Poland NECP Analysis

May 4, 2024

Prepared for:

Carbon-Free Europe

Prepared by:

Evolved Energy Research

EVOLVED ENERGY RESEARCH

Agenda

- Project Scope and Background
- Results
- Conclusions

Project Scope and Background

- Leverage modeling developed by Carbon-Free Europe to comment on Poland's NECP
- Analyze multiple scenarios and sensitivities to develop additional understanding and intuition for Poland's role in a broader regional and EU context
- Provide analysis and technical report that can be leveraged publicly to influence energy-sector decision-making. Provide outputs that can be used by Princeton to downscale energy sector infrastructure.

- Leveraged updated ADP 2024 framework for underlying data and assumptions (technologies, fuel prices, European emissions prices, etc.)
- Re-configured the model topography and developed Poland-specific emissions targets
- Scenarios developed to represent varied futures for future Polish energy system with a focus on pathways to 2050

Background on Evolved Energy Research

EER addresses key policy and strategy questions raised by a transformation of our energy system to meet greenhouse gas emission goals

Annual Decarbonization Perspectives U.S. and Europe

<u>NGOs</u>

NRDC, TNC, SDSN, GridLab, Sierra Club, CETI, OCT, UCS, EDF, CATF, BPC, Third Way, RMI, and others

State & Local Energy Offices

Massachusetts, Washington, New Jersey, Maine

Utilities

PGE, DTE, Hydro Quebec, and others

<u>Others</u>

Princeton University, University of Queensland, Breakthrough Energy, Inter-American Development Bank, DOE, NREL, UVA

Methodology: Modeling Tools

Demand-side tool

- Produces bottom-up projection of final energy demand for all end-uses
- Incorporates scenario-based electrification and energy efficiency
 - Characterizes rollover of stock over time
 - Simulates the change in total energy demand and load shape for every end-use

ENERGY

PATHWAYS

Supply-side tool

- Capacity expansion model produces cost-optimal energy supply
- Simulates hourly electricity operations and annual investment decisions
- Electricity and fuels are co-optimized to identify sector coupling opportunities
- State of charge of electricity and fuels storage tracked over the year
- Minimizes net present value of costs for a study horizon

Scenarios and Model Setup

Scenarios	Description
Core	Net-Zero RIO scenario for Poland (straight-line from 2022 to 2050) with standard resource availability, costs, etc. Based on a high-electrification demand scenario.
High Biomass	Expanded availability of biomass resources including forestry wastes and energy crops
High Coal w/CCS	Requirement to maintain at least 15 GWs of coal plants (with or without CCS) operating at least at 50% capacity factors. Coal w/CCS deployment optimal under that constraint.
High Nuclear Costs	Assumes a higher cost trajectory for new-build nuclear plants.
High Offshore Wind Costs	Standard assumption is supply curves based on aggressive long-term offshore wind cost declines. This uses supply curves for cost and performance based on more moderate cost and performance improvements (13-20% LCOE premium over Core assumptions)
No Additional Onshore Wind	No onshore wind able to be built in Poland past planned projects with a 2024 online date (caps overall onshore wind at 11.6 GW).
Slow Consumer Uptake	Net-Zero scenario with more limited contributions from electrification and fuel switching.
Reference	Scenario that combines the consumer behavior in Slow Consumer Uptake and hits emissions limits consistent with current Polish policy (35% reduction from 1990 levels by 2030)

