

Maintaining quality of results with shift-left for DFT

ITC2023

SIEMENS

Restricted | © Siemens 2023 | Siemens Digital Industries Software

What is "Shift-left" for DFT?

DFT industry has changed

DFT was once implemented on gate-level designs

- Required multiple synthesis steps for the design and added DFT logic, increasing turn-around time
- Optimization was performed separately to fully integrate the design and DFT logic
- ATPG is only possible after a fully synthesized design is available

Design sizes grew and these steps took increasing amounts of time and iterations

Design growth and time-to-market (TTM) pressures led to shift-left methodologies

While content and iterations have grown, industry has condensed time-to-market requirements

DFT, and the design process in general, has gradually shifted from this:

Industry challenged to fully shift-left

To be complete, shift-left for DFT must encompass remaining gate-level tasks

- X-bounding logic, wrapper cells, and test points
- Scan stitching requires a netlist and remains a gate-level task

RTL insertion of DFT logic allows synthesis to optimize results, improving timing and area estimates

RTL challenges and solutions for DFT

RTL DFT needs

RTL Testability Analysis	 RTL complexity analysis RTL design rules checking / DFT Lint Test point, wrapper cell, and x-bounding analysis Test coverage & pattern count estimation
RTL Design Editing	 Design-for-Test logic insertion MBIST, EDT, SSN, LBIST, OCC, IJTAG Test points, wrapper cells, x-bounding Structured / scripted design editing & testability fixing Maintain look and feel of original RTL
RTL DFT Verification	 DFT simulation and verification IJTAG, LBIST, & SSN continuity checking MBIST operation set (opset) verification

Benefits of using Tessent Shell for shift-left flows

All Tessent DFT products use the same platform for logic Insertion

• Information is exchanged between tools using Tessent Shell DataBase (TSDB)

Same commands used throughout the tools

Tcl-based environment supports highly-scripted environments

Catch testability issues early while inserting DFT logic

RTL DRCs are run automatically based on logic being inserted

All Tessent DFT logic may be created as RTL, except scan

• E.g. Tessent TestKompress, Tessent MemoryBIST, Tessent LogicBIST, etc.

Inserting Tessent DFT logic at RTL

RTL test points with Tessent RTL Pro

New context for RTL test points

set_context dft -test_points -rtl

Follows the same, general Tessent logic insertion flow

New RTL suitability and complexity reporting

• report_rtl_complexity

Test point analysis based on quick-synthesis view; locations mapped to RTL

- Read the design RTL
- DRC & quick synthesis
- Test point analysis, mapping, and insertion
- Write the modified design RTL

RTL complexity and test point suitability

New functionality developed for complexity and suitability reporting of RTL circuits

- Analysis of RTL to gauge complexity of RTL structures
- Analysis of RTL design suitability for test points

Complexity analysis and reporting

- Feed information about the circuit back to RTL designers about complexity of the RTL
- Hierarchical analysis and reporting of structures such as control logic, functional blocks, constant and floating pins

RTL test point suitability

- Fast, structural analysis to gauge design suitability for insertion of RTL test points
- Optional, high-effort analysis based on test point analysis output, measured against editable nodes of the design

RTL complexity and test point suitability

Design knowledge: RTL complexity score

- Detailed understanding about the structure of the design RTL
- Additional details about design & library profiling helps better understand RTL structures

Quality of results: test point suitability score

• Design analysis to determine if RTL structures are suitable for RTL test point insertion

	: Low RTL complexity					
Overall Test Point Suitability	: High					
Overall design profile RTL modules Structural modules Black boxes modules Total design instances High expression depth Medium expression depth Low expression depth	: 433 (95.37%) : 5 (1.10%) : 16 (3.52%) : 6270 : Instances=12.17%, Area=52.32% : Instances=3.85%, Area=10.93% : Instances=83.98%, Area=36.75%					

RTL test point results versus gate-level with TestKompress ATPG

			Base	line	Gate-level test points			RTL test points			
Design ID	Design gates	Scan cells	Test Coverage	Patten Count	Test Points	P.C. @ Base	P.C. Redux	RTL TP Suitability	Test Points	P.C. @ Base	P.C. Redux
D1	1.12M	44k	93.1	8387	943	3071	63.4	High	942	4799	43
D2	3.4M	150k	94.9	2579	3031	704	72.7	High	2969	960	63
D3	0.57M	22k	96	18560	439	8743	53	Medium	439	8932	52
D4	5.3M	255k	97.32	10291	5088	4717	54	High	5064	6130	40.5
D5	1.2M	43k	99.26	18526	861	11102	40	High	861	11006	40.6
D6	10M	440k	93.7	29256	3777	23618	19.3	High	1305	13169	55
D7	3.7M	208k	98.27	10125	4299	7194	29	High	4291	7923	22
D8	1.74M	119k	95.49	14217	2386	5788	59.3	High	2386	8516	40
D9	3.4M	103k	96.66	63381	2099	38133	40	High	2099	43317	32
D10	9.36M	458k	98.61	8226	9774	5808	29.4	Medium	7322	6463	22
D11	10.6M	739k	99.08	14238	14822	9787	31.3	High	14849	9970	30
D12	4M	222k	99.32	16584	4497	10005	39.7	High	4343	9395	43.35

Summary

Shift-level methodologies are driving DFT implementation earlier in the design process

Tessent DFT logic creation and insertion is possible for all DFT except scan chains at RTL

• Tessent reads RTL and writes RTL, preserving the look and feel for easier debug

Tessent provides quality metrics to determine whether design RTL is suitable for RTL test points

Allows designers to make informed choices & understand if downstream results don't match expectations

