Adaptive DFT technology in use with ATE

Peter Orlando, Kacper Grubich
Challenges of test on ATE

Growing complexity

Designs are growing in size and complexity
DFT required to meet those design complexities and quality standards
• Require minimal chip resources
• Efficiently provide access to test structure
• All fault models

While maintaining the ability to adapt to the conditions on the ATE
Challenges of test on ATE

Problems to consider

- Static programming
- Changes require pattern regeneration
- Inefficient use of resources for identical cores
- No flexibility – test time improvement, decreased power dissipation, etc.
Scan Delivery Using Packetized, Bus-Based Networks
Adapting to conditions on the ATE

- Reuse IJTAG interface as streaming interface (*shown*)
- Cores to retarget at time of retargeting
- Change core shift timing at time of retargeting
- Scale the parallel bus even down to a single bit

Fig. 1 – Streaming through IJTAG
Not only for scan testing

- Support for Laser Voltage Imaging/Probing (LVI/LVX)
- Broadcast data to all scan chains or one specific scan chain
- Delivery of burn-in patterns
- Operation mode set with IJTAG protocol

Fig.2 – Bus scaling example
Efficient identical core testing

Using On-Chip Compare

- Test any number of identical cores at constant cost
- Stored internally with on chip compare logic *(shown)*
- Output scan data collected immediately through transmission protocol
- Reuse the same efficient pattern for retargeting and on chip compare retest method
- Retest method to collect individual failing cores

Fig.3 – On-Chip compare logic
Adaptive to late design changes

- Plug-and-play architecture
- Addition of new core or changes to existing cores have no affect on chip-level DFT architecture
- Changes to the top-level design have no impact on chip-level DFT architecture
- Changes at core-level are fully encapsulated – have no change to top-level DFT
- No impact to the patterns of cores which are unchanged
Adaptive DFT technology

Summary

Improve quality of testing through the flexibility of the DFT structures

Scalable solution to meet today and tomorrow quality standards:

- Determine cores to retarget at time of retargeting
- Change timing of scan pattern at time of retargeting
- Bus scaling
- Reuse same pattern through IJTAG interface
- Allows design and DFT changes late with no impact to the top-level DFT architecture
- Post silicon debug
Thank you
Backup slides