
The guide to Hardware acceleration
“G(PU) force”- Royi Benyossef



Who? What?

Introduction



Royi Benyossef
Introduction



Royi Benyossef
Introduction

Android developer since 2009



Royi Benyossef
Introduction

Android developer since 2009
Tech community activist, speaker and founder



Royi Benyossef
Introduction

Android developer since 2009
Tech community activist, speaker and founder
Mentor at * accelerator



Royi Benyossef
Introduction

Android developer since 2009
Tech community activist, speaker and founder
Mentor at * accelerator
Google expert since Dec 2012



Royi Benyossef
Introduction

Android developer since 2009
Tech community activist, speaker and founder
Mentor at * accelerator
Google expert since Dec 2012
Ecosystem relations manager at Samsung NEXT Tel-Aviv



Royi Benyossef
Introduction

Android developer since 2009
Tech community activist, speaker and founder
Mentor at * accelerator
Google expert since Dec 2012
Ecosystem relations manager at Samsung NEXT Tel-Aviv
Investor at Samsung NEXT Tel-Aviv



Samsung NEXT
Introduction



Samsung NEXT
Introduction

Innovation arm focused on software products and services



Samsung NEXT
Introduction

Innovation arm focused on software products and services
Investments (seed to B rounds)



Samsung NEXT
Introduction

Innovation arm focused on software products and services
Investments (seed to B rounds)
Independent product creation



Samsung NEXT
Introduction

Innovation arm focused on software products and services
Investments (seed to B rounds)
Independent product creation
M&A & partnerships for Samsung & Samsung NEXT
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What do we want?
Motivation

To understand how the GPU works
Why?
● Smoother animations
● Sleek transitions
● Avoiding really strange bugs!
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The GPU
Definition

Special hardware
- Designed for rapid matrix mathematical operations robustly
- Original intent = increase graphics performance 
- Also used for NN based AI (= again, operations on matrices)
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- Invalidate() performed immediately
- “Dirty region” contains:

- Calling (changed) view
- All views that intersect w/ calling view

(even if they haven’t changed)
- Bad = performance
- Good(-ish) = hides your bugs
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Android drawing models
Definition

Software drawing model
- Invalidate() performed immediately
- “Dirty region” calc. (more than you thought)
- Draws “dirty region”
- Uses CPU

- Good (predictable, supported)
- Bad:

- Predictably & ubiquitously slow
- In higher demand
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Software drawing model (immediate, inefficient)
Hardware drawing model 

- Invalidate() flags a view as “dirty”
- Changes saved to “display lists”
- Upon “V-Sync” diff is drawn
- Uses GPU

- Good (faster X2)
- Bad:

- Support is specific & not standard
- Does not hide your bugs
- Consumes more RAM



Android drawing models
Definition

Software drawing model (immediate, inefficient)
Hardware drawing model (faster, less predictable)
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What’s there to fix?
Problem

Understand when to use which model
Predictability in the HW drawing model
Debug & troubleshoot
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Predictability

When using standard views only - OK!
When API supports calls in your custom views 
     (/guide/topics/graphics/hardware-accel.html#drawing-support)

http://developer.android.com/guide/topics/graphics/hardware-accel.html#drawing-support


Tools, usage & prognosis

Debugging
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How big is your GPU?
Rendering

Profile GPU Rendering tool:
- Enabled (16+, developer options)
- Displays:

- A graph for each visible app
- Vertical bars = frames
- Height of vertical bars = time in Ms
- Color of part = stage in pipeline
- Vertical line = 16Ms (for 60 FPS)

- Diagnosis graph > line = problem!
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Input - handles input events
If too long

- Check the input-handler event callbacks
- Might be too much/too complex work
- Remove tasks/offload to BG thread
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Stages and their meaning
Rendering

Animation - time it takes for animations to run  
If too long

- Check animation callbacks
- Likely to be due to a prop. change in anim.

