
What mom never told

you… about

multi-threading

@fernando_cejas

hello!

I am Fernando Cejas
I am here because I love to share experiences and

disasters I have made in my professional life...

You can find me at @fernando_cejas or
http://fernandocejas.com

hello!

A picture is worth a thousand words

These are MOM and
SISTER…

...grabbing a BEER...

A picture is worth a thousand words

May the FORCE of
MULTI-THREADING

be with you...my SON...

“
Multithreading is not

easy...multithreading is hard.

“
Redesigning your application to

run multithreaded on a
multicore machine is a little like

learning to swim by jumping into
the deep end.

“
The wall is there. We probably

won't have any more products
without multicore processors

[but] we see a lot of problems in
parallel programming.

1.

We are not multi-tasking

Humans are capable of doing two things at a time especially when
one of those activities is so ingrained that it can be done on

autopilot.

2.

...but computers are!!!

Computer can run things in parallel concurrently.
But what does that mean exactly?

Concurrent
Concurrency is about dealing with A LOT of
things...

Concurrency vs Parallelism

What is the difference?

Parallel
Parallelism is about doing A LOT of things
at ONCE.

This talk is really about THREADING...

...RxJava ...Threads
and Locks

...Kotlin
Coroutines

and maybe something else...

And not about Android...

HandlersAsyncTasks JobScheduler

Let’s review some concepts

Process
It is an instance of a computer
program that is being executed. It
contains the program code and its
current activity.

Thread
It is the smallest sequence of
programmed instructions that can
be managed independently by a
scheduler, which is typically a part of
the operating system.

Mutability
A mutable object can be changed
after it's created, and an immutable
object can't.

Deadlock
Describes a situation where two or
more threads are blocked forever,
waiting for each other.

Race Condition
Occurs when two or more threads
can access shared data and they try
to change it at the same time. Both
threads are "racing" to
access/change this data.

Starvation
Describes a situation where a thread
is unable to gain regular access to
shared resources and is unable to
make progress.

✘ When an application component starts and the
application does not have any other components running,
the Android system starts a new Linux process for the
application with a single thread of execution.

✘ By default, all components of the same application run in
the same process and thread (called the "main" thread).

✘ Android might decide to shutdown a process at some
point, when memory is low and required by other
processes that are more immediately serving the user.
Application components running in the process that's
killed are consequently destroyed.

Android

Linux process:

- UI Thread

Why

Multithreading?
It is always IMPORTANT to know the

fundamentals but...

Responsiveness

Concurrency can ensure improved
responsiveness of a program that interacts

with the environment.

Resources

Use resources in a better and more
performant way.

Simplicity

Concurrency can simplify the
implementation and maintainability of

computer programs. Divide and conquer.

A simple problem on Android

Get
Wikipedia

Pages

Grab text
from each

Page

Count
words

occurrence

✘ https://github.com/android10/Multi-Threading-Samples

We will be parsing 2 XML files of 30 MB each with Wikipedia content.

“
FIRST, make code work, THEN

make it right, THEN make it
fast…if it isn’t fast enough.

In my defense...FOR LEARNING PURPOSE....

1.

Threads and Locks

class SequentialWordCount {

 private val counts: HashMap<String, Int?> = HashMap()

 fun run() {

 val time = measureTimeMillis {

 Thread {

 val pagesOne = Pages(0, 700, Source().wikiPagesBatchOne())

 pagesOne.forEach { page -> Words(page.text).forEach { countWord(it) } }

 val pagesTwo = Pages(0, 700, Source().wikiPagesBatchTwo())

 pagesTwo.forEach { page -> Words(page.text).forEach { countWord(it) } }

 }.start()

 }

 Log.d(LOG_TAG, "Number of elements: ${counts.size}")

 Log.d(LOG_TAG, "Execution Time: $time ms")

 }

 private fun countWord(word: String) {

 when(counts.containsKey(word)) {

 true -> counts[word] = counts[word]?.plus(1)

 false -> counts[word] = 1

 }

 }

}

1.

Threads and Locks

Run sequentially

21.678 millis
Execution time

196.681 words found
Two 30 MB XML files processed on an android device

com.fernandocejas.sample.threading.threads.SequentialWordCount: Number of elements:

196681

com.fernandocejas.sample.threading.threads.SequentialWordCount: Execution Time: 21678 ms

2

Threads and Locks

Run Two Threads

class TwoThreadsWordCount {

 private val counts: ConcurrentHashMap<String, Int?> = HashMap()

 fun run() {

 val time = measureTimeMillis {

 val one = Thread {

 val pagesOne = Pages(0, 700, Source().wikiPagesBatchOne())

 pagesOne.forEach { page -> Words(page.text).forEach { countWord(it) } }

 }

 val two = Thread {

 val pagesTwo = Pages(0, 700, Source().wikiPagesBatchTwo())

 pagesTwo.forEach { page -> Words(page.text).forEach { countWord(it) } }

 }

 one.start(); two.start(); one.join(); two.join()

 }

 Log.d(LOG_TAG, "Number of elements: ${counts.size}")

 Log.d(LOG_TAG, "Execution Time: $time ms")

 }

 private fun countWord(word: String) {

 when(counts.containsKey(word)) {

 true -> counts[word] = counts[word]?.plus(1)

 false -> counts[word] = 1

 }

 }

}

18.427 millis
Execution time

196.681 words found
Two 30 MB XML files processed on an android device

com.fernandocejas.sample.threading.threads.TwoThreadsWordCount: Number of elements:

196.681

com.fernandocejas.sample.threading.threads.TwoThreadsWordCount: Execution Time: 18427 ms

2.

Rx Java

“
RxJava is more than a framework

for dealing with multithreading.
Concurrency is ONLY one of its

features.

Use the best tool for the right job.

What are RxJava Schedulers?

✘ If you want to introduce
multithreading into your cascade of
Observable operators, you can do so
by instructing those operators (or
particular Observables) to operate
on particular Schedulers.

Observable.just("Hello World")

.subscribeOn(Schedulers.computation())

.observeOn(Schedulers.UI)

2.

RxJava 2

Run sequentially

class SequentialWordCount {

 private val counts: HashMap<String, Int?> = HashMap()

 fun run() {

 val startTime = System.currentTimeMillis()

 val observable = Observable.fromCallable {

 val pagesOne = Pages(0, 700, Source().wikiPagesBatchOne())

 pagesOne.forEach { page -> Words(page.text).forEach { countWord(it) } }

 val pagesTwo = Pages(0, 700, Source().wikiPagesBatchTwo())

 pagesTwo.forEach { page -> Words(page.text).forEach { countWord(it) } }

 }

 observable

 .doOnComplete { logData(System.currentTimeMillis() - startTime) }

 .subscribeOn(Schedulers.single())

 .subscribe()

 }

 private fun countWord(word: String) {

 when(counts.containsKey(word)) {

 true -> counts[word] = counts[word]?.plus(1)

 false -> counts[word] = 1

 }

 }

}

20.920 millis
Execution time

196.681 words found
Two 30 MB XML files processed on an android device

com.fernandocejas.sample.threading.rxjava.SequentialWordCount: Number of elements: 196681

com.fernandocejas.sample.threading.rxjava.SequentialWordCount: Execution Time: 20920 ms

2.

RxJava 2

Run Two Threads

class TwoThreadsWordCount {

 private val counts: ConcurrentHashMap<String, Int?> = ConcurrentHashMap()

 fun run() {

 val startTime = System.currentTimeMillis()

 val observablePagesOne = Observable.fromCallable {

 val pagesOne = Pages(0, 700, Source().wikiPagesBatchOne())

 pagesOne.forEach { page -> Words(page.text).forEach { countWord(it) } }

 }.subscribeOn(Schedulers.newThread())

 val observablePagesTwo = Observable.fromCallable {

 val pagesTwo = Pages(0, 700, Source().wikiPagesBatchTwo())

 pagesTwo.forEach { page -> Words(page.text).forEach { countWord(it) } }

 }.subscribeOn(Schedulers.newThread())

 observablePagesOne.mergeWith(observablePagesTwo)

