

Update 2019

Calculation of the avoided CO₂ emissions financed by the Green Bond Portfolio of ABN AMRO

Update 2019

Client

ABN AMRO Bank N.V. Gustav Mahlerlaan 10 1082 PP Amsterdam

Contact: mr. J. Hessels

T +31 20 383 6929 | M +31 6 23 36 1736 | E joop.hessels@nl.abnamro.com

Contractor

W/E consultants
Jan van Hooffstraat 8E
5611 ED Eindhoven

Contact: mr. Pieter Nuiten

T+31 40 235 8450 | M+31 6 2239 6192 | E nuiten@w-e.nl

K.v.K. nr. S 41172371 | BTW nr. NL 00 48 41 554 B01 | Triodos nr. NL06 TRIO 0198 3526 11

Project W/E 9956

Table of contents

1	Impact calculations ABN AMRO Green Bond	2
Resul	ts 2	
Repo	rting table in line with harmonised framework	2
2	Project category A Mortgage loans for energy efficient residential buildings	3
Achie	eved energy efficiency of buildings	3
2.1	Methodology	3
2.2	Impact indicator 1: Energy performance	5
2.3	Impact indicator 2: CO ₂ emissions performance	5
3	Project category B1 Renewable Energy - GreenLoans	6
Envir	onmental aspects of solar panels used	6
3.1	Methodology	6
3.2	Impact indicator 1: Total energy production of solar panels installed	7
3.3	Impact indicator 2: Avoidance of CO ₂ emissions related to these loans	7
4	Project category B2 Renewable Energy - Offshore wind energy	9
Envir	onmental aspects of wind turbine generators used	9
4.1	Methodology	9
4.2	Impact indicator 1: Total energy production of wind turbine generators installed	9
4.3	Impact indicator 2: Avoidance of CO₂ emissions related to these loans	9
5	Project category C Commercial real estate loans for energy efficient building projects	11
Energ	gy efficiency of buildings	11
5.1	Methodology	11
5.2	Impact indicator 1: Energy performance	13
5.3	Impact indicator 2: CO ₂ emission performance	13
6	Annexes	14
6.1	EPC-requirements	14
6.2	Average energy consumption Dutch households	15
6.3	Costs of pv-systems	15

1 Impact calculations ABN AMRO Green Bond

As requested by ABN AMRO, W/E consultants have calculated the CO₂ impact indication of the assets which are financed by the outstanding ABN AMRO Green Bond portfolio as per 1 January 2019. This report covers the impact calculations of the current green bond portfolio (consisting of three outstanding green bonds with isin code XS1244060486, XS1422841202 and XS1808739459). The portfolio has a total outstanding of EUR 1.75 billion (raised by three transactions, two of EUR 500mio in size and maturing in 2020 and 2022; a third of EUR 750mio, maturing in 2025).

The process of finding the answers and the assumptions that have been made in that process will be discussed in the 'Methodology' section.

In this report we will calculate the energy use and carbon impact per eligible asset category with the allocation per bond depending on the distribution of allocated assets per 1 January 2019.

We will report on a number of core indicators in accordance with the 'harmonized framework for impact reporting' (version December 2015) which is developed by a group of multilateral development banks including IFC, EIB, World bank and others¹.

Results

"The proceeds of the current green bond portfolio are allocated to four project categories of the ABN AMRO Green Bond Framework. For each of these categories, the annual average CO₂ savings (compared to a relevant national benchmark) have been calculated. For all assets within the green bond portfolio combined, the annual savings are about 83,000 tonnes² which corresponds to 48 kg per 1,000 euro. For each of the categories, the savings in tonnes per million euro are given in the table 2, table 5 and table 9.

Reporting table in line with harmonised framework

Renewable energy & Energy efficiency	Туре	Signed Amount	Share of Total Portfolio Financin g	y for	Allocated	Average portfolio financial lifetime			Annual generati	#4) a) Renewa ble energy capacity added	#2) Annual GHG emissions reduced/avoided e/
Portfolio name		EUR	%	%	EUR	years	kWh/m2	GJ	MWh	MW	in tonnes of CO2 equivalent
Green Loans	RE	25.976.382	100%	100%	20.000.000	12,5	-	-	19.318	16	6.974
Residential Mortgages	EE	1.512.000.000	100%	100%	1.512.000.000	10+	112	158.000	-	-	7.995
Commerical Real Estate	EE	57.000.000	100%	100%	57.000.000	3,85	104	17.327	-	-	817
Off shore wind energy	EE	161.000.000	100%	100%	161.000.000	10+	-			1.184	67.092
Total		1.755.976.382	100%	100%	1.750.000.000		111	175.326	205.170	1200	82.878

Note: Energy savings are given as savings in primary energy, not as energy consumption "on the meter".

