
The guide to Hardware acceleration
“G(PU) force”- Royi Benyossef

Who? What?

Introduction

Royi Benyossef
Introduction

Royi Benyossef
Introduction

Android developer since 2009

Royi Benyossef
Introduction

Android developer since 2009
Tech community activist, speaker and founder

Royi Benyossef
Introduction

Android developer since 2009
Tech community activist, speaker and founder
Mentor at * accelerator

Royi Benyossef
Introduction

Android developer since 2009
Tech community activist, speaker and founder
Mentor at * accelerator
Google expert since Dec 2012

Royi Benyossef
Introduction

Android developer since 2009
Tech community activist, speaker and founder
Mentor at * accelerator
Google expert since Dec 2012
Ecosystem relations manager at Samsung NEXT Tel-Aviv

Royi Benyossef
Introduction

Android developer since 2009
Tech community activist, speaker and founder
Mentor at * accelerator
Google expert since Dec 2012
Ecosystem relations manager at Samsung NEXT Tel-Aviv
Investor at Samsung NEXT Tel-Aviv

Samsung NEXT
Introduction

Samsung NEXT
Introduction

Innovation arm focused on software products and services

Samsung NEXT
Introduction

Innovation arm focused on software products and services
Investments (seed to B rounds)

Samsung NEXT
Introduction

Innovation arm focused on software products and services
Investments (seed to B rounds)
Independent product creation

Samsung NEXT
Introduction

Innovation arm focused on software products and services
Investments (seed to B rounds)
Independent product creation
M&A & partnerships for Samsung & Samsung NEXT

Gee brain, what are we going to do tonight?

Prolog

What do we want?
Motivation

What do we want?
Motivation

To understand how the GPU works

What do we want?
Motivation

To understand how the GPU works?

What do we want?
Motivation

To understand how the GPU works
Why?

What do we want?
Motivation

To understand how the GPU works
Why?
● Smoother animations

What do we want?
Motivation

To understand how the GPU works
Why?
● Smoother animations
● Sleek transitions

What do we want?
Motivation

To understand how the GPU works
Why?
● Smoother animations
● Sleek transitions
● Avoiding really strange bugs!

What’s are we talking about?
Definition

Hardware acceleration
Definition

Using the specific hardware to do stuff faster

Hardware acceleration
Definition

Using the specific hardware to do stuff faster
In our case

Hardware acceleration
Definition

Using the specific hardware to do stuff faster
In our case - using the GPU to render graphics in apps

Hardware acceleration
Definition

Using the specific hardware to do stuff faster
In our case - using the GPU to render graphics in apps;

= Draw Canvas with the GPU

Hardware acceleration
Definition

Using the specific hardware to do stuff faster
In our case - using the GPU to render graphics in apps;

= Draw Canvas with the GPU = use hardware drawing model

Hardware acceleration
Definition

Using the specific hardware to do stuff faster
In our case - using the GPU to render graphics in apps
Instead of?

Hardware acceleration
Definition

Using the specific hardware to do stuff faster
In our case - using the GPU to render graphics in apps
Instead of - using the CPU

Hardware acceleration
Definition

Using the specific hardware to do stuff faster
In our case - using the GPU to render graphics in apps
Instead of - using the CPU = use the software rendering model

The GPU
Definition

Special hardware

The GPU
Definition

Special hardware
- Designed for rapid matrix mathematical operations robustly

The GPU
Definition

Special hardware
- Designed for rapid matrix mathematical operations robustly
- Original intent = increase graphics performance

The GPU
Definition

Special hardware
- Designed for rapid matrix mathematical operations robustly
- Original intent = increase graphics performance

(animations = bitmap manipulations = math on matrices)

The GPU
Definition

Special hardware
- Designed for rapid matrix mathematical operations robustly
- Original intent = increase graphics performance
- Also used for NN based AI (= again, operations on matrices)

Android drawing models
Definition

Software drawing model

Button

Android drawing models
Definition

Software drawing model
- Invalidate() performed immediately

Button

Android drawing models
Definition

Software drawing model
- Invalidate() performed immediately
- “Dirty region” calculated

Button

Android drawing models
Definition

Software drawing model
- Invalidate() performed immediately
- “Dirty region” contains:

- Calling (changed) view

Button

Android drawing models
Definition

Software drawing model
- Invalidate() performed immediately
- “Dirty region” contains:

- Calling (changed) view
- All views that intersect w/ calling view

Button

Android drawing models
Definition

Software drawing model
- Invalidate() performed immediately
- “Dirty region” contains:

- Calling (changed) view
- All views that intersect w/ calling view

(even if they haven’t changed)
Button

Android drawing models
Definition

Software drawing model
- Invalidate() performed immediately
- “Dirty region” contains:

- Calling (changed) view
- All views that intersect w/ calling view

(even if they haven’t changed)
- Bad

Android drawing models
Definition

Software drawing model
- Invalidate() performed immediately
- “Dirty region” contains:

- Calling (changed) view
- All views that intersect w/ calling view

(even if they haven’t changed)
- Bad = performance

Android drawing models
Definition

Software drawing model
- Invalidate() performed immediately
- “Dirty region” contains:

- Calling (changed) view
- All views that intersect w/ calling view

(even if they haven’t changed)
- Bad = performance
- Good

Android drawing models
Definition

Software drawing model
- Invalidate() performed immediately
- “Dirty region” contains:

- Calling (changed) view
- All views that intersect w/ calling view

(even if they haven’t changed)
- Bad = performance
- Good = hides your bugs

Android drawing models
Definition

Software drawing model
- Invalidate() performed immediately
- “Dirty region” contains:

- Calling (changed) view
- All views that intersect w/ calling view

(even if they haven’t changed)
- Bad = performance
- Good(-ish) = hides your bugs

Android drawing models
Definition

Software drawing model
- Invalidate() performed immediately
- “Dirty region” calc. (more than you thought)
- Draws “dirty region”

Android drawing models
Definition

Software drawing model
- Invalidate() performed immediately
- “Dirty region” calc. (more than you thought)
- Draws “dirty region”
- Uses CPU

Android drawing models
Definition

Software drawing model
- Invalidate() performed immediately
- “Dirty region” calc. (more than you thought)
- Draws “dirty region”
- Uses CPU

- Good

Android drawing models
Definition

Software drawing model
- Invalidate() performed immediately
- “Dirty region” calc. (more than you thought)
- Draws “dirty region”
- Uses CPU

- Good:
- Ubiquitously supported

Android drawing models
Definition

Software drawing model
- Invalidate() performed immediately
- “Dirty region” calc. (more than you thought)
- Draws “dirty region”
- Uses CPU

- Good:
- Ubiquitously supported
- Predictable functionality

Android drawing models
Definition

Software drawing model
- Invalidate() performed immediately
- “Dirty region” calc. (more than you thought)
- Draws “dirty region”
- Uses CPU

- Good (predictable, supported)
- Bad

Android drawing models
Definition

Software drawing model
- Invalidate() performed immediately
- “Dirty region” calc. (more than you thought)
- Draws “dirty region”
- Uses CPU

- Good (predictable, supported)
- Bad:

- Predictably & ubiquitously slow

Android drawing models
Definition

Software drawing model
- Invalidate() performed immediately
- “Dirty region” calc. (more than you thought)
- Draws “dirty region”
- Uses CPU

- Good (predictable, supported)
- Bad:

- Predictably & ubiquitously slow
- In higher demand

Android drawing models
Definition

Software drawing model (immediate, inefficient)

Android drawing models
Definition

Software drawing model (immediate, inefficient)
Hardware drawing model

Android drawing models
Definition

Software drawing model (immediate, inefficient)
Hardware drawing model

- Invalidate() flags a view as “dirty”

Android drawing models
Definition

Software drawing model (immediate, inefficient)
Hardware drawing model

- Invalidate() flags a view as “dirty”
- Changes saved to “display lists”

Android drawing models
Definition

Software drawing model (immediate, inefficient)
Hardware drawing model

- Invalidate() flags a view as “dirty”
- Changes saved to “display lists”
- Upon “V-Sync” diff is drawn

Android drawing models
Definition

Software drawing model (immediate, inefficient)
Hardware drawing model

- Invalidate() flags a view as “dirty”
- Changes saved to “display lists”
- Upon “V-Sync” diff is drawn
- Uses GPU

Android drawing models
Definition

Software drawing model (immediate, inefficient)
Hardware drawing model

- Invalidate() flags a view as “dirty”
- Changes saved to “display lists”
- Upon “V-Sync” diff is drawn
- Uses GPU

- Good

Android drawing models
Definition

Software drawing model (immediate, inefficient)
Hardware drawing model

- Invalidate() flags a view as “dirty”
- Changes saved to “display lists”
- Upon “V-Sync” diff is drawn
- Uses GPU