 .doOnComplete { logData(System.currentTimeMillis() - startTime) }

 .subscribe()

 }

 private fun countWord(word: String) {

 when(counts.containsKey(word)) {

 true -> counts[word] = counts[word]?.plus(1)

 false -> counts[word] = 1

 }

 }

}

17.256 millis
Execution time

196.681 words found
Two 30 MB XML files processed on an android device

com.fernandocejas.sample.threading.rxjava.TwoThreadsWordCount: Number of elements: 196681

com.fernandocejas.sample.threading.rxjava.TwoThreadsWordCount: Execution Time: 17256 ms

3.

Kotlin Coroutines

What are kotlin coroutines?

✘ Coroutines are light-weight threads. A
lightweight thread means it doesn’t map
on native thread, so it doesn’t require
context switching on processor, so they
are faster.

✘ They are a way to write asynchronous
code sequentially. Instead of running into
callback hells, you write your code lines
one after the other.

fun main(args: Array<String>) = runBlocking {

 val job = launch(CommonPool) {

 val result = suspendingFunction()

 println("$result")

 }

 println("The result: ")

 job.join()

}

>> prints "The result: 5"

3

Kotlin Coroutines

Run sequentially

class SequentialWordCount {

 private val counts: HashMap<String, Int?> = HashMap()

 fun run() {

 launch(newSingleThreadContext("myThread")) {

 val startTime = System.currentTimeMillis()

 counter()

 logData(System.currentTimeMillis() - startTime)

 }

 }

 private suspend fun counter() {

 val pagesOne = Pages(0, 700, Source().wikiPagesBatchOne())

 pagesOne.forEach { page -> Words(page.text).forEach { countWord(it) } }

 val pagesTwo = Pages(0, 700, Source().wikiPagesBatchTwo())

 pagesTwo.forEach { page -> Words(page.text).forEach { countWord(it) } }

 }

 private fun countWord(word: String) {

 when(counts.containsKey(word)) {

 true -> counts[word] = counts[word]?.plus(1)

 false -> counts[word] = 1

 }

 }

}

20.958 millis
Execution time

196.681 words found
Two 30 MB XML files processed on an android device

com.fernandocejas.sample.threading.coroutines.SequentialWordCount: Number of elements:

196681

com.fernandocejas.sample.threading.coroutines.SequentialWordCount: Execution Time: 20958 ms

3

Kotlin Coroutines

Run Two Threads

class TwoThreadsWordCount {

 private val counts: ConcurrentHashMap<String, Int?> = ConcurrentHashMap()

 fun run() {

 val poolContext = newFixedThreadPoolContext(2, "ThreadPool")

 launch(poolContext) {

 val time = measureTimeMillis {

 val one = async(poolContext) { counterPages1() }

 val two = async(poolContext) { counterPages2() }

 one.await()

 two.await()

 }

 logData(time)

 }

 }

 private suspend fun counterPages1() {

 val pagesOne = Pages(0, 700, Source().wikiPagesBatchOne())

 pagesOne.forEach { page -> Words(page.text).forEach { countWord(it) } }

 }

 private suspend fun counterPages2() {

 val pagesTwo = Pages(0, 700, Source().wikiPagesBatchTwo())

 pagesTwo.forEach { page -> Words(page.text).forEach { countWord(it) } }

 }

}

18.980 millis
Execution time

196.681 words found
Two 30 MB XML files processed on an android device

com.fernandocejas.sample.threading.coroutines.TwoThreadsWordCount: Number of elements:

196681

com.fernandocejas.sample.threading.coroutines.TwoThreadsWordCount: Execution Time: 18980 ms

Round 1 Results

Single Thread Two Threads Better?

Threads and
Locks 21.678 ms 18.427 ms ???

RxJava 2 20.920 ms 17.256 ms ???

Kotlin
Coroutines 20.958 ms 18.980 ms ???

Adding one thread does not have a big impact...

What is really going on?

