

OUTLINE

Company

Renesas Introduction

Background

BACKGROUND

Tessent | MemoryBIST Hard programmable

Tessent | MemoryBIST Soft programmable Algorithms

Solution

New function Soft Programmable Operation set

Evaluation&Results

EVALUATION for Soft operation set function

Summary

Conclusion

SOLUTION OFFERINGS

Our mission is to develop a safer, healthier, greener, and smarter world by providing intelligence to our four focus growth segments: Automotive, Industrial, Infrastructure, and IoT that are all vital to our daily lives, meaning our products and solutions are embedded everywhere.

Automotive

Industrial

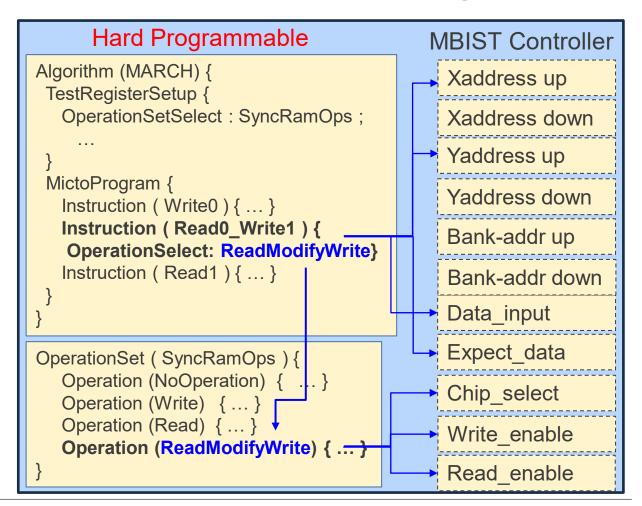
Infrastructure

IoT

Highly reliable vehicle control, safe and secure autonomous driving, Eco-friendly electric vehicles

Lean, flexible and smart industry

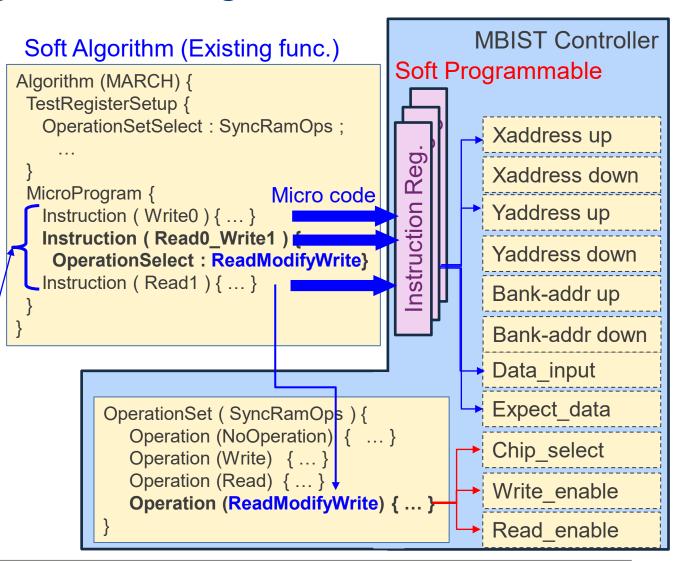
Robust infrastructure, enabling safety and efficiency Comfortable, safe and healthy lifestyles through IoT


BACKGROUND

- ◆ There are cases which new algorithm is required for quality unstable memory under new process and miniaturization.
- ◆ When new algorithm is required for a detected memory fail, it is not possible to add it as hard logic since the MBIST implementation has already been completed.
- ◆ Tessent | MemoryBIST has soft programmable algorithm function.
 But it didn't have a soft operation set function to control memory enable signals.
- In this time, Tessent: MemoryBIST provides complete soft programmable function.
 So, we evaluated this to determine product applicability.

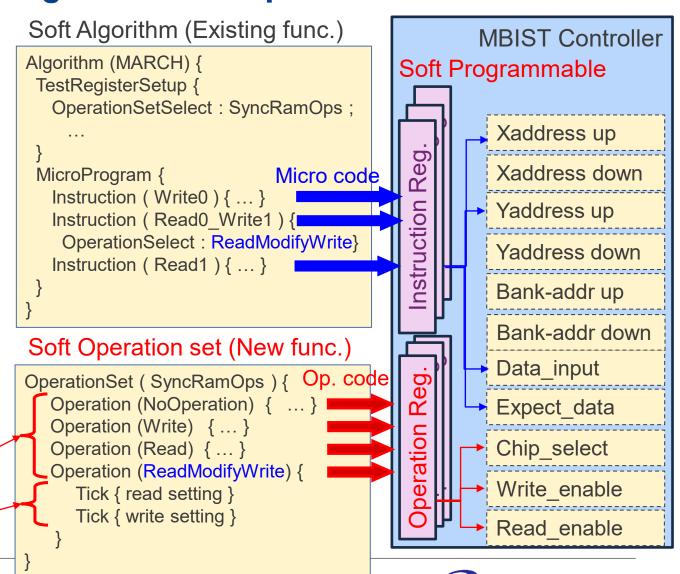
Tessent | MemoryBIST Hard Programmable

- ◆ Tessent | MemoryBIST has two methods as the implementation for MBIST algorithms.
 - Hard programmable
 - Soft programable (Next page.)


