

Transitioning eMRAM from Pilot Project to Volume Production

2023 International Test Conference

Purpose

- Supporting eMRAM technology in a high-volume production environment requires:
 - automation to optimize the DFT implementation
 - integrated ECC and repair capabilities to improve yield and durability

- Introduction to MRAM, industry landscape
- MRAM testing challenges
 - ECC-aware Test and Repair technology
 - Automated Read self-trimming
- Summary and Conclusion

- Introduction to MRAM, industry landscape
- MRAM testing challenges
 - ECC-aware Test and Repair technology
 - Automated Read self-trimming
- Summary and Conclusion

What is (STT-) MRAM?

CMOS-friendly, fast, dense and low mask adder non-volatile memory

- MRAM stands for <u>Magneto-resistive</u> <u>RAM</u> Magnetic polarization sets the memory state
- STT stands for <u>Spin Transfer Torque</u> Electron spin is used to switch magnetic polarization
- 1T-1MTJ bitcell

Allows dense configuration and scalability MTJ in metal stack enables low mask count add

Memory element Perpendicular Magnetic Tunnel Junction (pMTJ)

Current industry landscape

Wearables, fusion processors & microcontrollers, AI/ML acceleration

Ambiq Apollo 4 SoCs

2MB 22nm MRAM Arm® Cortex®-M4F core

Alif Semiconductor Ensemble™ Family Up to 5.5MB MRAM Arm® Cortex®-M55, A32 Arm Ethos™-U55 microNPUs for AI/ML acceleration

Sony Semiconductor Solutions GPS/GNSS receiver/processor chips 2MB 28nm MRAM

Built-in SONY CXD5605 low-power chip, support GPS, Beidou, qzss global satellite positioning system, with intelligent mileage optimization algorithm, more accurately improve the motion trajectory and mileage accuracy, and record motion data more accurately

GPS

SONY low consumption chip qZss positioning Beidou

Arm and Siemens EDA MRAM collaboration

- Arm collaborated with Siemens EDA to develop an automated solution for handing embedded MRAM technology
 - Goal is to help bring a new industry standard testing solution to market
- Arm provides an MRAM compiler IP for Samsung 28nm FDSOI technology
 - IP was used as the basis to validate the new automated MBIST technology

- Introduction to MRAM, industry landscape
- MRAM testing challenges
 - ECC-aware Test and Repair technology
 - Automated Read self-trimming
- Summary and Conclusion

Why Error-Correcting Codes (ECC) for MRAM

- Write operation is stochastic in nature, so in-field failures can occur
- Some bit cells are defective upon manufacturing, and ECC is a better option to "repair" them instead of using spare elements

Source: A Survey on STT-MRAM Testing: Failure Mechanisms, Fault Models, and Tests

 A typical scenario is to use two-bit error correction, where one ECC bit is used to repair single-bit fails during manufacturing, leaving at least one error correction capability for in-field correction

ECC-aware test and repair technology

SRAM test flow

MRAM test flow (leverages SRAM test flow)

ECC-aware test and repair technology Hardware architecture to support MRAM

How to avoid ECC test escapes

Standard MBIST: may miss multi-bit defects

Word defectivity	stuck0						stuck1		
1 error detected	0	0	0	0	0	0	0	0	0>
1 error detected	1	1	1	1	1	1	1	1	0>
1 error detected	0	1	0	1	0	1	0	1	0:
1 error detected	1	0	1	0	1	0	1	0	0

MBIST test algorithm data pattern

0x00, 0xFF, 0x55, 0xAA 0x00, **0xFF**, 0x55, 0xAA 0x00, 0xFF, **0x55**, 0xAA 0x00, 0xFF, 0x55, 0xAA

ECC-aware MBIST: detects multi-bit defects MBIST test algorithm data pattern Word defectivity stuck0 stuck1 **0x00**, 0xFF 0 0 0 0 0 0 0 Ω same 1 1 1 1 address 0x00, **0xFF**