page 8

Supply				Demand				
Input	Unit	2030	2050	Input	Unit	2030	2050	
Nuclear LCOE	€/MWh	85/ <mark>123</mark>	58/ <mark>82</mark>	Passenger EV Stock	Vehicles	8.500.000/ 1.900.000	19.300.000/ 15.400.000	
Offshore Wind LCOE	€/MWh	44-57/ <u>50-64</u>	35-48 / 42-51		Vehieles	-,,,		All Other Scenarios
Onshore Wind LCOE	€/MWh	34 -45	32 - 43	Freight EV Stock	venicies	660,000/ 220,000	3,230,000/ 2,320,000	High Nuclear Costs
Large Scale Solar - LCOE	€/MWh	40	37	Freight FCV Stock	Vehicles	220,000/ 90,000	1,080,000/ 780,000	High Offshore Wind Costs
Rooftop Solar - LCOE	€/MWh	50	41	Residential Heat Pumps Stock Share	%	16%/ 3%	45%/ 31%	High Biomass
Offshore Wind Resource Potential	GW	81	81	·		·		Reference
Onshore Wind Resource Potential	GW	28	28	Tertiary Heat Pump				
Large Scale Solar Resource Potential	GW	29	29	Stock Share	%	50%/ 42%	75%/ 67%	Slow Consumer Upta
Rooftop Solar Resource Potential	GW	91	91					
Natural Gas Price	€/GJ	5.8	4.8					
Coal Price	€/GJ	2.5	2					
Lignite Price	€/GJ	1.8	1.8					
Geologic Sequestration Annual Injection Potential	Mt CO2	18	18					
Biomass Limit	Mtoe	15 / 3 8	16/ 41					
Emissions Target	Mt CO2e	261/290	0/261					

Key Model Inputs

EVOLVED ENERGY RESEARCH

Results

Scenario Impacts

Scenarios	Description	High-Level Impact
Core	Net-Zero RIO scenario for Poland (straight-line from 2022 to 2050) with standard resource availability, costs, etc. Based on a high-electrification demand scenario.	
High Biomass	Expanded availability of biomass resources including forestry wastes and energy crops	Expansion of fuels production (hydrogen, e-fuels, and biofuels) as the biomass carbon becomes a high-value carrier of energy (e-fuels and biofuels) or valuable for sequestration.
High Coal w/CCS	Requirement to maintain at least 15 GWs of coal plants (with or without CCS) operating at least at 50% capacity factors. Coal w/CCS deployment optimal under that constraint.	Large increase in necessary inter-regional CO2 pipelines to store carbon (exports of ~100 Mt annually by 2050). Reduction in new nuclear electric capacity.
High Nuclear Costs	Assumes a higher cost trajectory for new-build nuclear plants.	Model chooses not to construct new nuclear facilities, replacing their energy principally with an expansion of offshore wind resources and their reliability contributions with a mix of battery storage and additional gas resources.
High Offshore Wind Costs	Standard assumption is supply curves based on aggressive long-term offshore wind cost declines. This uses supply curves for cost and performance based on more moderate cost and performance improvements (13-20% LCOE premium over Core assumptions)	Reduction from 45 GWs of offshore wind in Core scenario to 27 in High Offshore Wind Costs as higher offshore wind costs lowers its competitiveness against nuclear (Increase of 8 GWs of nuclear capacity).
No Additional Onshore Wind	No onshore wind able to be built in Poland past planned projects with a 2024 online date (caps overall onshore wind at 11.6 GW).	New onshore wind capacity is replaced almost completely by additional floating offshore wind.
Slow Consumer Uptake	Net-Zero scenario with more limited contributions from electrification and fuel switching.	Requires an accelerated retirement of existing coal generation to make up for more limited reductions from electrification of heating and transport. Coal generation not necessary to meet additional 2030 load growth seen in Core.
Reference	Scenario that combines the consumer behavior in Slow Consumer Uptake and hits emissions limits consistent with current Polish policy (35% reduction from 1990 levels by 2030)	Maintains coal generation through 2050. More limited deployment of clean energy technologies in electricity and more limited expansion of clean fuel sectors (hydrogen and biofuels).