- Hard programmable
- ✓ Main use : mass production test
- ✓ Implement the algorithms as hard logic.
 - √ For Mass production pattern
 - ✓ For using memory fail analysis in past

Tessent | MemoryBIST Soft Programmable Algorithms

- Soft Programable Algorithm (Existing func. □
 - ✓ Main use : Memory Fail analysis
 - ✓ Can add new algorithm after implementation
 - ✓ However, the algorithms with OperationSet implemented as Hard logic.
 - → Cannot add new enable control pattern which isn't defined in OperationSet.
 - ✓ Must prepare instruction reg. for using soft algorithm
 - Specify with "soft_instruction_count" parameter
 - Renesas strategy : prepare it for three instructions



SOLUTION: New function Soft Programmable Operation set

Page 7

Want to test memory / fail analysis greater flexibility in post-silicon.

- Soft Programmable Operation set (New func.)
 - ✓ Main use : Memory Fail analysis
 - ✓ Can add new algorithm including operation set after implementation
 - ✓ Must prepare operation reg. for using soft algorithm
 - ✓ Specify the following parameters
 - "soft_operation_count" parameter
 - "soft_operation_length" parameter

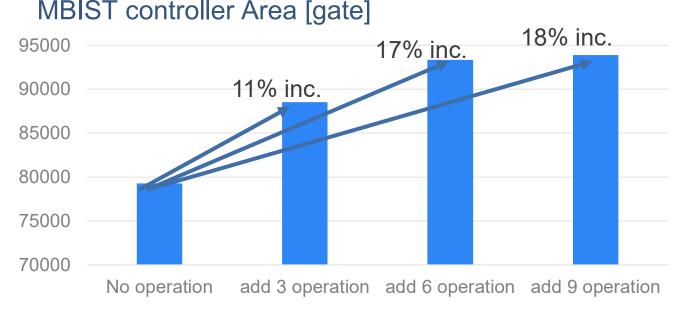
EVALUATION for Soft Programable operation set function

For greater flexible memory test / fail analysis in post-silicon.

New Soft Programmable Operation set function need to add the registers for storing micro codes.

Therefore, it becomes a trade-off between quality (algorithm flexibility) and MBIST area.

- ◆ Evaluate the MBIST area impact for applying Soft Programmable Operation set.
 - Assume that the allowable area increase range is 10%

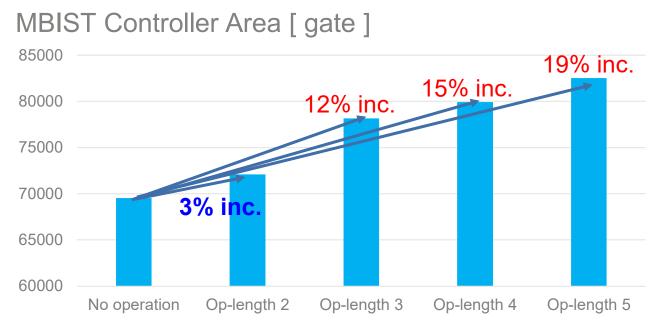

(Although the actual conditions depend on the product specifications.)

EVALUATION & RESULT (1)

- ✓ Check an area increase rate when changing the number of "soft_operation_count"
 - "soft_operation_count" parameter : 3 → 6 → 9
 - **→** By preparing more operations, the setting of enable signals can be made flexibly.
 - Target 1 controller of ASIC product: with 16 Mem-IF (including {Max 1024word x 16bit})

soft_operation_count	Area [0.63/gate]
No use	79,292 [gate]
3 operation	88,540 [gate]
6 operation	93,356 [gate]
9 operation	93,895 [gate]

(soft_instruction_count = 13) (soft_operation_length = 2)


→ The impact on MBIST area becomes heavy, over 10%, when setting 3 operations or more.

EVALUATION & RESULT (2)

- ✓ Check an area increase rate when changing the number of "soft_operation_length".
 - "soft_operation_length" parameter : 2 → 3 → 4 → 5
 - → By preparing more length, Allows more operations for one address.
 - Target 1 controller of ASIC product: with 16 Mem-IF (including {Max 1024word x 16bit})

soft_operation_lengt h	Area [0.63/gate]
No use	69,532 [gate]
Operation length 2	72,103 [gate]
Operation length 3	78,171 [gate]
Operation length 4	79,917 [gate]
Operation length 5	82,511 [gate]

(soft_instruction_count = 3) (soft_operation_count = 3)

→ The impact on MBIST area becomes heavy, when setting 3 length or more per 1 operation.

CONCLUSION

- Evaluation result :
 - Based on 10% area increase, can apply the soft operation set with the following setting.
 - ✓ The number of operation is 3 and the number of operation length is 2.
 - → We can use this function as follows under the above setting.
 - Can test with more flexible enable control.
 - Complex algorithms that use many operations become trade-off with area increase.
 - → If the product specifications allow for a MBIST area increase, we consider to implement soft programmable under the following purpose.
 - ✓ Aiming for 100% cause identification in failure analysis.
- **♦** Expectation for Siemens EDA
 - Reduce an area for soft programmable, especially for operation length.

Renesas.com

