

Logic BIST Observation Scan Technology (OST) and x-tolerance for BIST designs

Oct 2023

Agenda

Observation Scan Technology (OST) - overview Functionality
Results
Logic BIST X-tolerance with OST

Key Metrics for In-System Testing

Test time

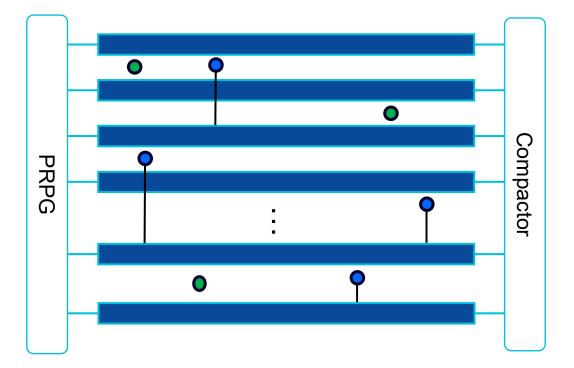
Time required to execute the test in-field

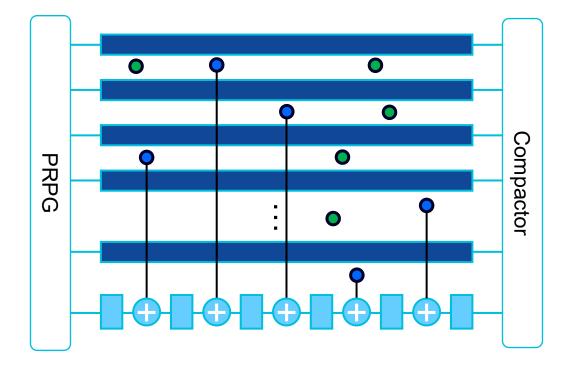
Test quality

Desired test coverage levels dictated by ISO 26262

Test cost

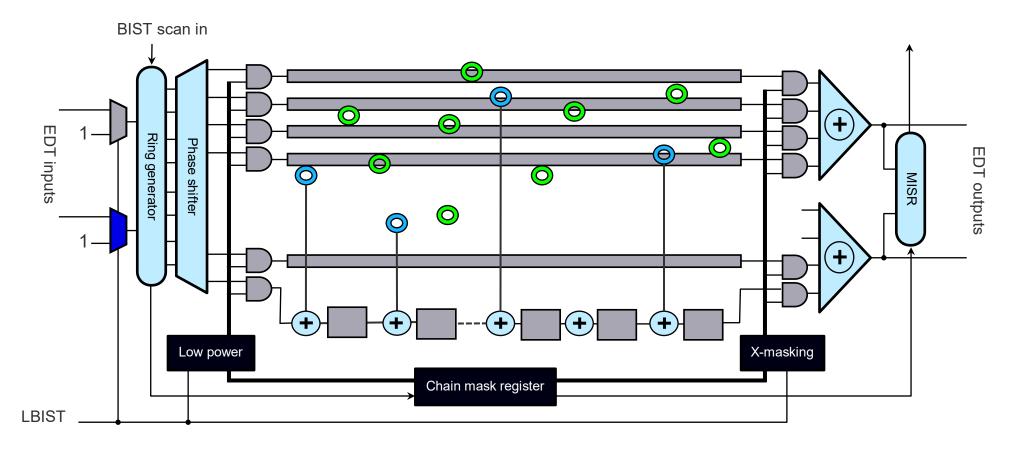
Silicon area overhead to implement desired solution





Tessent LogicBIST with Observation Scan Technology

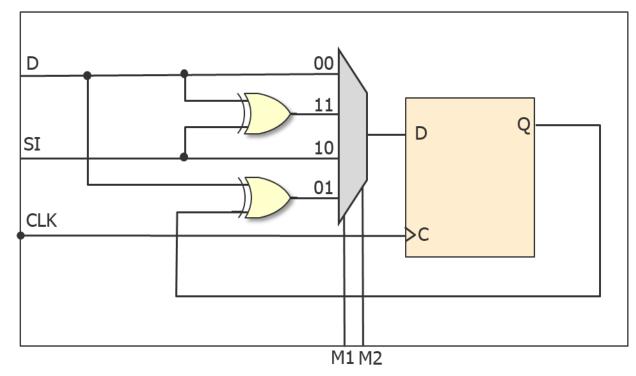
LBIST (per pattern observation)



LBIST-OST (per cycle observation)

Observation Scan Technology (OST) for LBIST designs

Observe points are observed every shift cycle


Example: chain length of 100 with 10K pattern – observed for 1M cycles

Key benefits – significant reduction in patterns needed to achieve a target test coverage

Observation Scan Cell Structure

Scan Cell

Modes	M1 (=SE)	M2	D	SI	Q
Shift	1	0	d	S	S
Shift & Capture	1	1	d	S	d + s
Capture	0	0	d	S	d
Capture & Accumu late	0	1	d	S	d + q

Has two modes of operation during shift – regular shift or shift_and_capture

Has two modes of operation during capture – functional (mission) or capture_and_accumulate

Design	Technology	the state of the s	Chain Length		Area(s qmm)	#Test Pattern	Coverage Achieved	
Design_wo_ost	12nm	~225K	570	2500	~.23	15000	88.54%	85.65ms
Design_w_ost	12nm	~225K	570	2500	~.235	3072	90%	17.541ms
Difference	-	-	-	-	-	~5X reduction	1.5% Better	~5X reduction

