
In Part 1, we reviewed the process of designing a mod-
ern hardware emulation platform. Here, we’ll look at
the skills and training that are necessary to become a

simulation expert and an emulation expert. A good start-
ing point is to briefly review differences between a simu-
lator and an emulator.

Simulators
As the electronic design approach evolved over time,

and in turn drove design engineers’ creativity up the
abstraction hierarchy, the industry invented simulators

Test & Measurement

How to Become an RTL Simulation
Expert vs. Hardware Emulation Expert
Part 2 of this two-part series on designing and using a modern hardware emulation
platform highlights how to become an expert in using a modern hardware emulator
vis-à-vis a hardware-description-language (HDL) simulator.

By Lauro Rizzatti

targeting a range of design-under-test (DUT) design de-
scriptions at different hierarchical levels. At the bottom
sits the analog simulator that mimics accurately the elec-
trical behavior of transistors in the DUT.

All simulators above analog are digital. They process
the DUT at increasingly higher abstraction levels than
transistor analog voltages and current, from gate level to
register transfer level (RTL) to higher levels represent-
ed by languages such as C/C++/SystemC and System-
Verilog. Figure 1 maps the simulator hierarchy and the
abstraction levels at which they operate.

All simulators, regardless of the type, consist of a complex
software algorithm executed on a workstation or PC. Of all
the types of simulators, the RTL simulator is the most popu-
lar and, indeed, the premiere tool for functional verification.

From a user perspective, the deployment of an RTL
simulator proceeds in two stages. First, a compilation
process converts the DUT from a source-level description
into a binary database. Second, the simulator reads and
evaluates that database to produce a response to a given
stimulus. The compilation process is virtually automatic
and doesn’t require user engagement.

Stimulus creation is a topic that could be discussed
on its own. It should be noted that simulators don’t have
the processing power to execute and validate embedded
software. Their deployment is confined to verifying the
design hardware.

A popular approach to stimulus generation today is
based on the universal verification methodology (UVM).
While knowledge of a simulator is a requirement to learn
UVM, a verification engineer can learn how to use a sim-
ulator without any knowledge of UVM. To avoid learning
a tool and a methodology at the same time, the novice
user should focus on the tool first and create some basic
stimulus manually.

Differences among commercial simulator implementations
involve the graphical user interface (GUI), including wave-
form display and analysis, stimulus creation, the breadth of
supported features and debug capabilities, and speed of exe-
cution. Occasionally, differences in the simulation algorithms
may lead to discrepancies in the quality of results.

Emulators
A rather different landscape meets the observer of a

hardware emulation engine. Part 1 described the inner

Test Measurement

workings of a modern emulator. To recap, a hardware
emulation system sits on four technological pillars—the
hardware, the compiler, the run-time and DUT debug
environment, and supporting verification intellectual
properties (VIP). If the emulator is using a custom-made
reprogrammable device, the pillars become five.

Four or five columns encompass a hardware compo-
nent, similar to a supercomputer, and an intricate design
compilation process that maps the DUT into the emula-
tor. A cutting-edge run-time operating system allows the
user to carry out verification and debugging of the DUT.
A library of VIP consisting of models of the DUT I/O in-
terfaces makes it possible to monitor and control several
characteristics of the traffic flowing through them.

Technological differences between simulators and em-
ulators aren’t insignificant. From a user perspective, an
emulator is a more complex tool than a simulator to learn
and deploy since the user must master four technological
domains.

An emulator can be used in two modes: in-circuit emu-
lation (ICE) or virtual. The ICE mode requires hardware
knowledge while the virtual mode requires familiarity
with C/C++ and SystemVerilog programming. Develop-
ing expertise in either mode needs months of practice.

An advantage of the ICE mode is that the DUT gets
tested with real-world traffic, as opposed to synthetic
stimulus created in virtual mode. An advantage of virtual
mode is that synthetic traffic provides more direct control
to traverse corners of test state space and reach coverage
closure more efficiently.

The most popular approach to generate a stimulus de-
scribes a testbench at a high level of abstraction––using
the SystemVerilog language, for instance––and connects
it to the DUT in the emulator via one or more direct
programming interface (DPI)-based peripheral interfac-
es. The approach prevents any slowdown in execution.
Such interfaces, called transactors, are made of a C- or
SystemVerilog-based front-end communicating with the
testbench and a bus-functional model (Emulator and
third-party vendors provide off-the-shelf libraries of
transactors and users can expand the library designing
their own custom transactors.

Modern emulators deployed in virtual mode don’t re-
quire knowledge of the underlying hardware. The virtu-
al mode shields the hardware from the user. Hardware
knowledge plays a role when the emulator is used in ICE
mode. The interface between the emulator and the real
world in ICE mode is a complex and tricky piece of hard-
ware susceptible to several undesirable physical effects
and exposed to hardware dependencies.

The virtual mode also expands the use of emulation to

1. The simulation hierarchy starts at the transistor level with an
analog simulator. Digital simulators are used at the next level of
design and above. (Source: Lauro Rizzatti)

timeline to becoming a simulation
expert.