Final Energy Demand

- Core scenario reduces
 2030 demand
 approximately in line
 with 2030 NECP target
- Slower consumer uptake of efficiency and electrification increases final energy through 2030 before declining by 2050 with electrification

Final Energy Demand by End-Use

Core

- Significant final energy efficiency in space heating (transition from boilers to heat pumps along with building envelope improvements) as well as onroad vehicles (ICE to EV transition)
- Continued growth in industrial demand offset by some efficiency gains

Primary Energy Demand

- Primary energy results can vary widely depending on electricity resource selection and hydrogen production processes as well as the achieved level of electrification
- High Offshore Wind Costs (resulting in more nuclear) our and High Coal w/CCS both increase primary energy; High biomass availability also increases primary energy use (given the conversion efficiency of biofuels production)

Emissions

- Early emissions reductions driven by replacement of coal in electricity
- Core case also sees declines in oil use through electrification of transport
- Long-term emissions reductions from continued electrification and displacement of gas in buildings, industry, and power

Electricity Sector - Load

- Large increase in overall electricity demand in all cases
- Largest increases in heat, transport, and e-fuel production (electrolysis). Many of these loads are different than current electric loads in terms of voltage and potential location (i.e. electrolysis loads can be collocated with generation resources) so it doesn't imply a commensurate increase in grid capacity
- The necessity to plan, invest, and deploy a large amount of new capital in the electric sector is obvious given precipitous increases in load

Electricity Sector - Capacity

- Economic onshore wind deployment is consistent across cases except where restricted (No Additional Onshore Wind)
- High Nuclear Costs results in a significant increase in renewable capacity deployed (offshore wind and solar) as well as the largest increase in gas and electricity storage to provide reliability
- High Coal w/CCS sees over 13 GWs of coal CCS capacity

Electricity Sector - Generation

- Significant increases in electricity demand means that there is a dual challenge of phasing out coal in a growth environment
- Technology deployment in the this analysis is very sensitive to anticipated resource costs; some scenarios have heavily nuclear portfolios while high anticipated costs prevents optimal build altogether.
- Suggests a balanced future might be appropriate to hedge risk of single technology being too large a part of the portfolio.

Storage Needs

- Highly renewable systems necessitate an economywide energy balancing strategy including electricity, heat, and hydrogen storage to mitigate overgeneration and undergeneration conditions
- The highest level of storage needs are in the High
 Nuclear Costs scenario, which includes a higher share of renewables in the electric sector.

Hydrogen Demand

- Poland becomes a significant producer of e-fuels (ammonia; synthetic liquids) due to availability of electricity resources as well as potential carbon feedstocks (principally biomass capture). This is seen most clearly in the High Biomass scenario.
- Other scenarios are similar to each other in terms of hydrogen demand, with only
 Slow Consumer Uptake and Reference seeing less direct demand in transport and industry

Hydrogen Production

- Poland leverages its nuclear, offshore wind, and biomass potential to become a large producer of hydrogen in the long-term
- In the near-medium term, electricity resources are devoted to decarbonizing electricity supply directly, and so domestic hydrogen production is slow to develop

Other Fuels

- We see an increase in gas in many scenarios as coal is retired and displaced (principally with renewable) but also with some gas (for heating and power)
- Refined fuels demand is commensurate with the pace of electrification, with the Slow Consumer Uptake scenario seeing the slowest decline

Steam Supply

- The coal phaseout happens in both power as well as steam production. In early years, coal provides the majority of steam in Poland.
- Heat pumps are deployed in the 2030s with continued decarbonization of electricity with electric and fuel boilers used to meet peak steam demands
- Some nuclear facilities in the long-term are integrated as CHP facilities similar to the role currently played by coal

Biomass Usage

- Biomass use in buildings declines in the long-term with deployment of heat pumps and improvement in building envelopes
- Industrial heat provision is consistent
- Growth is almost entirely in biofuels production (BECCS H2 or BECCS liquid fuels)

Carbon Management

- Poland becomes a net exporter of CO2 in almost all cases through constructed pipelines to other countries with more attractive sequestration opportunities. This is seen most starkly in the High Coal w/CCS scenario.
- CO₂ utilization from capture at biofuels facilities allows for additional synthetic fuel production with the highest amount of utilization occurring in the **High Biomass** scenario.