¹ http://treasury.worldbank.org/cmd/pdf/InformationonImpactReporting.pdf

² In this report, we use metric tonnes (1,000 kilograms)

2 Project category A Mortgage loans for energy efficient residential buildings

Achieved energy efficiency of buildings

ABN AMRO has selected 3,844 dwellings to be part of the green bond portfolio.

2.1 Methodology

Principle

Within this assessment, we determined the energy usage of the dwellings and compared this to the average Dutch dwelling. The energy usage is calculated using the energy performance method as depicted in the Dutch 'Building Decree 2012'. Even though there is a difference between calculated and actual energy use, especially when looking at a single building or dwelling, we are of the opinion that for a large portfolio of dwellings there is a good match between theory and practice for new dwellings³.

For the Dutch average, we used data from CBS, the Dutch Central Bureau for Statistics (see Table 11).

Energy Performance Coefficient

All new buildings in The Netherlands need to comply with an energy performance requirement, set by the Dutch 'Building Decree 2012'. This requirement is expressed in terms of the Energy Performance Coefficient ("EPC⁴"). We refer to Table 10 for more information on EPC requirements.

The EPC is an indicator for the primary energy performance of a building. This only comprises building related energy use for space heating and cooling, domestic hot water, ventilation, fans and lighting. It also takes renewable energy installations into account⁵. 'Primary' means that the energy demand of a dwelling within the EPC relates to the fossil energy demand. For electricity use, this means that the efficiency of the Dutch power production and power grid is taken into account (set at 39% within the calculation method). For example, a dwelling with an electricity bill of 3,000 kWh will have a primary energy demand of 3,000/39% = 7,692 kWh. For natural gas, the efficiency of the grid (transportation, distribution) is set at 100%. So a dwelling with a gas bill of 1,000 m³ will also have a primary gas demand of 1,000 m³, which is equivalent (for Dutch gas) with 35.17 GJ⁷ or 9.769 kWh.

Data dwellings with a loan from ABN AMRO

All eligible loans were build according to the requirements in the 'Building Decree' and therefore have an Energy Performance Coefficient (EPC) of 0.4 (or lower). The EPC-requirement ≤ 0.4 came

http://www.rvo.nl/sites/default/files/2013/10/Heslinga%202006%20%28NL%29%20Vaststellingsmethodieken%20voor%20CO2%20emissiefactoren%20van%20aardgas%20in%20Nederland.pdf

 $^{^3}$ http://www.energievastgoed.nl/2013/02/otb-delft-energielabel-voorspelt-gasverbruik/?doing_wp_cron=1429005389.5604948997497558593750

⁴ In international context, the abbreviation EPC may also refer to Energy Performance Contracting or Energy Performance Certificate, (which in the Netherlands is known as an 'energy label')

⁵ More information can be found at http://www.rvo.nl/onderwerpen/duurzaam-ondernemen/gebouwen/wetten-en-regels-gebouwen/nieuwbouw/energieprestatie-epc/bepalingsmethode-epc.

 $^{^6}$ NEN 7120+C2/C3, C4, C5, "Energy performance of buildings -Determination method, 2012", table 5.4

⁷ See for example

into effect on 1 January 2015. To make sure that all dwellings within the green bond portfolio meet this requirement and fulfil the criteria of the Dutch Building Decree, only mortgages are selected by ABN AMRO for which the date of the initial offer is minimum 24 months later than the entry date of this EPC requirements.

There is no detailed information available on the individual type and size of the dwellings. It is therefore assumed that the distribution of type and size of the 3,844 dwellings is equal to the average type and size of all new Dutch dwellings. Information on the average dwellings is used from 'Reference dwellings 2013' published by RVO⁸.

Data average dwellings in the Netherlands

The average energy consumption of *privately owned* dwellings in the Netherlands⁹ is about 3,330 kWh of electricity and 1,550 m³ of natural gas (equivalent). The figure for natural gas has been corrected for weather conditions, as gas is mainly used for space heating. Roughly 5% of all Dutch dwellings has a connection to a district heating system. For this assessment, the use of district heating has been neglected.

Combination data ABN AMRO and average NL

We use dwelling data and the energy performance formula to calculate the primary energy usage for gas.

CO₂-emissions - natural gas

The CO₂ emissions¹⁰ of Dutch natural gas are 1.78 kg/m³.

CO₂-emissions - electricity

There are different values of the carbon intensity in kg per produced kWh of electricity depending on assumptions made in the calculation method. For this assessment we comply with the guidelines provided by PCAF¹¹, specifically their report from November 2018. PCAF refers to www.co2emissiefactoren.nl to determine the specific emission for each energy carrier. For electricity, we used 0.361 kg/kWh. This number includes CO₂-emissions related to transmission and distribution of electricity, but does not include upstream emissions (for winning and transport of fuels).

