Wound healing biology

By Samantha Gardeen, MD, Anna Kozlowski, MD, and Lina Rodriguez, MD, FAAD

Primary intention healing: Approximation of wound edges
- Primary closure
- Flaps
- Grafts

Secondary intention healing: Wound heals without intervention
- Contraction by myofibroblasts

### Phase	Time	Cell type	Description
Inflammation | Starts within 6-8 hours, lasts 3-4 days | **Platelets:** First cell to arrive **Neutrophils:** First major WBC to arrive **Macrophages:** 2nd major WBC to arrive | Extrinsic and intrinsic coagulation pathways activated. **Platelets:** Fibrin clot formation and coagulation. Release of ADP, clotting factors, PDGF, EGF, fibrinogen (first ECM component), fibronectin, TGF-α, and TGF-β, helping to create a matrix for fibroblast migration. Vasodilatory elements released: histamine, prostaglandins, complement, kinins. **Neutrophils:** Tissue debridement, bacterial clearance. Attracted by chemotactic factors, fibrinogen/fibrin products, C5a, leukotrienes. **Macrophages:** Critical for transition from inflammatory to proliferative phase. Secrete growth factors for fibroblast stimulation and ECM development- PDGF, TGF-α, TGF-β, FGF. Predominate over neutrophils as wound healing progresses. Phagocytose and debride wound.

Proliferation (tissue formation) | Starts within 5-7 days, lasts up to 1 month | **Macrophages:** Essential to initiate proliferative phase through secreted growth factors **Keratinocytes:** Re-epithelialization **Fibroblasts:** Make ECM **Endothelial cells:** Angiogenesis | Re-epithelialization, angiogenesis, and fibroplasia (granulation tissue). **Initiated by growth** factors released by macrophages- PDGF, TGF-α, TGF-β, FGF, EGF, KGF, IGF-1, and other growth factors released by platelets, fibroblasts, and keratinocytes. **Keratinocytes ‘leap frog’ over each other from wound edges and adnexal structures.** Occurs through desmosome breakdown and lateral mobilization (mediated by EGF, KGF, TGF-β, MMPs). Fibroblasts migrate via fibronectin matrix to deposit collagen, proteoglycans, elastin. Fibronectin matrix replaced by type III collagen. **Myofibroblasts contract wound.** Endothelial cells migrate to form new blood vessels through angiogenesis. Provide nutrition and oxygen to healing wound. Stimulated by VEGF, TGF-β, angiogenin, low oxygen tension, lactic acidosis. VEGF upregulates endothelial cell integrin receptors to help facilitate endothelial cell migration.
Wound healing biology
By Samantha Gardeen, MD, Anna Kozlowski, MD, and Lina Rodriguez, MD, FAAD

<table>
<thead>
<tr>
<th>Phase</th>
<th>Time</th>
<th>Cell type</th>
<th>Description</th>
</tr>
</thead>
</table>
| Maturation (tissue remodeling) | | Fibroblasts: Major cell in scar formation | Granulation tissue regression, scar matrix formation. Fibroblasts release collagen (type III collagen replaced by type I collagen) and hyaluronic acid. Initial clot must be cleared (by plasminogen/plasmin and MMPs) for appropriate scar healing. Vitamin C required for collagen hydroxylation. MMPs produce collagenases to modulate ECM turnover, keratinocyte migration, and wound contraction. Myofibroblasts continue to contract wound through actin microfilaments. Scar strength:
 1 week: 5%
 3 weeks: 20%
 6 weeks: 40-50%
 1 year: 80% |

*Abbreviations
MMPs-matrix metalloproteinases PDGF-platelet derived growth factor
ADP-adenosine diphosphate TGF-α-transforming growth factor alpha
TGF-β-transforming growth factor beta EGF-epidermal growth factor
FGF-fibroblast growth factor KGF-keratinocyte growth factor
IGF-1-insulin like growth factor 1 ECM-extracellular matrix
VEGF-vascular endothelial growth factor

Optimal wound healing
- Occlusive wound environment: Effective in accelerating wound healing
- Up to 40% faster healing than when exposed to air
- Enhances keratinocyte migration

Wound Healing

Inflammation → Proliferation → Maturation

6-8 hours ↓ 5-7 days ↓ 3-4 weeks
3-4 days ↓ 1 month ↓ 1 year

Epidermis
Dermis

Wound

- Activated platelet
- Neutrophil
- Macrophage
- Endothelial cell
- Keratinocyte
- Fibroblast
Wound healing biology
By Samantha Gardeen, MD, Anna Kozlowski, MD, and Lina Rodriguez, MD, FAAD

Inflammation

Persistent Increased Resolved Minimal

Many factors:
- Malnutrition
- Diabetes or vascular disease
- Connective tissue diseases
- Hypercoagulability
- Medications: corticosteroids, penicillamine, nicotine, NSAIDs, antineoplastic agents
- Advancing age
- Excessive tension, devitalized tissues, tissue ischemia
- Infections
- Hemostatic agents
- Foreign body reaction
- Adverse wound microenvironment: dry, biofilms
- Neuropathy
- Chronic radiation

References: