

Driven by ambition. Powered by technology.

Happening

Consumer brands

powered by

The Tech Engine Behind
Superbet’s Global Platforms

30+

550+

10+
Locations

Product teams

People in tech

What is “betting” in
Sports Betting?

ACCEPTANCE

AUTHORIZATION

CASHOUT

SETTLEMENT

MATCH FEED

EXTERNAL
PROVIDER A

EXTERNAL
PROVIDER B

TICKETS

PAYOUT &
WALLET

OFFER FEED

BOOKIE

ANALYTICS

MATCH FINISHES GOAL SCORED

CLIENT OFFER
STREAM

USER PAYS OUT
WIN EARLY

USER PLACES
A BET (TICKET)

USER PAYS OUT
WIN EARLY

ACCEPTANCE

AUTHORIZATION

USER PLACES
A BET (TICKET)

PAYOUT &
WALLET

MATCH FEED

EXTERNAL
PROVIDER A

EXTERNAL
PROVIDER B

OFFER FEED

BOOKIE

ANALYTICS

MATCH FINISHES GOAL SCORED

CLIENT OFFER
STREAM

CASHOUT

SETTLEMENT

TICKETS

USER PAYS OUT
WIN EARLY

CLIENT OFFER
STREAM

ACCEPTANCE

AUTHORIZATION

USER PLACES
A BET (TICKET)

PAYOUT &
WALLET

OFFER FEED

BOOKIE

ANALYTICS

CASHOUT MATCH FEED

EXTERNAL
PROVIDER A

EXTERNAL
PROVIDER B

MATCH FINISHES GOAL SCORED

SETTLEMENT

TICKETS

How we got started
with CockroachDB

Tickets Service
● We need to store all the active (still not finally settled) and

recent tickets (up to 30-90 days) so they are available quickly
● Part of wider pipeline architecture (based on Kafka), so data

was already denormalized and in JSON format
● All querying is done by ticket ID and user ID
● Expected >10x growth over next 3 years
● Sports betting is strictly regulated industry

○ Data and processing had to reside in the licence country
(Romania, Poland)

○ Data integrity is extremely important

We basically need a highly available,
durable KV store with secondary indexes
that can reliably run on-premises.

How does CockroachDB fit?
● We need to store all the active (still not finally settled) and

recent tickets (up to 30-90 days) so they are available quickly
○ CockroachDB automatically shards and scales horizontally

so even when having 100M+ active tickets, we can just add
more hardware to scale it and spread the load

● Part of wider pipeline architecture (based on Kafka), so data
was already denormalized and in JSON format
○ Use JSONB + create computed columns (STORED)

● All the querying is done by ticket ID and user ID
○ Use ticket ID as primary, create secondary index for user ID,

no need to manually create and (even harder) maintain the
secondary index

● Expected >10x growth over next 3 years
○ Based on our tests and load patterns, it would nicely scale

just by adding more nodes

How does CockroachDB fit? (pt. 2)

● Data and processing had to reside in the licence country
○ Since there is no AWS in Romania and Poland, being able to

run it on the premises in both locations was very important
factor

○ Even now with more relaxed rules in the cloud era, having a
copy of data in country of presence is still legal requirement
in all jurisdictions

● Data integrity is extremely important
○ Strong consistency matters a lot when losing data can mean

losing a licence; database level resiliency also matters much
more when running on premises where hardware reliability is
not guaranteed to be as high as in cloud

How does CockroachDB fit? (pt. 3)

Additional benefits we liked
● Online schema changes

○ These are quite useful when using the computed columns
from JSONB fields, as it allows you to easily introduce new
fields when needed

● PostgreSQL compatible
○ We already had applications and instrumented in-house

library wrappers for PostgreSQL -> easier adoption
● Locality awareness and topology based data spreading

○ In simplest scenario, when it becomes legal we can deploy
to cloud, and get automatic, up to date copy in the country

○ Also could be a long term gateway to multitenancy

Why I love it? DevOps Benefits
● Kubernetes native (not that common in 2019)

○ Easily deployed via helm, managed the same as the rest of
infrastructure, not relying on hacks and magic workarounds

● Comes fully automated with best practices
○ Out of the box TLS setup
○ Automatic rebalancing (when adding nodes and in failures)
○ Zero downtime upgrades (no need to do failovers)

● Scheduled backups directly to S3
○ Doing SQL dump on multi TB DB is not viable (MVCC limit);

binary backup is significantly faster and more compact
○ Additionally, incremental backups on Enterprise plans

It went really well.
But some helpful tips.

