Tessent Streaming Scan Network Implementation for Renesas Heterogeneous Multi-Core SoC

OCT 10, 2023
Hiroyuki Iwata

DFT Platform Technology Section
Digital Design Technology Department
RENESSAS ELECTRONICS CORPORATION
About Renesas Electronics Corporation

Our mission is to develop a safer, healthier, greener, and smarter world by providing intelligence to our four focus growth segments: Automotive, Industrial, Infrastructure, and IoT that are all vital to our daily lives, meaning our products and solutions are embedded everywhere.

Automotive
Highly reliable vehicle control, safe and secure autonomous driving, Eco-friendly electric vehicles

Industrial
Lean, flexible and smart industry

Infrastructure
Robust infrastructure, enabling safety and efficiency

IoT
Comfortable, safe and healthy lifestyles through IoT
Outline

1. Challenges of DFT for Heterogeneous SoC
2. SSN Implementation method for Heterogeneous SoC
3. Conclusion
Market Trend of Test time

- Increasing test time with increasing circuit size
 - Exponential increase
 - Several dozen times in 15 years
 - Nearly tripled in the last 4 years

- We need to reduce test time and test data volume, without compromising test quality

2019 Heterogeneous Integration Roadmap prediction of test time growth
Legacy Hierarchical DFT Method

- Design Specification of Renesas Previous generation SoC
 - 50+ hierarchical DFT Cores
 - About 210 scan I/O pins (input 160/ output 50)
 - Pin-mux structure is used
 - Low power process
 - Test frequency 66 MHz

Pin-Mux Design

Test Time Optimization of Pin-MUX design

Manual optimization of the configuration is too hard
Latest Renesas SOC Design Specification

- **Design Specification**
 - More than 200 hierarchical DFT Cores
 - 200+ scan IO pins (distributed around the chip)
 - Low power process
 - Need to speed up test frequency (target 2x) for test time reduction

- **What is suitable DFT method for this design?**
 - Pin-Mux is no longer applicable

 ⇒ **Tessent Streaming Scan Network (SSN)**

 Streaming Scan Host (SSH) automatically allocates the bandwidth optimized for each core
 ⇒ The iterative implementation is unnecessary
Challenges of SSN Implementation

- **SSN data bus configuration**
 - Multiple SSN data bus: less burden on layout
 - Single SSN data bus: more effective to test time
 ⇒ Implemented the latter, prioritizing test time

- **Challenges on implementing single SSN data bus for the effective test time reduction**
 1. Reducing clock skew at IO boundary for faster clock
 2. Wiring from IO to configure large bit-width
 3. Guaranteeing timing between asynchronous modules (E.g. located at the different power domains)

![Diagram showing SSN data bus configurations with multiple and single paths]
Challenge 1: Reducing clock skew at IO boundary for faster clock

- More than one SSN clock is assigned in accordance with the placement of PAD logic
- The clock skew between internal and external clocks is tolerated with SSN FIFO

⇒ The 2x faster clock is expected to be applied by this structure
Challenge 2: Wiring from IO to configure large bit-width

- Convergence and branch structure allows the large SSN bit-width by exhausting available IOs
 - The SSN data paths are bundled into one from each PAD logic for input
 - After passing through all the SSH, the data paths are distributed to each output PAD logic for output

PAD logic location and datapath connection

Schematic diagram

PFF: SSN Pipeline FF
Challenge 3: Guaranteeing timing between the asynchronous modules

- Bus Frequency Divider (BFD) and Bus Frequency multiplier (BFM) are placed between asynchronous modules, e.g. different Power Domains

⇒ The data rate is guaranteed between asynchronous modules
Conclusion

- **Renesas guarantees high quality testing without compromising test patterns**
 - Tessent SSN is a practical solution for reducing test time and test volume
 - It can support the complex SoC by utilizing the mechanism that achieves the high-speed operation and facilitates the timing closure
 - 2x faster test clock frequency is expected to be achieved in our design

- **Expectations for Siemens EDA**
 - Advanced automation of SSN Implementation
 - E.g. automated connection order between cores by leveraging the layout information and the power specification (DEF, UPF/CPF)
 - Comprehensive solution to reduce design work, chip area and test costs through consistent Tessent design flow with shift-left initiatives