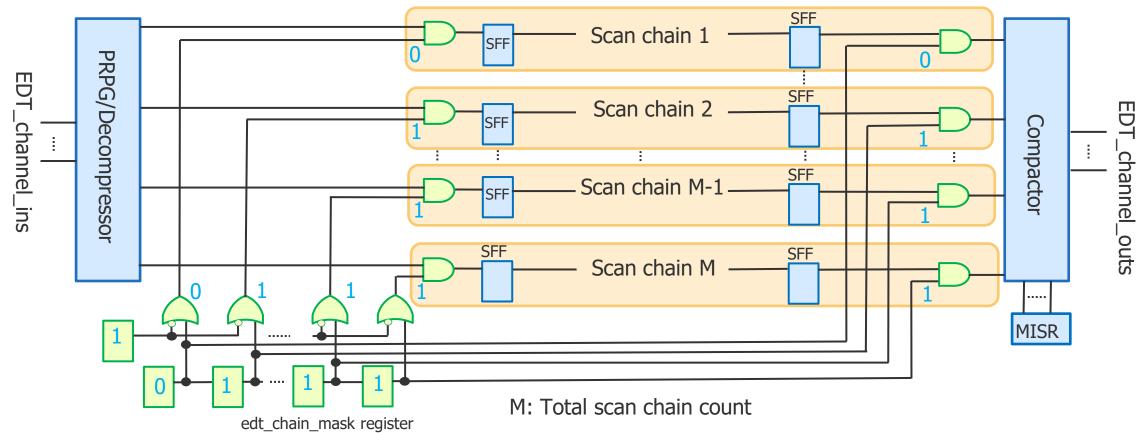
Design	Coverage with NCP
w/o_ost	84.85%(15K pat)
w_ost	90%(15K pat)
Difference	5.15% Better

Logic BIST X-tolerance with OST

X tolerance techniques

Static Chain Masking

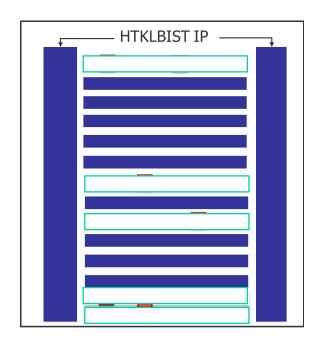
- Mask the entire chain with X sources
- Implementation is straightforward (static chain masking register available with Hybrid TK/LBIST IP)
- Might result in loss of observability when scan chain outputs are masked
 - Compromise between test patterns and coverage
- Higher flexibility requires one bit per chain resulting in higher silicon overhead


Cycle based X-tolerance

- Xs reported are used to generate masking data that contains information on which scan chain outputs should be masked in each clock cycle
- Higher implementation effort
- Additional hardware and computation overhead
- Impact on pattern count to achieve target test coverage

Static chain masking

- In Hybrid TK/LBIST flow there is a static masking register for masking scan chains
- The register can be loaded dynamically during LBIST setup

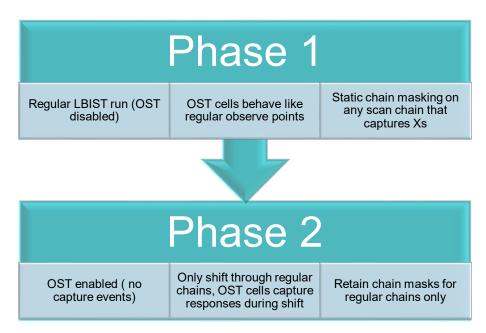


X Tolerant LBIST-OST

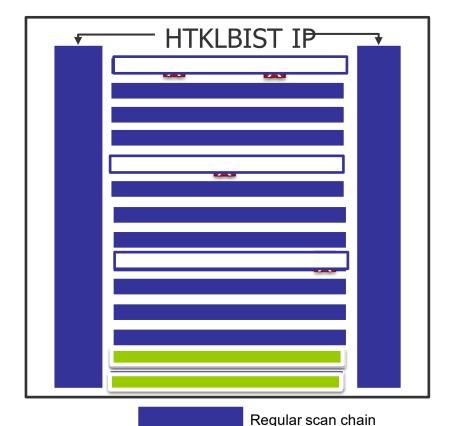
When Observation Scan Technology (OST) is enabled, even a single X captured will result in loss of observability for that OST chain

Proposed solution involves two phase fault simulation

- Building on static chain masking
- Exploit the pattern reduction capabilities of OST



Functionality


When enabled, the solution performs LBIST fault simulation in 2 phases

Optimizes pattern count v/s test coverage and still recover some benefits of using

OST

^{*}No Xs are generated during shift

OST chain

LBIST-OST – Experimental Results

Design	#SCs	#Chains	Chain Length	#Xs	Xs in Reg Chains	Xs in OBS Chains
D1	80,270	1254	65	41	30/1221	32/34
D2	81,546	1255	66	41	30/1216	25/32
D3	151,042	2502	64	74	61/2428	51/74
D4	94,411	528	180	48	5/521	4/7

	Pattern Count at 90% Test Coverage							
Design	Reg BIST	LBIST-OST	PC Red.	LBIST + X- masking	LBIST-OST + X- masking (2-phase)	PC Red. (w.r.t. Reg BIST)		
D1	5312	512	10.4X	8,384	1152+1024	2.4X		
D2	6912	576	12X	13,248	1344+1216	2.7X		
D3	3200	448	7.1X	3,456	512+576	2.9X		
D4	7040	4672	1.51X	14,400	7500 + 576	0.87X		

Summary

OST two-phase run is designed for supporting X-tolerance for observation scan chains that may capture Xs during shift cycles

Loss of coverage can be minimized using static chain masking in addition to using 2 phase OST fault simulation

User may need to perform a prior fault simulation run with observation_scan disabled to collect all the X locations

Thank you