⁸ https://www.rvo.nl/onderwerpen/duurzaam-ondernemen/gebouwen/wetten-en-regels-gebouwen/nieuwbouw/energieprestatie-epc/referentiewoningen-epc

⁹ https://klimaatmonitor.databank.nl/Jive?workspace_guid=d027664f-9cde-4f02-a4be-216499a7e983; screen dump in Annex

 $^{^{10} \} https://www.rvo.nl/sites/default/files/2017/05/Berekening\%20standaard\%20CO2-emissiefactoren\%20aardgas\%20tbv\%20nationale\%20monitoring\%202017\%20en\%20emissiehandel\%202017.pdf$

¹¹ PCAF = Platform Carbon Accounting Financials, http://carbonaccountingfinancials.com/

2.2 Impact indicator 1: Energy performance

Average energy consumption of residential buildings (in kWh/m²) financed through the green bond portfolio compared to the average energy consumption of residential buildings in the Netherlands.

Table 1 Energy consumption ABN AMRO loans compared to average of Dutch residential buildings.

Energy consumption and CO2 emissions ABN AN	/IRO loans compared	to average of priva	itely owned reside	ential buildings ir	the Netherla
parameter	unit	average NL	ABN-AMRO	saving	% saving
number of dwellings = households (hh)	hh	3.844	3.844		
Energy performance coëfficiënt (EPC)	-		EPC = 0,40		
average user area	m2	102	102		
average loss area	m2	193	193		
average consumption electricity	kWh/hh.year	3.330	3.330		
	kWh/m2	33	33		
average consumption natural gas	m3/hh.year	1.550	381	1.169	-75%
	m3/m2.year	15,26	4	12	
	kWh/m2.year	149	37	112	
average consumption electricity + natural gas	kWh/m2.year	182	69	112	-62%
primary energy use	GJ/year	327.519	169.520	158.000	-48%
	MJ/m2.year	839	434	405	
	kWh/m2.year	233	121	112	

2.3 Impact indicator 2: CO₂ emissions performance

Average CO_2 emissions of residential buildings (in kg/m²) financed through the loans compared to the average CO_2 emissions of residential buildings in the Netherlands (based on the carbon intensity of the Dutch energy mix). The savings are 5,000 tonnes CO_2 annually.

Table 2 CO₂ emissions ABN AMRO loans compared to average of Dutch residential buildings.

Energy consumption and CO2 emissions ABN	AMRO loans compared	d to average of priva	tely owned reside	ntial buildings in	the Netherla
parameter	unit	average NL	ABN-AMRO	saving	% saving
number of dwellings = households (hh)	hh	3.844	3.844		
average emission CO ₂	tonnes/year	15.224	7.229	7.995	-53%
	kg/hh.year	3.961	1.881	2.080	
	kg/m2.year	39,0	18,5	20,5	
	kg/keuro			5,29	

3 Project category B1 Renewable Energy - GreenLoans

Environmental aspects of solar panels used

3.1 Methodology

Principle

The installed pv-power for each of the loans is unknown, as is the actual electricity production. However, we do have information on the loan amount (euro) which can be used to make an estimate of the installed pv-power per loan. Additional to this, we estimate the actual production by using typical yields from scientific literature ¹².

Table 3 Overview of portfolio 'pv loans'

	Eligible
Number of loans	2,469
Contract amount [euro]	25,976,382
Outstanding amount [euro]	20,018,676

Calculation method

To calculate the total avoided CO₂-emissions, we transfer the loan amount via installed pv-power to estimated production:

loan in euro	&	installation costs in euro/Wp	-	→ installed pv-power in Wp
installed pv-power in Wp	&	average production in kWh / kWp	-	→ annual production in kWh
annual production in kWh	&	specific CO ₂ -emission per kWh	-	→ total avoided CO ₂ -emission

Installation costs in euro/Wp

The installed amount of power (watt-peak or Wp) is derived from the installation cost per Wp. This number has changed significantly over the last few years, as can be seen in Table 4 below and varies per year. We have used different sources to provide a reliable estimate of the installation costs per Wp. The figure below shows three sources:

- ECN studies on the SDE-subsidies (national subsidies on sustainable energy production units, based on the costs of the generated electricity; updated yearly);
- Market surveys conducted by the 'Solar electricity monitoring foundation' (update irregularly, from 2011 onwards);

Combining these three sources, an annual amount of installation costs per Wp has been determined. In Annex 2 Table 12 all used documents are listed.

