploy the

front end to Heroku. Start by creating the Procfile:

echo "web: npm start" >> Procfile

Now, initialize another repository. Add and commit all of the files,

ensuring to do this from the src/main/webapp subdirectory:

git init

git add .

git commit -am "webapp"

Create the new Heroku app:

heroku create

Finally, deploy the front end through Git:

git push heroku main

All that remains to do now is to open your application:

heroku open

You should see the solution up and running:

Figure 18

Try to add another item:

Figure 19

The item appears as an entry in the leaderboard:

Figure 20

CONCLUSION
In this Refcard, we walked through the creation and deployment of a

Java application, using Quarkus for the back end, React for the front

end, CockroachDB for our serverless database, Panache for ORM,

and Heroku to deploy the whole package. As you've seen, we quickly

connected CockroachDB to our Quarkus back end, but we could have

just as easily deployed to Heroku as a Docker container instead. We

also demonstrated how easy it is to automatically generate REST CRUD

resources using Panache. All of these tools accelerate the development

of serverless apps. And by removing server-centric friction from the

application development process, serverless development liberates

developers to spend more time on innovation and feature development,

which will ultimately result in better end-user experiences.

WRITTEN BY RAIN LEANDER,
DEVELOPER ADVOCATE, COCKROACH LABS

Rain Leander is a systematic, slightly psychic,
interdisciplinary community liaison with a
bachelor's in dance and a master's in IT. Rain is a
developer advocate at CockroachDB, an author of many application
development tutorial guides, and an active technical contributor
with Tinkerbell, OpenStack, RDO, TripleO, Fedora, and DjangoGirls.

600 Park Offices Drive, Suite 300
Research Triangle Park, NC 27709

888.678.0399 | 919.678.0300

At DZone, we foster a collaborative environment that empowers developers and
tech professionals to share knowledge, build skills, and solve problems through
content, code, and community. We thoughtfully — and with intention — challenge
the status quo and value diverse perspectives so that, as one, we can inspire
positive change through technology.

Copyright © 2022 DZone, Inc. All rights reserved. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or
by means of electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