● NTP Clocks synchronization
○ CRDB heavily depends on clocks being in sync (500ms)
○ Be careful of NTP sources you use, default NTP pool might

not implement leap second smearing (in general just use
Google/AWS ones)

● Make sure that you implement anti-affinity both on VM and
Kubernetes level
○ Most common source of our clock drift crashes was VMware

moves of VM from one physical node to another
○ This is not a problem if single pod gets moved

Tips (on-prem)

● Run on dedicated Kubernetes nodes and enable the CPU pinning, this
yielded us ~40% performance gains compared to baseline
○ Use cpuManagerPolicy: static to enable CPU pinning
○ Then configure requests and limits to be the same resources; you

need to configure it on all the containers (beware of init container)
○ CFS is not an issue because CockroachDB adjusts GOMAXPROCS

● Provisioning additional hardware on-prem can take a long time, so
overprovision especially when starting
○ To speed up recovery rebalance of failed node, at cost of BW and

CPU, tweak kv.snapshot_rebalance.max_rate

Tips (on-prem) #2

● Configure automatic backups
○ Even the free version includes scheduled (full) backups,

there is no excuse not to run them and have them offsite
(i.e., to AWS S3)

● Setup monitoring with Prometheus
○ Despite DB Console already having all the metrics and much

more, given data is stored in the cluster itself, if you ever end
up with broken cluster, having metrics outside can be really
helpful for debugging

○ It also allows you to configure alerting (CockroachDB has
good example with common ones available on the GitHub)

Tips (DevOps)

Lessons from running
CockroachDB on-prem

What we got wrong?
● Using large JSONB is quite inefficient as it requires rewriting the

whole rows on even small updates
○ Single large JSONB meant that we also couldn’t leverage the

column families and do “partial” row updates
○ This was even bigger problem due to our large rows (avg.

4kB), their update frequency and how LSM tree works
○ JSONB was significantly slower than serializing on client

side
● Backups blew the edge router licence throughput limits

○ Easy to fix since v22.1 – just configure the cloud storage rate
limiting, note it is per node (remember when adding nodes)

○ cloudstorage.s3.write.node_rate_limit = 4MiB

CREATE TABLE tickets (
id UUID PRIMARY KEY,
ticket_status STRING AS (settlement_payload->>'status') STORED,
settlement_payload JSONB,
acceptance_payload JSONB,
payout_payload JSONB,

FAMILY f1 (
id,
ticket_status,
settlement_payload

),
FAMILY f2 (

acceptance_payload,
payout_payload

)
)

id ticket_status settlement_payload payout_payload acceptance_payload

id ticket_status settlement_payload payout_payload acceptance_payload

UUID STRING JSONB JSONB JSONB

id ticket_status settlement_payload payout_payload acceptance_payload

UUID STRING JSONB JSONB JSONB

id ticket_status settlement_payload payout_payload acceptance_payload

UUID STRING JSONB JSONB JSONB

● While it is PSQL compatible syntax, avoid thinking of it as your
“typical” relational database (RDBMS)
○ At some point, JOIN(s) just do not scale – query can too

easily end up spawning the whole cluster
○ Thinking of it as infinitely scalable KV store from the start will

help you better denormalize the data which will better scale
in the long run

○ While some queries will be slower due to nature of
distributed database, with properly designed schemas, you
gain the benefit of linearly scaling out performance by just
adding more nodes

Tips

Tips (pt. 2)
● Secondary indexes can be even more performant if they need to

retrieve a small amount of data
○ By using STORED indexes it is possible to inline the fields in

the index itself, avoiding the primary index lookup
● Denormalizing data and using JSONB

○ It is a tradeoff between ease of extracting more fields by just
adding computed columns and overhead of processing
JSON on each write

○ When storing larger payloads, consider the write patterns –
you can gain significant performance benefits by leveraging
column families

● Read the documentation
○ Seriously, it is probably one of the best documentations for

databases out there
● There is no magic, so familiarize yourself with the core concepts

○ CockroachDB is MVCC, this means that data is not deleted
from database immediately – rather it depends on
gc.ttlseconds (default 4h), or on backup execution

○ Read about how Cockroach stores the data and uses LSM
trees, which will make it clear why some writes get
expensive

● DB Console is your best friend

Tips (pt. 3)

Optimizations &
Migration to Cloud

● Unfamiliar With CRDB
○ Had experience with SQL Databases
○ CRDB is PostgreSQL wire compatible

