
ITC 2023 PO.42: RTL DFT Analysis and Insertion of Test Points at RTL

Oussama Laouamri Jeff Mayer Nilanjan Mukherjee

Abstract: Insertion of Design-for-Test (DFT) components at the Register-Transfer Level (RTL) of design abstraction allows downstream software tools to use the same original design view. Doing so also promotes more efficient creation and use of DFT resources and enables synthesis tools to optimize DFT components such as Memory BIST logic, compression logic, core wrapper logic, and test points along with functional logic earlier in the design flow.

		Outlier Identification
Design Rule Checks (DRCs)	Design-for-Test (DFT) IPs	(coverage/pattern count)
Clock / Set / Reset controllabili	y MBIST / MBISR / LBIST / OST	Design editing & ECO implementatio
Clock node editability	Compression / OCC / DFT Interface IP	Same RTL used for Synthesis &
Low-power DFT connectivity	Wrappers / Test Points / X-Bounding	Verification (RTL in \rightarrow RTL out)

Test point effectiveness on several industrial designs, seen achieving similar gate-level results when implementing at RTL

				Compressed ATPG (baseline, no test points)			Compressed ATPG (Gate-level test points)			Compressed ATPG (RTL test points)					
	Design gates	Scan cells	Compression ratio	RTL TP suitability	TC [%]	PC	ATPG runtime (s)	TP (CP, OP)	# patterns @ BL TC	PC reduction [%] @BL TC ^r	ATPG untime (s)	TP (CP, OP)	# patterns @ BL TC	PC reduction [%] @BL TC	ATPG runtime (s)
D1	1.12M	44k	123	High	93.1	8387	418	(386, 557)	3071	63.4	229	(385 <i>,</i> 557)	4799	43	262
D2	3.4M	150k	135	High	94.9	2579	688	(1241, 1790)	704	72.7	628	(1486, 1483)	960	63	624
D3	0.57M	22k	125	Medium	96	18560	914	(191, 248)	8743	53	345	(234, 205)	8932	52	400
D4	5.3M	255k	134	High	97.32	10291	2352	(1813, 3275)	4717	54	1018	(3550, 1514)	6130	40.5	1183
D5	1.2M	43k	123	High	99.26	18526	1435	(456, 405)	11102	40	1318	(455, 406)	11006	★ 40.6	896
D6	10M	440k	246	High	93.7	29256	22419	(1659, 2118)	23618	19.3	8301	(742, 563)	13169	★ 55	13177
D7	3.7M	208k	125	High	98.27	10125	3265	(2094, 2205)	7194	29	2200	(1638, 2653)	7923	22	2088
D8	1.74M	119k	141	High	95.49	14217	787	(957, 1429)	5788	59.3	860	(751, 1635)	8516	40	1790
D9	3.4M	103k	128	High	96.66	63381	63381	(1630 <i>,</i> 469)	38133	40	7586	(1309, 790)	43317	32	6624
D10	9.36M	458k	138	Medium	98.61	8226	5639	(4012, 5762)	5808	29.4	6389	(3487, 3835)	6463	22	9179
D11	10.6M	739k	188	High	99.08	14238	6102	(5042, 9780)	9787	31.3	6765	(6972, 7877)	9970	30	7216
D12	4M	222k	140	High	99.32	16584	3011	(2133, 2364)	10005	39.7	2103	(3240, 1103)	9395	★ 43.35	2392

Industrial design results comparisons:

44.25% average pattern count reduction with GL test points 40.3% average pattern count reduction with RTL test points

Additional RTL test point observations:

Improved area due to fewer test points in some designs Some design show Improved results when compares with gate-level

test points

Conclusion: It is possible to insert all major DFT components at RTL. This leaves only scan insertion and shared wrapper cell logic to be inserted at the gate level, making "shift-left" a reality. Synthesis and verification flows can use the same RTL, and experimental results from RTL test point insertion show that it is possible to get similar results to gate-level.