¹² Van Sark et al, "Update of the Dutch pv specific yield for determination of pv contribution to renewable energy production: 25% more energy!", 29th European Photovoltaic Solar Energy Conference and Exhibition, September 2014 https://www.seac.cc/wp-content/uploads/2016/11/7AV.6.43_paper.pdf

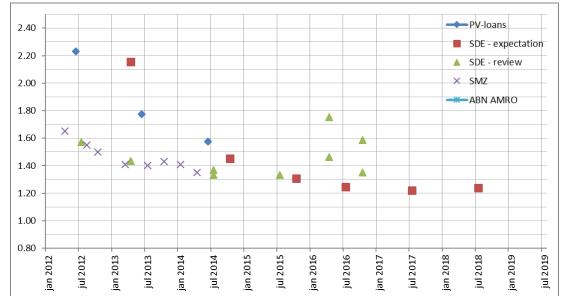


Figure 1 Historic costs of pv-systems from different sources in euro/Wp, including VAT

Table 4 Historic costs of pv-systems used in this assessment in euro/Wp, including VAT

Calcula	tion values euro/	Wp
year	sample	other
-	euro/Wp	euro/Wp
2012	2.33	1.60
2013	1.67	1.40
2014	1.42	1.35
2015	-	1.15
2016	-	1.10

Average production in kWh / kWp

Using the total installed pv-power, it is possible to calculate the annual energy production in kWh using the specific production in kWh/kWp. Because there is no data available on the yield of the included pv-systems, we use the average specific production for all systems in The Netherlands. This number has been established at 875 kWh/Wp¹³.

3.2 Impact indicator 1: Total energy production of solar panels installed

As a result, the calculated annual energy production for these systems is 19,318 MWh. In Table 5 below, the results of the calculations are presented.

Over the total expected life span of pv-systems of 25 years, the total predicted electricity production will be 483 GWh.

3.3 Impact indicator 2: Avoidance of CO₂ emissions related to these loans

The avoidance of CO₂ emissions is calculated on the basis of the calculated electricity production per year and average carbon intensity of the Dutch energy mix.

There are different values of the carbon intensity in kg per produced kWh of electricity depending on different assumptions in the calculation method. For this assessment we use the same emission

¹³ 29th European Photovoltaic Solar Energy Conference and Exhibition 2014, Update of the Dutch PV specific yield for determination of PV; https://www.seac.cc/wp-content/uploads/2016/11/7AV.6.43_paper.pdf

factor as outlined in paragraph 2.1 (PCAF 2018 - www.co2emissiefactoren.nl). For 2018, the specific CO₂-emission is 0.361 kg/kWh.

The total avoided CO_2 -emissions due to the pv-loans within this bond are 7,000 tonnes per year. Over the lifespan of 25 years, the avoided CO_2 -emissions are approx. 193 thousand tonnes. The CO_2 -emissions of the Dutch electricity grid will likely decline in the future, however, reliable estimates are not available for this effect for the next 25 years. We therefore did not take these developments into consideration in our methodology and model but have used the 2018 numbers to extrapolate avoided CO_2 -emissions.

Table 5 Installed power, electricity production and avoided CO₂ emission of the pv-systems, and cumulative

Electricity pro	duction and avoid	ed CO ₂ emission						
year of	loans - contrac	ted amount	installed	power	electricity production	avoided CO ₂		
installation	euro/year	euro	kWp/year	kWp	MWh/year	tonnes/year	tonnes per	
	install.year	cumulative	install.year	cumulative	cumulative		million euro	
2012	1,402,019	1,402,019	876	876	767			
2013	1,418,207	2,820,227	1,013	1,889	1,653			
2014	3,578,789	6,399,016	2,651	4,540	3,973			
2015	6,567,491	12,966,506	5,711	10,251	8,970			
2016	6,623,510	19,590,017	6,021	16,272	14,238			
2017	6,386,365	25,976,382	5,806	22,078	19,318			
2018	0	25,976,382	0	22,078	19,318	6,974	0	
25 years					482,962	174,349		

4 Project category B2 Renewable Energy - Offshore wind energy

Environmental aspects of wind turbine generators used

On 1 January 2019, green bond proceeds were allocated to three project finance loans for offshore wind farms with a total outstanding amount of € 161,416,768. Only proceeds of the third green bond issued in 2018 were allocated to these projects.

4.1 Methodology

In accordance to the PCAF¹⁴ guidelines, the P50 value of the expected annual energy yield is taken into account. The P50 value is the predicted annual production for which there is a 50% probability that it will be exceeded in a given year.

The installed power and P50 value for each of the loans is reported in technical due diligence reports, drafted by the Lenders Technical Advisors.

For each of the project, the total construction capital expenditures (CAPEX) is known as well. As ABN AMRO only provides part of the financing, the ABN AMRO share in the CAPEX is used to calculate the energy yield and avoided CO2-emissions to be allocated to the Green Bond.