Hypothesis: ???

We can do better!

✘ Producer - Consumer pattern?
✘ Divide and Conquer?
✘ Reusing Threads?
✘ Other synchronized collections?

Some advice!

✘ Analyze the problem.
✘ Verify your assumptions.
✘ Measure, measure, measure.
✘ Measure, measure, measure.

Hypothesis 1: Am I using the right concurrent collection

for storing data?

Concurrent collections?

2.

RxJava 2

Run Two Threads

class TwoThreadsWordCount {

 private val counts: ConcurrentHashMap<String, Int?> = ConcurrentHashMap()

 fun run() {

 val startTime = System.currentTimeMillis()

 val observablePagesOne = Observable.fromCallable {

 val pagesOne = Pages(0, 5000, Source().wikiPagesBatchOne())

 pagesOne.forEach { page -> Words(page.text).forEach { countWord(it) } }

 }.subscribeOn(Schedulers.newThread())

 val observablePagesTwo = Observable.fromCallable {

 val pagesTwo = Pages(0, 5000, Source().wikiPagesBatchTwo())

 pagesTwo.forEach { page -> Words(page.text).forEach { countWord(it) } }

 }.subscribeOn(Schedulers.newThread())

 observablePagesOne.mergeWith(observablePagesTwo)

 .doOnComplete { logData(System.currentTimeMillis() - startTime) }

 .subscribe()

 }

 private fun countWord(word: String) {

 when(counts.containsKey(word)) {

 true -> counts[word] = counts[word]?.plus(1)

 false -> counts[word] = 1

 }

 }

}

Verifying assumptions:

parallel collections

Test started for: class java.util.Hashtable

500K entried added/retrieved in 1432 ms

500K entried added/retrieved in 1425 ms

500K entried added/retrieved in 1373 ms

500K entried added/retrieved in 1369 ms

500K entried added/retrieved in 1438 ms

For class java.util.Hashtable the average time 1407 ms

Test started for: class java.util.Collections$SynchronizedMap

500K entried added/retrieved in 1431 ms

500K entried added/retrieved in 1460 ms

500K entried added/retrieved in 1387 ms

500K entried added/retrieved in 1456 ms

500K entried added/retrieved in 1406 ms

For class java.util.Collections$SynchronizedMap the average time 1428 ms

Test started for: class java.util.concurrent.ConcurrentHashMap

500K entried added/retrieved in 413 ms

500K entried added/retrieved in 351 ms

500K entried added/retrieved in 427 ms

500K entried added/retrieved in 337 ms

500K entried added/retrieved in 339 ms

For class java.util.concurrent.ConcurrentHashMap the average time 373 ms <== Much faster

Hypothesis 2: XML parsing?

I/0: Reading from disk?

2.

RxJava 2

Run sequentially

class SequentialWordCount {

 private val counts: HashMap<String, Int?> = HashMap()

 fun run() {

 val startTime = System.currentTimeMillis()

 val observable = Observable.fromCallable {

 val pagesOne = Pages(0, 5000, Source().wikiPagesBatchOne())

 pagesOne.forEach { page -> Words(page.text).forEach { countWord(it) } }

 val pagesTwo = Pages(0, 5000, Source().wikiPagesBatchTwo())

 pagesTwo.forEach { page -> Words(page.text).forEach { countWord(it) } }

 }

 observable

 .doOnComplete { logData(System.currentTimeMillis() - startTime) }

 .subscribeOn(Schedulers.single())

 .subscribe()

 }

 private fun countWord(word: String) {

 when(counts.containsKey(word)) {

 true -> counts[word] = counts[word]?.plus(1)

 false -> counts[word] = 1

 }

 }

}

Measuring:

Measure and Measure

com.fernandocejas.sample.threading.rxjava.SequentialWordCount: PageOne creation time: 15 ms

com.fernandocejas.sample.threading.rxjava.SequentialWordCount: PageTwo creation time: 13 ms

com.fernandocejas.sample.threading.rxjava.SequentialWordCount: Total Execution Pages Creation: 28 ms

com.fernandocejas.sample.threading.data.Pages: Time Parsing XML File: 4062 ms

com.fernandocejas.sample.threading.data.Pages: Time Processing XML Node Elements: 611 ms

com.fernandocejas.sample.threading.data.Pages: Total Time: 4673 ms

com.fernandocejas.sample.threading.data.Pages: Time Parsing XML File: 4360 ms

com.fernandocejas.sample.threading.data.Pages: Time Processing XML Node Elements: 631 ms

com.fernandocejas.sample.threading.data.Pages: Total Time: 4991 ms

What are the BOTTLENECKS

and FIRST CONCLUSIONS?

Threads being idle waiting for I/0.

Locking the map when adding elements.

We can do better!

✘ Producer - Consumer pattern?
✘ Divide and Conquer?
✘ Reusing Threads?
✘ Other synchronized collections?

4

Better solution

Kotlin Coroutines

class BetterWordCount(source: Source) {

 fun run() {

 launch(CommonPool) {

 val time = measureTimeMillis {

 val one = async(CommonPool) { counter(0.rangeTo(749), filePagesOne) }

 val two = async(CommonPool) { counter(750.rangeTo(1500), filePagesOne) }

 val three = async(CommonPool) { counter(0.rangeTo(749), filePagesTwo) }

 val four = async(CommonPool) { counter(750.rangeTo(1500), filePagesTwo) }

 one.await(); two.await(); three.await(); four.await()

 }

 logData(time)

 }

 }

 private suspend fun counter(range: IntRange, file: File): HashMap<String, Int?> {

 val counts: HashMap<String, Int?> = HashMap()

 val pagesOne = Pages(range.start, range.endInclusive, file)

 pagesOne.forEach { page -> Words(page.text).forEach { countWord(counts, it) } }

 return counts

 }

}

14.621 millis
Execution time

196.681 words found
Two 30 MB XML files processed on an android device

com.fernandocejas.sample.threading.coroutines.BetterWordsCount: Number of elements: 196781

com.fernandocejas.sample.threading.coroutines.BetterWordsCount: Execution Time: 14621 ms

Round 2 Results

Single Thread Two Threads Better?

Threads and
Locks 21.678 ms 18.427 ms ???

RxJava 2 20.920 ms 17.256 ms ???

Kotlin
Coroutines 20.958 ms 18.980 ms 14.621 ms

We can do better!

Homework!

Write sample code:
✘ Using Threads and Locks
✘ Using Kotlin Coroutines
✘ Using a pure FP Language

Contribute!

✘ https://github.com/android10/Multi-Threading-Samples

Facing multithreading problems:

✘ Debugging.
✘ Mutability.
✘ Performance.
✘ Testing.
✘ Sharing state.
✘ ???

...that is why is important to know the fundamentals and building blocks.

Verdict?

1. Use the right tool for the right job.
2. Always measure.
3. No silver bullets.

“
FIRST, make code work, THEN

make it right, THEN make it
fast…if it isn’t fast enough.

TODO (to explore):

✘ Memory Consumption.
✘ Android Threading Components.
✘ External Libraries.
✘ iOS Threading Model.
✘ Server Side Multithreading.

Contribute!

✘ https://github.com/android10/Multi-Threading-Samples

Out of curiosity

Other threading approaches:
✘ Actor Model
✘ FP Languages:

○ Clojure
○ Scala
○ Haskel

Wrapping up...

Responsiveness
Concurrency can ensure
improved responsiveness,
favoring better user
experiences and faster
applications.

Resources
By running tasks in parallel, the
use of resources is better and
more performant.

Simplicity
Multithreading is not easy...but
in many cases can simplify the
design of your system by using
a divide and conquer approach.

thanks!

Any questions?

You can find me here:

@fernando_cejas
http://fernandocejas.com

github.com/android10

Credits

Special thanks to all the people who made and released
these awesome resources for free:
✘ Presentation template by SlidesCarnival
✘ Photographs by Unsplash

http://www.slidescarnival.com/
http://unsplash.com/