● How to configure CRDB?
○ Dashboard
○ Documentation

● Easy transition
○ Makes it possible to scale the team

Taking Over The CRDB Project

● Distributed Database
○ Resilient
○ Started out small
○ Cluster grew with demand both in node size and count

● Smallest Cluster
○ 3 nodes (4 vCPU each -> 12 vCPU total)

● Biggest Cluster
○ 24 nodes (16 vCPU each -> 384 vCPU total)

Scaling

● What Instance Type should we choose?
○ CRDB Benchmarking

● There is no static CPU policy (CPU pinning) on our AWS clusters
○ Dramatic performance difference compared to on-prem

● How to migrate the data?
○ Leveraging Kafka
○ Leveraging CRDB Performance

Migration to AWS

● Main source of truth is the CRDB database
● Actions/Changes are propagated through Kafka Topics

● Options for Cluster Migration:
○ Backup & Restore
○ CRDB Physical Cluster Replication
○ Custom Solution

Migration to AWS

Pros:

● Easy to do
● No Logic required
● Would have all the data

Backup & Restore

Cons:

● Long Downtime
○ Turn off system
○ Make backup
○ Transfer data
○ Restore
○ Switch system

● Big Bang Release
● Actions are not transferred
● Reverting would be tricky

Pros:

● Would have all the data
● Continuous process

CRDB Physical Cluster Replication

Cons:

● Downtime
● Actions are not transferred
● Stable connection to AWS

Pros:

● No downtime
● Partial rollouts
● Action history would be

copied over
● Rollback would be easy

Custom Solution

Cons:

● Additional logic required
● Stable Internet connection

AWS

ON PREM

TICKETS ControllerAcceptance Topic Tickets Topic

CRDB

TICKETS ControllerAcceptance Topic Tickets Topic

CRDB

Input Output

AWS

ON PREM

TICKETS ControllerAcceptance Topic Tickets Topic

CRDB

TICKETS ControllerAcceptance Topic Import Tickets
Topic

CRDB

Input Output

AWS

ON PREM

TICKETS ControllerAcceptance Topic Tickets Topic

CRDB

TICKETS ControllerAcceptance Topic Tickets Topic

CRDB

Input Output

AWS

ON PREM

TICKETS ControllerAcceptance Topic Tickets Topic

CRDB

TICKETS ControllerAcceptance Topic Tickets Topic

CRDB

Input Output

AWS

ON PREM

TICKETS ControllerAcceptance Topic Tickets Topic

CRDB

TICKETS ControllerAcceptance Topic Tickets Topic

CRDB

Input Output

AWS

ON PREM

TICKETS ControllerAcceptance Topic Tickets Topic

CRDB

TICKETS ControllerAcceptance Topic Tickets Topic

CRDB

Input Output

Schema optimisation

CREATE TABLE tickets (
-- Computed fields
id UUID PRIMARY KEY AS ((payload->>'id')::UUID) STORED,
code STRING NOT NULL AS (payload->>'code') STORED,
customer_id STRING AS (payload->>'customer'->>'id') STORED,
customer_external_id INT AS ((payload->>'customer'->>'externalId')::INT) STORED,
accept_time TIMESTAMP NOT NULL AS (parse_timestamp (payload->>'acceptTime')) STORED,
modify_time TIMESTAMP NOT NULL AS (parse_timestamp (payload->>'modifyTime')) STORED,
event_type STRING AS (payload->>'eventType') STORED,
market_type STRING AS (payload->>'marketType') STORED,
ticket_status STRING AS (payload->>'status') STORED,
selection_count_type STRING AS (payload->>'selectionCountType') STORED,

-- One big JSON payload is source of truth
payload JSONB NOT NULL

);

CREATE TABLE tickets (
id UUID PRIMARY KEY,
modify_time TIMESTAMP NOT NULL,
priority STRING NOT NULL,

-- Manually extracted fields used for indexes and filtering
code STRING NOT NULL,
customer_external_id STRING,
customer_id STRING,
...
-- Binary fields to store Protobuf, faster serialization/deserialization and compact
acceptance_payload BYTES,
settlement_payload BYTES,
selections_payload BYTES,
payout_payload BYTES,

-- Column families to reduce amount of whole row updates
FAMILY main(id, modify_time, priority, ..., branch),
FAMILY acceptance(acceptance_payload),
FAMILY settlement(settlement_payload),
FAMILY selections(selections_payload),
FAMILY payout(payout_payload)

);

Before

After

● Multitenancy
○ Improved resource utilization
○ Faster time to new markets
○ Faster feature development

What is next?

Questions?