4.2 Impact indicator 1: Total energy production of wind turbine generators installed

The combined P50-values for the three wind farms is 4,935,000 MWh/a. Over the total expected life span of wind turbine generators of 25 years, the total predicted electricity production will be 123,378 GWh.

The ABN AMRO share in the CAPEX of the project is on average 3.7%, resulting in 186,000 MWh/a to be allocated to these green bonds.

4.3 Impact indicator 2: Avoidance of CO₂ emissions related to these loans

The avoidance of CO₂ emissions is calculated on the basis of the calculated electricity production per year and average carbon intensity of the Dutch energy mix.

There are different values of the carbon intensity in kg per produced kWh of electricity depending on different assumptions in the calculation method. For this assessment we use the same emission factor as outlined in paragraph 2.1 (PCAF 2018 – www.co2emissiefactoren.nl). For 2018, the specific CO₂-emission is 0.361 kg/kWh.

The total avoided CO₂-emissions due to the wind-loans within this bond are 67,092 tonnes per year. Over the lifespan of 25 years, the avoided CO₂-emissions are approx. 1,677 thousand tonnes. The CO₂-emissions of the Dutch electricity grid will likely decline in the future, however, reliable estimates are not available for this effect for the next 25 years. We therefore did not take these developments into consideration in our methodology and model but have used the 2018 numbers to extrapolate avoided CO₂-emissions.

¹⁴ PCAF = Platform Carbon Accounting Financials, http://carbonaccountingfinancials.com/

Table 6 Installed power, electricity production and avoided CO₂ emission of the wind-systems, and cumulative

Electricity p	production and avoided C	O ₂ emission	total				ABN AMRO share
#	nstalled capacity [MW]	electricity production	Avoided CO ₂	loans - contracted	ABN AMRO share	electricity production	Avoided CO2
	instanted capacity [ivivv]	(P50) [GWh/a]	[tonnes/a]	amount [euro]	ADIN AIVINO STIATE	(P50) [GWh/a]	[tonnes/a]
1	600	2,614	943,510	86,819,417	3.7%	97	34,915
2	332	1,222	440,962	53,056,894	5.5%	67	24,142
3	252	1,100	397,100	21,540,457	2.0%	22	8,035
total	1,184	4,935	1,781,571	161,416,768	3.7%	186	67,092
25 years		123,378	44,539,278			4,646	1,677,310

5 Project category C Commercial real estate loans for energy efficient building projects

Energy efficiency of buildings

This category comprises different portfolio's with offices, retail stores and commercially developed retail housing, both renovated and new. The portfolios contain existing office buildings, with a total usable floor area of about 12,500 m², new shops with a total usable floor area of 5,200 m², new office buildings with a total floor area of 16,000 m².

5.1 Methodology

Principle for new and existing buildings

For the buildings in this portfolio, actual energy consumption is not available. We therefore use calculated energy consumption based on the energielabel of the buildings.

Calculated CO_2 emission of the buildings within the ABN AMRO portfolio are compared to the average CO_2 emission of Dutch offices, shops and dwellings. Calculations are based on the energy performance of the buildings, which includes the primary energy use. Because the CO_2 emission of 1 MJ of primary energy use for gas is slightly different than that for electricity, an assumption has been made to split the total energy consumption into gas and electricity consumption. The assumptions are that the building related electricity use is 35 kWh/m² in offices, 11 kWh/m² in retail housing and 90% of the total primary energy in retail shops 15.

New buildings

For the new buildings (shops, offices, retail housing) the building related primary energy consumption is calculated using the EPC formula in NEN 7120 / EPG (energy performance of buildings)¹⁶. The usable floor area and the required EPC result in the building related primary energy use.

Existing buildings

The CO₂ emissions of the renovated buildings will be calculated according to ISSO 75.3, which is the Dutch calculation method used to determine the energy label for existing buildings with a commercial building function.

For dwellings the average CO₂ emission has been determined in the chapter about 'Project category A', see 2.3.

The energy consumption of the offices and retail shops is calculated on the basis of the energy-index formula in ISSO 75.3 (calculation method for energy labels for existing commercial buildings). Per building the usable floor area (m²) and the energy indicator (EI) of the buildings are used to calculate the building related primary energy use for heating, cooling, domestic hot water (dhw), ventilation and lighting. The additional energy consumption for usage of the building like computers, printers, et cetera is not taken into account.

 $^{^{15} \} http://www.lente-akkoord.nl/wp-content/uploads/2014/01/WE-rapport-8504-Aanscherping-EPC-2015-eindrapport-versie-20-12-2013-pdf$

 $^{^{16}}$ NEN 7120+C2/C3, C4, C5, "Energy performance of buildings -Determination method, 2012"

Average energy consumption offices, shops and dwellings in the Netherlands

The average for offices and shops is calculated on the basis of the current distribution of energy labels, the number of energy labels A, the number of energy labels B, et cetera.