Resource Utilization

- Key decarbonization resources include renewable potential, biomass, and geologic sequestration
- Assessing how each scenario uses the overall resource potential an be illuminating as to their robustness as well as indicate the attractiveness of different resource types to the model
- Almost all of the estimated fixed-bottom offshore wind is deployed in all scenarios
- Floating offshore wind is deployed as an alternative in the High Nuclear Costs or No Additional Onshore Wind scenarios
- Except for the highest cost supplies, almost all biomass is used in all scenarios, with
 High Biomass leveraging almost the entire increase in supply

			ref	ere	nce	(ore	Ĵ	ł bic	nigh Sma	ו ISS	hig W	h cơ _cc	oal s	h nu cc	igh clear osts	of V	high fsho wind costs	re	addi ons W	no tion shore rind	al e	sl cons up ¹	ow sumer take
offshore wind - fixed	GW	20 0																						
offshore wind - floating	GW	40																						
onshore wind	GW	20 10																						
rooftop solar pv power plant	GW	50 0																						
large-scale solar	GW	20 10																						
		40K																						
		30K -															_							
biomass	KTO	20K -																				_		
		10K																						
		15 -																						
geologic sequestration	MT	10																						
5 5	_	5 0																						
			2030	2040	2050	2030	2040	2050	2030	2040	2050	2030	2040	2050	2030	2040	2030	2040	2050	2030	2040	2050	2030	2040 2050

Connectivity

- Greater interconnection with Germany and other Central European countries is economic in all cases
- The model also builds transboundary H2 pipelines from the Baltics through to Germany
- In the High Coal w/CCS scenario, the necessity to store over 100 MTs of CO2 requires expansions of pipelines to both Germany and the Nordic countries

Net Costs

- In the short-term, electrification of both vehicles, heating, and industry drives additional costs (+3B in the Core scenario in 2030 vs. .1B in Slow Consumer Uptake)
- In the longer-term, however, this delay significantly increases costs, with costs becoming significantly larger by 2050 with an incomplete demand-side transformation (5.3B vs. 12.1B)
- The High Coal w/CCS scenario increases costs in most years, with the most significant increase coming by 2050 where the relatively high costs of this electricity generation source, couple residual uncaptured emissions from coal imposing a significant burden on other sectors to additionally decarbonize, results in the highest cost scenario

	core	high biomass	high coal w_ccs	high nuclear costs	high offshore wind costs	no additional onshore wind	slow consumer uptake
2025	2.5B€	2.3B€	2.5B€	2.5B€	2.5B€	2.4B€	0.0B€
2030	3.0B€	2.8B€	3.1B€	3.0B€	3.0B€	3.4B€	0.1B€
2035	2.7B€	5.2B€	2.0B€	2.4B€	2.6B€	2.6B€	1.6B€
2040	1.18€	5.4B€	0.6B€	0.5B€	0.3B€	2.7B€	1.0B€
2045	-0.9B€	4.0B€	0.7B€	-0.1B€	-1.1B€	0.1B€	3.5B€
2050	5.3B€	6.5B€	13.3B€	4.8B€	5.9B€	5.6B€	12.1B€
	0B € 10B € Cost Above Reference	OB€ 10B€ Cost Above Reference					

2050 Net Cost by Sector

Key Supply-Side Investments by Decade

- Investment in key energy producing and converting technologies shows the necessary scale-up in spending (offset by savings from fossil fuels).
- Large differences in primary energy are reflected in the differences in the scale of investments (e.g. nuclear vs. offshore wind)
- Necessary investments peak in the 2040s with the rapid electrification of the economy

