

About us

Harel Safra

Data Platform Engineering

Team Lead,

Riskified

harel.safra@riskified.com

Yoav Shemesh

Senior Data

Platform Engineer,

Riskified

yoav.shemesh@riskified.com

Agenda

01 So, why did we leave postgres?

02 Choosing right

03 Our solution

04 Road to success

05 Lessons learned

Riskified by the Numbers

Global team, nearly 50%
in engineering & analytics

Countries where we
operate

Online volume (GMV)
reviewed in 2022

750+ 185

$105B+

50+
Publicly-traded companies
among our clients

99%+
Client retention
for FY'2022

Riskified’s Data Platform

Riskified’s Data Platform

Issues
encountered

SO, WHY DID WE LEAVE POSTGRES?

Aurora postgres

● Single writer server

● Transaction limit

● Multiple clusters

Scaling limitation

POC summary
CHOOSING RIGHT

Test criteria

● Postgres compatible to avoid Application

changes

● Scale, Resilience & Operations

○ Online upgrades, failures, backups …

● Installation & data loading

● Security

● Performance

POC: Candidates

● VoltDB

● Xpand (clustrix)

● NuoDB

● CockroachDB

● SingleStore (MemSQL)

● YugabyteDB

POC: Tested

● YugabyteDB

● CockroachDB

Performance
metrics

● Jmeter

○ Postgres < 1ms

○ CockroachDB ±3ms

● Main App sample process

○ Postgres ±60ms

○ CockroachDB ±80ms

Implementation
details

OUR SOLUTION

Our list of
requirements

● Single server auto replacement

● Replace all nodes in the cluster

● Automatic deployments

● Change management

● Rolling restarts

● Monitoring

Any Tech

CockroachDB

● Backups

● CDC

Automatic deployments

Single server auto
replacement

Change management

Monitoring & Backup

Rolling restarts

Replace all nodes
in the cluster

Cockroach Cluster

Easy management using ASG per AZ

AZ A

ASG

AZ B

ASG

AZ C

ASG

+

+

Automatic deployments

Single server auto
replacement

Change management

Monitoring & Backup

Rolling restarts

Replace all nodes
in the cluster

GitHub Actions
for trigger plan
and apply on PR
and merge

Ansible for installing
the software

Terraform for
managing AWS
components

+

+

Automatic deployments

Single server auto
replacement

Change management

Monitoring & Backup

Rolling restarts

Replace all nodes
in the cluster

+

+

Feel free to use it :)

Automatic deployments

Single server auto
replacement

Change management

Monitoring & Backup

Rolling restarts

Replace all nodes
in the cluster

Ruby from Airflow

+

+

Automatic deployments

Single server auto
replacement

Change management

Monitoring & Backup

Rolling restarts

Replace all nodes
in the cluster

● Prometheus, Grafana & built in console

● Using the built-in exporters

+

+

● Scheduled backups to S3

● Local & DR regions

Road to success
MIGRATION PROCESS

PostgresSQL CRDB PostgresSQL

DMS C2PGCockroachdbPostgres Postgres Fallback

Migrations with AWS DMS and Replicator (belt & suspenders)

1. Create schemas, users

2. Full load + CDC with AWS Data Migration Service

3. Create a copy from source

4. CDC using C2PG (partitioned tables need custom script)

Migration tips
& guidelines - Docs

● Use Cockroach cloud migration tool

● Replace IDENTITY columns with

unordered_unique_rowid on busy tables

● Read the documentation!

Migration tips
& guidelines

● Use port 5432 in addition to 26257

● Reuse existing DNS

● Read committed transaction isolation

● Wrap schema migrations in explicit

transactions

Changefeeds

● Replication slots Changefeeds

● Message format is a bit different

● Don’t need a Kafka Connect cluster

● We use Terraform automation

○ Using SQL migration provider

○ Creating changefeeds, Kafka and registry

connections

Clients & SDKs

LESSONS LEARNED
(SO YOU DON’T HAVE TO)

Ruby

● Ruby on Rails works as is with the Postgres adaptor

● Use the SSL flag for production

● Rake - needs adapting

○ db: migrate

○ db: test:prepare - adapted due to db:migrate

Node & ORM

● Define SSL at the connection

○ We use global certificates

○ Postgres doesn't need it

Scala & JDBC

JUST WORKS!

Let’s wrap it up
TLDR;

Wrap Up

● Scalability issues were solved by CockroachDB

● AWS Auto Scaling Groups to manage the cluster

● Migration required minor application changes

● Replaced Debezium with Changefeeds

Thank you
for your time!
Harel Safra
harel.safra@riskified.com
www.linkedin.com/in/harelsafra

Yoav Shemesh
yoav.shemesh@riskified.com
www.linkedin.com/in/yoavshemesh

mailto:harel.safra@riskified.com
https://www.linkedin.com/in/harelsafra/
mailto:yoav.shemesh@riskified.com
https://www.linkedin.com/in/yoavshemesh/

