International Test Conference 2022

Industry Evaluation of Reversible Scan Chain Diagnosis

Soumya Mittal¹, Szczepan Urban², Kun Young Chung¹, Jakub Janicki², Wu-Tung Cheng³, Martin Parley¹, Manish Sharma³, Shaun Nicholson¹ ¹Qualcomm Technologies, Inc., San Diego, CA, USA ²Siemens EDA, Poznań, Poland ³Siemens EDA, Wilsonville, OR, USA

Outline

- Scan Chain Diagnosis: Motivation and Background
- Reversible Scan Chain: Architecture, Operation
- Reversible Scan Chain: Diagnosis
- Silicon Evaluation
- Failure Analysis
- Conclusion

Scan Chain Diagnosis Introduction

Scan Chain Diagnosis: Motivation

- Every new process node brings
 - Increasing chip density and complexity
 - Creative transistor structures
 - New design and manufacturing challenges
 - Unfamiliar defect behaviors
- Need to continuously improve scan diagnosis
- Chain fail rate typically higher in node qualification/test chips and NPI
- Chain diagnosis crucial for rapid yield learning

- FA and time-to-yield challenges
- Diminishing time-tomarket requirements

Scan Chain Diagnosis: Background

Conventional scan chain diagnosis uses

- Flush (chain) patterns to identify the defective chain and behavior
- Capture (scan) patterns to identify the defective scan cell

Reversible Scan Chain Architecture and Operation

Reversible Scan Chain Architecture

- Conventional scan chain shifts data in a single direction
- Reversible scan chain shifts data in two directions
- Each scan cell can receive shift values from its left or right neighbor
- Shift direction is controlled by a control pin (DIR)

Left to Right (L2R) shift operation - DIR pin is asserted (DIR = 1)

Right to Left (R2L) shift operation - DIR pin is de-asserted (DIR = 0)

Right to Left (R2L) shift operation - DIR pin is de-asserted (DIR = 0)

Right to Left (R2L) shift operation - DIR pin is de-asserted (DIR = 0)

Right to Left (R2L) shift operation - DIR pin is de-asserted (DIR = 0)

Right to Left (R2L) shift operation - DIR pin is de-asserted (DIR = 0)

Right to Left (R2L) shift operation - DIR pin is de-asserted (DIR = 0)

Reversible Scan Chain Diagnosis

Reversible Scan Chain Diagnosis

- Conventional scan chain diagnosis Both flush and capture patterns needed
- Reversible scan chain diagnosis Only flush patterns needed

Example 1: Stuck-at 0 fault in cell position 2

- 1. Load pattern from L2R: 111111
- 2. Unload pattern from R2L: 111000
- Load pattern from R2L: 111111
 Unload pattern from L2R: 000011

Reversible Scan Chain Diagnosis

- Conventional scan chain diagnosis Both flush and capture patterns needed
- Reversible scan chain diagnosis Only flush patterns needed

Example 2: Stuck-at 0 faults in cell positions 1 and 2

- 1. Load pattern from L2R: 111111
- 2. Unload pattern from R2L: 111000
- Load pattern from R2L: 111111
 Unload pattern from L2R: 000001

Reversible Scan Chain Diagnosis

Dual-lane failure

- Patterns in both the directions fail
- Suspects: Direction mux, flop input and output

Left-to-right single-lane failure:

- Pattern in the forward direction fails
- Suspects: Direction mux and its A0 input

<u>Right-to-left single-lane failure:</u>

- Pattern in the reverse direction fails
- Suspects: Direction mux and its A1 input

Silicon Evaluation

Silicon Evaluation

Design overhead is 10-15% in terms of area and wirelength

Analysis of >1000 fails from multiple wafers of a test chip in a cutting-edge node:

1.5X

Failure Detection

More fails expected due to reverse path fails

4X

Diagnosis Runtime

Faster diagnosis because flush patterns are only used

Accurate

Failure Analysis

Confirmed diagnosis accuracy with FA

6X

Ideal Diagnostics

4X

Logic Resolution

2X

Physical Area

Single-lane vs. dual lane differentiation increases number of single-suspect diagnostics, and reduces diagnostics noise and FA search space. Ideal multiple-defect diagnostics count improved 7X.

Failure Analysis

Case 1: Better Resolution (Dual-lane)

	Suspect cell	Laser Voltage Imaging (LVI)
Conventional	2.1-4.1	Discontinuity on the CLK signal path going to cell 4. CLK
Reversible	3.1-4.1	failure causes Q output of bit 4 to be stuck.

LVI confirms dual-lane defect in cell 4.

PFA: Defect found in transistor inside cell 4.

Conclusion: Reversible has better resolution & is accurate

Case 2: Better Resolution (Single-lane)

	Suspect cell	Laser Voltage Imaging (LVI)
Conventional	77.1 – 79.1	Data present up to 78.2, missing at 78.1 and 78
Reversible	78.1 – 79.1	R2L vector passing. Data present at 78.1 and 78

LVI confirms L2R single-lane defect between 78.2 and 78.1

PFA: Defect found in transistor connected to 78.1 input

Conclusion: Reversible has better resolution & is accurate

Case 3: Reversible Chain-only Fail (Single-lane)

	Suspect cell	Laser Voltage Imaging (LVI)
Conventional	_	L2R vector passing. Data present at position 37
Reversible	37	Discontinuity on mux_314 connected to Q2

LVI confirms R2L single-lane defect at mux_314 input connected to Q2

Conclusion: Reversible is accurate

Conclusion

- Reversible chain is a novel architecture that shifts data in two directions
- Chain and pattern bidirectionality enhances diagnosis
- Silicon evaluation shows 4X less runtime, 6X more perfect diagnoses, and
 2X smaller search space for FA
- Optical and physical FA confirms diagnosis accuracy
- Future work is to find the right tradeoff between design cost, diagnostics quality and FA resources

Thank You

Soumya Mittal Qualcomm Technologies, Inc. <u>soumya.mittal@qti.qualcomm.com</u>

Szczepan Urban Siemens EDA Szczepan Urban@mentor.com