Error accumulation is a key new feature to avoid ECC test escapes

ECC test escape mitigation with error accumulation

<u> </u>	Msgs									
* pat num	32'd27	27								
MRAM interface					K i P					
* CLK	1'h1									
* CEN	1'h0									
* GWEN	1'h1									
* SATRIM	6'd14	14			015		TUCK-at			
•• A	17'd768	769 768		76	7			766		
* D	79'h7fffffffffffffffffff	7ffffffffffffffff				,				
** Q	79'h7ffffffffffffffffffff	00000000 7ffffffffffffffffffff	000000000000000000000000000000000000000	0000010 7ff		7 00000	000000000000000000000000000000000000000	7fffffffffffffffffff	0000	0
spare rows allocation										
* Bank1_SROW1_ALLOC_REG	1'h0		h	it/ ic c	tuck		<u> </u>			
* Bank1_SROW0_ALLOC_REG	1'h0									
* Bank0_SROW1_ALLOC_REG	1'h0									
* Bank0_SROW0_ALLOC_REG	1'h1									
spare IO allocation				race 7	68					
* ALL SCOL0 ALLOC REG	1'h1		Auu							
BISR										
* ShiftReg	102'h1c000000	1c0000000000000000000000000000000000000	0000							
MBIST										
* BIST_RUN	1'h1									
* BIST_GO	1'h1									
* BIST_DONE	1'h0									
* REPAIR_STATUS	2'h1	<u>1 </u>	r accumula	tion acros	S					
* MultiBitError	1'h0		1) at addre	ss 768 lea	ds ~					
* BIST_ECC_ENABLE	1'h0	[1(0), 1								
* BIST_BIRA_EN	1'h1		to a multib	it error						
			Bit				Ronair invo	lvod in 1k	it	
				position Address		llt			Л	
			position				ECC repa	air mode		
Intentio	nai errol	rs injection	Bit3		Stuck	at 0	Row repair.	thanks	to	
			Bit/	768	Stuck	at 1	error accumu	lation		12
			DIL4		Sluck	ali		lation		

Overview of three main tests

MBIST pre/post-repair tests

r pat num	ECC-aware pre-repair 29	ECC-aware post-repair ³⁰ EC	C enabled post-repair
MRAM interface			
* CLK			
* CEN			
* GWEN			
* SATRIM	14		
** A			
"* D	07fffffffffff 0000007ffffffffff	.7fffffffffff	ffffff 000000 7fffffffffff 000000
** Q	0	. O	
spare rows allocation			
* Bank1_SROW1_ALLOC_REG			
* Bank1_SROW0_ALLOC_REG			
* Bank0_SROW1_ALLOC_REG			
* Bank0 SROW0 ALLOC REG	\frown One row repair allocation		
spare IO allocation			
* ALL SCOL0 ALLOC REG	\leftarrow One IO repair allocation	Repair solution stored in BISR	
BISR			
** ShiftReg	1c000000000000000000000000000000000000	010000000000000000000000000000000000000	
MBIST			
* BIST_RUN			
* BIST_GO			
* BIST_DONE			$\leq nass \leq$
* REPAIR_STATUS		ndle bit errors only	
◆ [1]	multibit_errors		
· [0]			
* MultiBitError			ECC onabled
* BIST_ECC_ENABLE			
* BIST_BIRA_EN			BIRA disabled ————————————————————————————————————

- Introduction to MRAM, industry landscape
- MRAM testing challenges
 - ECC-aware Test and Repair technology
 - Automated Read self-trimming
- Summary and Conclusion

MRAM testing challenges

Memory BIST solution to enable reference trimming

- Trimming is the process of determining a reference value, which decides if the read (electrical) value must be interpreted as a logical '0' or as a logical '1'
- For MRAM, whose storage elements are resistance-based, trimming is done to determine a specific reference resistance
- This reference value cannot be determined up-front with high confidence but must be learned, preferably on-chip by using fully autonomous circuitry for each memory and sense amplifier

Automated Read self-trimming test flow

- Introduction to MRAM, industry landscape
- MRAM testing challenges
 - ECC-aware Test and Repair technology
 - Automated Read self-trimming
- Summary and Conclusion

Summary and Conclusion

- We demonstrated the effectiveness of the automated ECC-aware test and repair technology
 - The same technology is applicable to all types of RAM
- The technology allows us to trade-off simple error correction using ECC versus using repair resources during manufacturing test
- Performing online/offline MBIST testing to detect errors before they become uncorrectable enables us to secure yield on our most advanced technology nodes