The energy label database of RVO provides the number of offices and retail stores per energy label in The Netherlands¹⁷. The database only includes the buildings which obtained an official energy label. We assume that the energy use of these buildings to be the average energy use of Dutch offices and retail stores. The calculated average energy-index (EI) for offices is 1.29 and for shops 1.04. These EI values are used to calculate the average primary energy consumption and are compared to the EI of buildings in the portfolio.

The calculated average primary energy consumption and resulting CO_2 emission of Dutch buildings can be found in Table 7. For comparison only the energy consumption and CO_2 emission per m^2 usable floor area will be used.

Table 7 Calculated primary energy consumption for average buildings in The Netherlands, same size as the new and existing buildings in the green bond portfolio's.

Average existing buildings NL											
object type	floor area	energy	EI		primary e	nergy use	CO2	CO2			
ABN AMRO		label									
-	m2		-	kWh/m2	MJ/m2	GJ/m2	kg/m2	tonnes			
offices	9,602	D	1.29	209	751	7,211	34.3	329			
retail shops	5,205	В	1.04	284	1,024	5,331	41.3	215			

Energy upgrades

The CO_2 emissions of the buildings which have undergone an energy upgrade will be calculated according to ISSO 75.3, which is the Dutch calculation method used to determine the energy label for buildings with a non-residential building function. For most of the buildings there is also an estimation of involved consultants of the expected reduction of CO_2 -emissions. These estimates have been used to calculate the reduction of the primary energy consumption.

¹⁷ RVO database official energy labels, January 2019

5.2 Impact indicator 1: Energy performance

The energy labels of the existing offices are A or A+ with an energy index (EI) 18 at issuance that varies from 0.78 to 0.91. The new offices are assumed to follow the required EPC of 1.1 (office).

Table 8 below shows the primary energy consumption of the ABN AMRO portfolio compared to the average for The Netherlands. The energy consumption is given in GJ, MJ/m² and in kWh/m².

Table 8 Calculated primary energy consumption for new and existing buildings in the ABN AMRO portfolios.

New financing and existing buildings

ivew illiancing	vew interioring and existing buildings												
object type	floor area	А	Average NL			Portfolio		Savings					
ABN AMRO	m2	kWh/m2	MJ/m2	GJ	kWh/m2	MJ/m2	GJ	kWh/m2	MJ/m2	GJ/m2	relative		
offices	28,807	209	751	21,632	107	384	11,054	102	367	10,578	-49%		
retail shops	5,205	284	1,024	5,331	81	291	1,516	204	733	3,815	-72%		
retail housing		230	827					230	827		-100%		
Total Portfolio	34,012	220	793	26,962	129	466	12,570	118	423	14,393	-53%		

Energy upgrades

Titel By abbigace											
object type	floor area	befo	before upgrade			er upgrade		Savings			
ABN AMRO	m2	kWh/m2	MJ/m2	GJ	kWh/m2	MJ/m2	GJ	kWh/m2	MJ/m2	GJ/m2	relative
offices	12,483	206	741	9,253	141	506	6,319	65	235	2,934	-32%
retail shops											
retail housing											
Total Portfolio	12,483	206	741	9,253	190	683	6,319	65	235	2,934	-32%
Total Portfolio	46,495	216	779	36,215	113	406	18,889	104	373	17,327	-48%

With the chosen methodology the buildings in the portfolio save about 17,000 GJ primary energy (-48%) per year compared to the average Dutch buildings with the same commercial function.

5.3 Impact indicator 2: CO₂ emission performance

The CO_2 -emission performance is calculated on the basis of the calculated primary energy consumption of the buildings and the CO_2 -emission indicator 0.03917 kg/MJ_{primary}¹⁹ for electricity and 0.506 kg/MJ_{primary} for natural gas.

Table 9 Calculated CO₂-emissions in the ABN AMRO portfolios compared to average for The Netherlands.

New financing and existing buildings

	0									
object type	floor area	Avera	Average NL		Portfolio		Savings			
ABN AMRO	m2	kg/m2	tonnes	kg/m2	tonnes	kg/m2	tonnes	relative	tonnes/Meuro	
offices	28,807	34.3	988	15.9	459	18.4	529	-54%	12.8	
retail shops	5,205	41.3	215	11.7	61	29.5	154	-72%	16.2	
retail housing		40.7				40.7		-100%	-	
Total Portfolio	34,012	35.4	1,203	15.3	521	20.1	683	-57%	13.5	

Energy upgrades

object type	floor area before		grade	after upgrade			Savings		
ABN AMRO	m2	kg/m2	tonnes	kg/m2	tonnes	kg/m2	tonnes	relative	tonnes/Meuro
offices	12,483	33.8	422	23.1	288	10.7	134	-32%	18.9
retail shops									-
retail housing									-
Total Portfolio	12,483	33.8	422	23.1	288	10.7	134	-32%	18.9
Total Portfolio	46,495	35.0	1,625	17.4	809	17.6	817	-50%	14.1

With the chosen methodology the buildings in the portfolio save about 817 tonnes of CO₂ emission (-50%) per year compared to the average Dutch buildings with the same commercial function.