Requirements to Become an
Emulation Expert

The path to become an emulator
expert is longer and more ardu-
ous. As with simulation, the basic
requirement involves possessing a
solid knowledge of hardware de-
sign. The starting point is learning
to compile a design for emulation
by training with an instructor.

As mentioned earlier, different
emulator architectures impact the

compilation process, among other use aspects. Some ar-
chitectures ease the DUT compilation since they allow
for an automatic or almost automatic approach. Yet, all
emulators require a degree of knowledge that can best be
acquired via a training class with a qualified instructor. To
reach a level of proficiency to successfully compile the
DUT means an investment in time––from several weeks
to several months depending on the emulator architecture
and the DUT complexity.

In general, DUT compilation can benefit from emu-
lator hardware knowledge. This is especially true of a
field-programmable gate-array (FPGA)-based emulator.
Partitioning, placing, and routing a design of more than
one billion gates on an array of commercial FPGAs isn’t
trivial. Understanding the hardware configuration may
help navigate through the gate netlist place-and-route.

As mentioned earlier, an emulator can be used in either
ICE or virtual mode. Gaining expertise in either mode
requires several months of training and practice.

While ICE mode doesn’t require stimulus creation
since the DUT is tested with real traffic, virtual mode de-
mands the complex task of creating a testbench. One ven-
dor offers VirtuaLAB, which includes a complete set of
software that generates and monitors application-specific
traffic to/from the DUT. VirtuaLAB connects to the DUT
via a transaction-based interface and can be deployed as
plug & play.

DUT debugging is another area that requires compre-

carry out verification tasks well beyond hardware debug-
ging, which is the realm of the RTL simulator.

Not all commercial emulators are created equal, which
complicates the comparison between simulators and em-
ulators. As described in Part 1, three vendors control the
market, each using a distinctive hardware architecture
that contributes to their specifications (see table).

With this in mind, let’s review requirements to become
an expert in each of the two verification engines.

Requirements to Become an RTL
Simulation Expert

The road to becoming a simulator expert is rather
straightforward. The basic requirement is to have a solid
knowledge of hardware design and be able to navigate a
design spec, making sense of its functionality.

First, access to a simulator online following a well-or-
ganized tutorial ought to provide the novice user a basic
understanding of the GUI, simulator commands, and its
main features. The tutorial should train the apprentice to
debug a design using the whole set of the simulator debug
capabilities. Quick access to User and Reference Guides
must be part of the training session.

During the tutorial, the DUT size may be limited to be-
tween 1,000 and 10,000 gates or so. Larger designs may
slow down the speed of execution, distracting the novice.

Compiling the design isn’t difficult. No design prepara-
tion is required, and the process is fully automatic. As for
stimulus creation, a simple and fast approach is to create
directed testbenches for simplicity.

The duration of a basic online tutorial may be approx-
imately one week, long enough to teach an engineer to
use a modern simulator even without live support. Once
the user acquires the basic knowledge, his or her attention
can be directed to learn the UVM methodology and, in
parallel, continue to use the simulator. Figure 2 maps the

Test Measurement

The table compares the main characteristics of architectures used in the three currently
available commercial emulators. (Source: Lauro Rizzatti)

2. The timeline to become a simulation expert ranges from four
to eight weeks. (Source: Lauro Rizzatti)

Figure 3 maps the timeline to
become an emulation expert.

Conclusion
Hardware emulation is a man-

datory design-verification tool
today as RTL simulation was
in the past. The deployment of
a simulator, specifically an RTL
simulator, requires knowledge

in a single technological domain. To become an expert
in RTL simulation, the novice verification engineer must
invest several months of training. From there, graduation
with a black belt will be achieved by building experience
tackling larger and more challenging designs.

Deployment of an emulator requires knowledge in four
distinctive technological domains. To become an expert
in emulation takes at least four times longer than master-
ing an RTL simulator and, in the process, demands more
concentration and intellect.

Dr. Lauro Rizzatti is a verification consultant and in-
dustry expert on hardware emulation. Previously, Dr. Riz-
zatti held positions in management, product marketing,
technical marketing and engineering.

hensive training.
A simulator allows for a high degree of interactivity, in-

cluding 100% design visibility and controllability, though
execution slows as more of them are used. Conversely,
an emulator may not offer the same level of interactivity
because visibility and controllability vary depending on
the architecture of the emulator. Emulators built on cus-
tom architectures achieve the highest level of visibility
with the lowest speed degradation. Emulators designed
on commercial FPGAs trade visibility for speed of exe-
cution.

The novice engineer must learn the emulator architec-
ture and its limitations, and then adapt to inherent lim-
itations. All take time to reach a level of confidence to
debug a DUT.

Test Measurement

2140101

Posted with permission from the February 10, 2020 issue of Electronic Design ® Copyright 2020. Endeavor Business Media, LLC. All rights reserved.
For more information on the use of this content, contact Wright’s Media at 877-652-5295.

3. The timeline to become an emulation expert takes approximately seven to 12 months.
(Source: Lauro Rizzatti)