- Good:
- Faster

Android drawing models
Definition

Software drawing model (immediate, inefficient)
Hardware drawing model

- Invalidate() flags a view as “dirty”
- Changes saved to “display lists”
- Upon “V-Sync” diff is drawn
- Uses GPU

- Good:
- Faster (built specifically for that)

Android drawing models
Definition

Software drawing model (immediate, inefficient)
Hardware drawing model

- Invalidate() flags a view as “dirty”
- Changes saved to “display lists”
- Upon “V-Sync” diff is drawn
- Uses GPU

- Good:
- Faster (built specifically for that)
- Not as used

Android drawing models
Definition

Software drawing model (immediate, inefficient)
Hardware drawing model

- Invalidate() flags a view as “dirty”
- Changes saved to “display lists”
- Upon “V-Sync” diff is drawn
- Uses GPU

- Good:
- Faster (built specifically for that)
- Not as used (faster yet)

Android drawing models
Definition

Software drawing model (immediate, inefficient)
Hardware drawing model

- Invalidate() flags a view as “dirty”
- Changes saved to “display lists”
- Upon “V-Sync” diff is drawn
- Uses GPU

- Good:
- Faster (built specifically for that)
- Not as used (faster yet)
- Props (alpha/rotation), don’t invalidate

Android drawing models
Definition

Software drawing model (immediate, inefficient)
Hardware drawing model

- Invalidate() flags a view as “dirty”
- Changes saved to “display lists”
- Upon “V-Sync” diff is drawn
- Uses GPU

- Good (faster X2)

Android drawing models
Definition

Software drawing model (immediate, inefficient)
Hardware drawing model

- Invalidate() flags a view as “dirty”
- Changes saved to “display lists”
- Upon “V-Sync” diff is drawn
- Uses GPU

- Good (faster X2)
- Bad

Android drawing models
Definition

Software drawing model (immediate, inefficient)
Hardware drawing model

- Invalidate() flags a view as “dirty”
- Changes saved to “display lists”
- Upon “V-Sync” diff is drawn
- Uses GPU

- Good (faster X2)
- Bad:

- Support is specific & not standard

Android drawing models
Definition

Software drawing model (immediate, inefficient)
Hardware drawing model

- Invalidate() flags a view as “dirty”
- Changes saved to “display lists”
- Upon “V-Sync” diff is drawn
- Uses GPU

- Good (faster X2)
- Bad:

- Support is specific & not standard
- Does not hide your bugs

Android drawing models
Definition

Software drawing model (immediate, inefficient)
Hardware drawing model

- Invalidate() flags a view as “dirty”
- Changes saved to “display lists”
- Upon “V-Sync” diff is drawn
- Uses GPU

- Good (faster X2)
- Bad:

- Support is specific & not standard
- Does not hide your bugs
- Consumes more RAM

Android drawing models
Definition

Software drawing model (immediate, inefficient)
Hardware drawing model (faster, less predictable)

What’s there to fix?
Problem

What’s there to fix?
Problem

Understand when to use which model

What’s there to fix?
Problem

Understand when to use which model

What’s there to fix?
Problem

Understand when to use which model
Provide predictability to the HW drawing model

What’s there to fix?
Problem

Understand when to use which model
Provide predictability to the HW drawing model
Debug & troubleshoot

What’s there to fix?
Problem

Understand when to use which model
Predictability in the HW drawing model
Debug & troubleshoot

Can I get some?

Predictability

Can I get some?
Predictability

API availability

Can I get some?
Predictability

API availability:
- < 11 - unsupported

Can I get some?
Predictability

API availability:
- < 11 Unsupported
- 11-14 Supported, default off

(= “Support”*, RAM req. too high)

Can I get some?
Predictability

API availability:
- < 11 Unsupported
- 11-14 Supported, default off
- > 14 Supported, default on

Can I get some?
Predictability

API availability: (“11-14”, 14+)
*”Support”

Can I get some?
Predictability

API availability: (“11-14”, 14+)
*”Support”

- OpenGL/ES implementation of Canvas ops

Can I get some?
Predictability

API availability: (“11-14”, 14+)
*”Support”

- OpenGL/ES implementation of Canvas ops
- A lot of functions to implement

Can I get some?
Predictability

API availability: (“11-14”, 14+)
*”Support”

- OpenGL/ES implementation of Canvas ops
- A lot of functions to implement
- Implementation varies based on HW/FW

Can I get some?
Predictability

API availability: (“11-14”, 14+)
*”Support”