(Example: RecyclerView Fling animation)
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Stages and their meaning
Rendering

Issue - the time it takes to draw the display lists
Swap - the time it takes to swap buffers
If too long

- Try aggregating commands



for (int i = 0; i < 1000; i++) {
    canvas.drawPoint()
}

//Vs

canvas.drawPoints(mThousandPointArray);
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Stages and their meaning
Rendering

Misc. - on the main thread, not rendering
If too long

- There’s work that needs to be on a BG thread
- Use Systrace and/or Tracer
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How many times is too much
Overdraw

Debug GPU Overdraw
- Enabled via the developer’s options menu
- Displays:

- Blue = Overdrawn 1 time
- Green = Overdraw 2 times
- Pink =  Overdraw 3 times
- Red =  Overdraw 4 times
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How many times is too much
Overdraw

Debug GPU Overdraw
Diagnosis

- W/ same pixel drawn > 1 in the frame
- Extra (redundant) GPU effort
- Fix whenever possible
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Work smarter, not harder
Overdraw fix

Remove unneeded backgrounds
- RelativeLayout > 2 ImageViews = overdraw!
- Remove background from RL = no overdraw
- Use Layout Inspector for less obvious issues

Button

RelativeLayout

ImageView

ImageView
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Work smarter, not harder
Overdraw fix

Remove unneeded backgrounds
Flatten view hierarchy
Reduce transparency

- Like a background you don’t see
- + 2X measure 



The time is now
Debug hierarchy!
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Root issue explained
Debug hierarchy!

Hierarchy is represented by a logical tree
Iteration impacted by tree depth + # iterations
Tree depth = amount of nested views
# iterations = increases for relative positioning

(=Double taxation)
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What to do?
Troubleshoot Hierarchy!

Remove redundant nested layouts (Lint can help)
Adopt merge/include
Adopt a “cheaper” layout:

- Flatten hierarchy
- Use non-relative layouts (reduce iterations)

(ConstraintLayout is king - API 24+)
(GridLayout/TableLayout/LinearLayout)
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How would you know it’s the GPU?
- Issue reproducible on specific:

- Devices (regardless of API level)
- API levels (specifically)
- GPU “families”
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How to know it’s the GPU? (specific by HW/FW)
Set the scope:

- Application, Activity, Window and layer
- Decrease granularity until you find the culprit
- Debug and/or settle on the right scope
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How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up:

- Buffer cache since API 1
- LAYER_TYPE_NONE (None/SW)
- LAYER_TYPE_HARDWARE (HW/HW)
- LAYER_TYPE_SOFTWARE
- Canvas.isHardwareAccelerated()

(window can still be drawn in the SW model!)
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Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up (choose the right one)
Layers and animations

- 60 FPS animations of a complex view is hard
- Rendering the view to a HW texture is easier

- Prop changes that will not invalidate:
- alpha (transparency)
- x,y,translationX,translationY(position)
- scaleX, scaleY (size)
- rotationX,rotationY (3D orientation)
- pivotX,pivotY



view.setLayerType(View.LAYER_TYPE_HARDWARE, null);
ObjectAnimator.ofFloat(view, "rotationY", 180).start();



Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up (choose the right one)
Layers and animations

- 60 FPS animations of a complex view is hard
- Rendering the view to a HW texture is easier
- But only enable them while animation!



view.setLayerType(View.LAYER_TYPE_HARDWARE, null);
ObjectAnimator animator = ObjectAnimator.ofFloat(view, 
"rotationY", 180);
animator.addListener(new AnimatorListenerAdapter() {
    @Override
    public void onAnimationEnd(Animator animation) {
        view.setLayerType(View.LAYER_TYPE_NONE, null);
    }
});
animator.start();
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private class PieView extends View {
public PieView(Context context) {
         super(context);

if (!isInEditMode()) {                                      
setLayerType(View.LAYER_TYPE_HARDWARE, 

null);
}

     }
}
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Custom view top tip
Don't create render objects in draw methods
 (=Path, Paint - Garbage collection!)
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Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up (choose the right one)
Layers and animations
Custom view top tip
Don't create render objects in draw methods
Don't modify shapes too often (new texture maps)
Don't modify bitmaps too often (new GPU upload)
Use alpha with care (off-screen = 2X fill-rate)

(Use LAYER_TYPE_HARDWARE)



Questions?



“We should be building 
great things. Things that 
Don’t yet exist”



Hope you liked it
Thanks for listening!

 Royi Benyossef 
(royi@samsungnext.com)