2020s	core		26B€							
	high biomass		26B€							
	high coal w_ccs		26B€							
	high nuclear costs		26B€							
	high offshore wind costs		27B€							
	no additional onshore wir	d								
	reference									
	slow consumer uptake		220 f	50D F	25D f	20P f				
2030s	core high biomass		39R £	Job € 72R €	230 €	RE 28RE	R2R£	60B €		
	high cool w. ccc		31R €	62B €	51			005 €		
	high nuclear costs		37B€	61B€	37	′B€				
	high offshore wind costs		32B€	32B€ 54	B€	25B€				
	no additional onshore wir	d	26B€	107B€		27B	€			
	reference	-	29B€	30B€						
	slow consumer uptake		<mark>23B €</mark> 24B €	38B€ 36B	€					
2040-2050	core		6	67B€		128B€		47B	€	
	high biomass			90B€		96B€	29B€		116B€	
	high coal w_ccs		46B	€ 66B	€		99B€	48B	€	
	high nuclear costs		33B€	1228	B€	23B€	56	βB€		
	high offshore wind costs		488	8€		177B€			58B€	
	no additional onshore wir	d		/4B€	000.6	153R€	2000.6	488 4		
	reference		50	DLE DLRE	88R€ 1	20P.£	Z8R€	EODE		
	Slow consumer uptake				1	.590 €		3954		1
			1							
solar		hydro				coal po	wer w/c	С		
onshore v	vind	gas power				biomas	s power	w/cc		
offshore	wind	electricity sto	rage			biofue	s w/cc			
nuclear p	ower	e-fuels								
· · · · · · · · · · · · · · · · · · ·	production and storage	direct air cant								

Discussion and Critical Questions

- This analysis improves on previous ADP analysis for Poland by developing a suite of scenarios that reveals some of the critical questions facing decision-makers as they position Poland for rapid decarbonization in the coming decades
- Further work will include a geospatial downscaling by the Princeton team of energy system outcomes modeled here.
- The following slides speak to critical questions identified in the course of this analysis that will need to be answered to ensure a successful energy system transition

Critical Questions

• Pace of coal retirement

- Meeting aggressive emissions targets in most scenarios means the rapid reduction in uncaptured coal generation, necessitating the simultaneous decarbonization of electricity and heat all while overall demands for both are likely to be increasing.
- The role of nuclear in the long-term under uncertain cost trajectories
 - In some scenarios, nuclear is a lynchpin resource that provides a large source of reliable electricity as well as heat and hydrogen production. In others, nuclear's contribution is much more limited but these systems have very different characteristics in terms of how the electricity system is operated; the economics of hydrogen production; and the necessity for storage and gas power and the scale of renewable build necessary.
- Transmission needs driven by offshore wind expansion
 - Our modeling has built-in transmission costs of for offshore wind resources but a portfolio that becomes
 offshore-wind dominant may need additional intra-regional transmission North to South that we haven't
 represented here. Those transmission needs may be mitigated with strategic placement of energy storage and
 hydrogen electrolysis.

Critical Questions cont.

• Renewable Resource Availability

- Poland has an attractive onshore wind resource that may be limited by societal preference. Significantly limiting this deployment will have Poland relying on either Floating Offshore Wind or nuclear facilities, both technologies with cost and performance uncertainty.
- Pace of consumer adoption
 - While electrification of heat and transport may be costly in the near-term, they position Poland for maintaining reasonable energy system costs in the long-term under net-zero pathways. Finding the appropriate middle-ground for Polish consumers will be critical.
- Geologic Sequestration
 - There is some uncertainty about the cost and injection potential of geologic storage in Poland. This limit is critical to many energy sector decisions (especially in the scenario that maintains a large amount of coal generation through 2050) and developing a better understanding of the types of CO2 networks necessary under different scenarios would be helpful in determining their viability.

Critical Questions cont.

• Sector Coupling Strategies

 Sector coupling between electricity, heat, and fuels is important for maintaining reasonable energy system costs in decarbonizing systems. It is even more important in Poland given the large heat loads (building and industry) the potential for becoming a major producer of hydrogen. Decision-making in all of these sectors will have to be supported with good policy, market, and tariff design.

THANK YOU

www.evolved.energy