 $^{^{18}\} http://wetten.overheid.nl/BWBR0020921/BijlageII/geldigheidsdatum_07-05-2015$

 $^{^{19}}$ 0.361 kg/kWh_{on the meter}; www.co2emissiefactoren.nl (0.361 / 3.6 (MJ/kWh) * 0.39 (efficiency Dutch grid) = 0.03917 1.78 kg/m³ natural gas equals 1.78 / (35.17 MJ/m³) = 0.506 kg/MJ_{primary}

6 Annexes

6.1 EPC-requirements

Figure 2 Development of EPC-requirements per building type/function²⁰

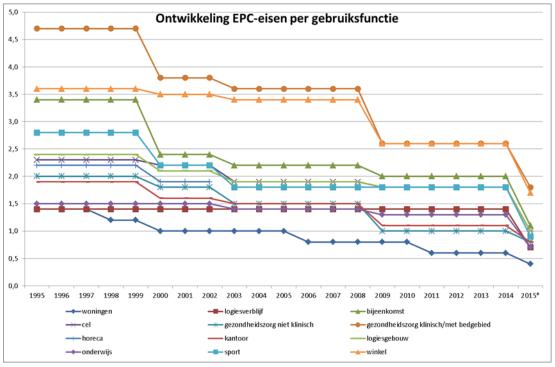


Table 10 Development of EPC-requirements per use function 20

Figures in blue and bold indicate a change in the requirements.

Gebruiksfunctie	Function	1995	1998	2000	2003	2006	2009	2011	2015
Woningen	Residential	1.4	1.2	1.0	1.0	0.8	0.8	0.6	0.4
Logiesverblijf	Lodging stay	1.4	1.4	1.4	1.4	1.4	1.4	1.4	0.7
Bijeenkomst	Gathering	3.4	3.4	2.4	2.2	2.2	2.0	2.0	1.1
Cel	Prison Cell	2.3	2.3	2.2	1.9	1.9	1.8	1.8	1.0
Gezondheidszorg niet klinisch	Non-clinical health care	2.0	2.0	1.8	1.5	1.5	1.0	1.0	0.8
Gezondheidszorg met bedgebied	Health care	4.7	4.7	3.8	3.6	3.6	2.6	2.6	1.8
Horeca	Hospitality	2.2	2.2	1.9	-	-	-	-	-
Kantoor	Offices	1.9	1.9	1.6	1.5	1.5	1.1	1.1	0.8
Logiesgebouw	Lodging building	2.4	2.4	2.1	1.9	1.9	1.8	1.8	1.0
Onderwijs	Education	1.5	1.5	1.5	1.4	1.4	1.3	1.3	0.7
Sport	Sports	2.8	2.8	2.2	1.8	1.8	1.8	1.8	0.9
Winkel	Retail	3.6	3.6	3.5	3.4	3.4	2.6	2.6	1.7
Industrie	Industry	-	-	-	-	-	-	-	-

 $^{^{20} \} http://www.lente-akkoord.nl/wp-content/uploads/2014/01/WE-rapport-8504-Aanscherping-EPC-2015-eindrapport-versie-20-12-2013-.pdf$

6.2 Average energy consumption Dutch households

Table 11 Average energy consumption Dutch Households

	Gemiddeld - Nederland							
	2010	2011	2012	2013	2014	2015	2016	2017
elektriciteitsgebruik alle woningen [k	3.300	3.250	3.200	3.150	3.050	2.980	2.910	2.860
elektriciteitsgebruik huurwoningen [?	?	?	2.450	2.350	2.300	2.260	2.210
elektriciteitsgebruik koopwoningen [?	?	?	3,700	3.550	3.480	3.400	3.330
gasgebruik alle woningen (temperat	1.620	1.570	1.480	1.450	1.410	1.340	1.320	1.310
gasgebruik huurwoningen (temperat	?	?	?	1.230	1.180	1.100	1.07 0	1.070
gasgebruik koopwoningen (temperat	?	?	?	1.680	1.650	1.580	1.550	1.550

Source: www.klimaatmonitor.databank.nl, June 2019,

https://klimaatmonitor.databank.nl/Jive?workspace_guid=e981aeb0-bd68-4a29-b98e-85fe95863edd

6.3 Costs of pv-systems

The table below lists all used references to establish an average cost for pv-systems in the period 2011-2016, as used for project category B. Costs are given in euro/Wp.

Table 12 Cost development Solar PV systems; prices in euro/Wp, including 21% VAT

Date	PV-loans	SDE - expectation	SDE - review	SMZ	ABN AMRO	Remarks	Source	Link
01-07-2011			2,50			voor 50 a 100 kWp	Eindadvies SDE+ 2012	https://www.ecn.nl/publicaties/PdfFetch.aspx?nr=E0 N-E11-054
apr-12				1,65		average flat/pitched roof		http://zonnestroom.ophetweb.nu/wp- content/uploads/2013/03/PVmarkt-april2012.pdf
jun-12	2,23							
01-07-2012			1,57			voor 100 kWp	Eindadvies SDE+ 2013	https://www.ecn.nl/publicaties/PdfFetch.aspx?nr=E0 N-E12-038
aug-12				1,55		average flat/pitched roof		http://zonnestroom.ophetweb.nu/wp- content/uploads/2013/03/PVmarkt-aug2012.pdf
okt-12				1,50		average flat/pitched roof		http://zonnestroom.ophetweb.nu/wp- content/uploads/2013/04/Marktinventarisatie-
mrt-13				1,41		average flat/pitched roof		http://www.zonnestroomnl.nl/wp-content/uploads/2013/10/Marktinventarisatie-maar
01-04-2013		2,15				voor 50 a 100 kWp	Eindadvies SDE+ 2012	https://www.ecn.nl/publicaties/PdfFetch.aspx?nr=EC N-E11-054
01-04-2013			1,43			100 kWp	Eindadvies SDE+ 2014	https://www.ecn.nl/publicaties/PdfFetch.aspx?nr=EC N-E13-050
jun-13	1,78							
jul-13				1,40		average flat/pitched roof		http://www.zonnestroomnl.nl/wp- content/uploads/2013/11/Marktinventarisatie-juli-
okt-13				1,43		average flat/pitched roof		http://www.zonnestroomnl.nl/wp- content/uploads/2014/03/Marktinventarisatie-
jan-14				1,41		average flat/pitched roof		http://www.zonnestroomnl.nl/wp- content/uploads/2014/07/markt-inventarisatie-
apr-14				1,35		average flat/pitched roof		http://www.zonnestroomnl.nl/wp- content/uploads/2014/08/markt-apr2014def.pdf
jun-14	1,58							
01-07-2014			1,37			100 kWp	Eindadvies SDE+ 2015	https://www.ecn.nl/publicaties/PdfFetch.aspx?nr=E0 N-E14-035
01-07-2014			1,33			250 kWp	Eindadvies SDE+ 2016	https://www.ecn.nl/publicaties/PdfFetch.aspx?nr=E0 N-E15-052
01-10-2014		1,45				100 kWp	Eindadvies SDE+ 2013	https://www.ecn.nl/publicaties/PdfFetch.aspx?nr=EC N-E12-038
01-07-2015			1,33			250 kWp	Eindadvies SDE+ 2017	https://www.ecn.nl/publicaties/PdfFetch.aspx?nr=ECN-E16-040
01-10-2015		1,31				100 kWp	Eindadvies SDE+ 2014	https://www.ecn.nl/publicaties/PdfFetch.aspx?nr=EC N-E13-050
01-04-2016			1,75			15-30 kWp	Kostenonderzoek zonne	https://www.ecn.nl/publicaties/PdfFetch.aspx?nr=EC N-N17-012
01-04-2016			1,46			15-1000 kWp	Kostenonderzoek zonne	https://www.ecn.nl/publicaties/PdfFetch.aspx?nr=E0 N-N17-012
01-07-2016		1,25				100 kWp	Eindadvies SDE+ 2015	https://www.ecn.nl/publicaties/PdfFetch.aspx?nr=E0 N-E14-035
01-10-2016			1,59			15-30 kWp	Kostenonderzoek zonne	https://www.ecn.nl/publicaties/PdfFetch.aspx?nr=EC N-N17-012
01-10-2016			1,35			15-1000 kWp	Kostenonderzoek zonne	https://www.ecn.nl/publicaties/PdfFetch.aspx?nr=EC N-N17-012
01-07-2017		1,22				250 kWp	Eindadvies SDE+ 2016	https://www.ecn.nl/publicaties/PdfFetch.aspx?nr=EC N-E15-052
01-07-2018		1,24				250 kWp	Eindadvies SDE+ 2017	https://www.ecn.nl/publicaties/PdfFetch.aspx?nr=EC N-E16-040
01-07-2019		1,12						