- OpenGL/ES implementation of Canvas ops
- A lot of functions to implement
- Implementation varies based on HW/FW
- Complex implementation

Can I get some?
Predictability

API availability: (“11-14”, 14+)
*”Support”

- Complex OpenGL/ES implementation
- Support came slow

Can I get some?
Predictability

API availability: (“11-14”, 14+)
*”Support”

- Complex OpenGL/ES implementation
- Support came slow (standard views first)

Can I get some?
Predictability

API availability: (“11-14”, 14+)
*”Support”

- Complex OpenGL/ES implementation
- Support came slow (standard views first)
- When using unsupported calls

Can I get some?
Predictability

API availability: (“11-14”, 14+)
*”Support”

- Complex OpenGL/ES implementation
- Support came slow (standard views first)
- When using unsupported calls:

- Invisible UI elements

Predictability; Invisible UI elements

Can I get some?
Predictability

API availability: (“11-14”, 14+)
*”Support”

- Complex OpenGL/ES implementation
- Support came slow (standard views first)
- When using unsupported calls:

- Invisible UI elements
- Badly rendered pixels

Predictability; Invisible UI elements

Can I get some?
Predictability

API availability: (“11-14”, 14+)
*”Support”

- Complex OpenGL/ES implementation
- Support came slow (standard views first)
- When using unsupported calls:

- Invisible UI elements
- Badly rendered pixels
- Exceptions

Can I get some?
Predictability

API availability: (“11-14”, 14+)
*”Support”

- Complex OpenGL/ES implementation
- Support came slow (standard views first)
- When using unsupported calls:

- Invisible UI elements
- Badly rendered pixels
- Exceptions

Can I get some?
Predictability

When using standard views only - OK!

Can I get some?
Predictability

When using standard views only - OK!
When API supports calls in your custom views

Can I get some?
Predictability

When using standard views only - OK!
When API supports calls in your custom views

(On standard Android, tested devices)

Can I get some?
Predictability

When using standard views only - OK!
When API supports calls in your custom views
 (/guide/topics/graphics/hardware-accel.html#drawing-support)

http://developer.android.com/guide/topics/graphics/hardware-accel.html#drawing-support

Tools, usage & prognosis

Debugging

How big is your GPU?
Rendering

How big is your GPU?
Rendering

Profile GPU Rendering tool

How big is your GPU?
Rendering

Profile GPU Rendering tool:
- Enabled via the developer’s options menu

How big is your GPU?
Rendering

Profile GPU Rendering tool:
- Enabled:

- Via the developer’s options menu
- On devices running API 16+

How big is your GPU?
Rendering

Profile GPU Rendering tool:
- Enabled (16+, developer options)
- Displays a graph for each visible app

How big is your GPU?
Rendering

Profile GPU Rendering tool:
- Enabled (16+, developer options)
- Displays:

- A graph for each visible app
- Vertical bars = frames

How big is your GPU?
Rendering

Profile GPU Rendering tool:
- Enabled (16+, developer options)
- Displays:

- A graph for each visible app
- Vertical bars = frames
- Height of vertical bars = time in Ms

How big is your GPU?
Rendering

Profile GPU Rendering tool:
- Enabled (16+, developer options)
- Displays:

- A graph for each visible app
- Vertical bars = frames
- Height of vertical bars = time in Ms
- Color of part = stage in pipeline

How big is your GPU?
Rendering

Profile GPU Rendering tool:
- Enabled (16+, developer options)
- Displays:

- A graph for each visible app
- Vertical bars = frames
- Height of vertical bars = time in Ms
- Color of part = stage in pipeline

(changes by API)

How big is your GPU?
Rendering

Profile GPU Rendering tool:
- Enabled (16+, developer options)
- Displays:

- A graph for each visible app
- Vertical bars = frames
- Height of vertical bars = time in Ms
- Color of part = stage in pipeline
- Vertical line = 16Ms

How big is your GPU?
Rendering

Profile GPU Rendering tool:
- Enabled (16+, developer options)
- Displays:

- A graph for each visible app
- Vertical bars = frames
- Height of vertical bars = time in Ms
- Color of part = stage in pipeline
- Vertical line = 16Ms (for 60 FPS)

How big is your GPU?
Rendering

Profile GPU Rendering tool:
- Enabled (16+, developer options)
- Displays:

- A graph for each visible app
- Vertical bars = frames
- Height of vertical bars = time in Ms
- Color of part = stage in pipeline
- Vertical line = 16Ms (for 60 FPS)

- Diagnosis

How big is your GPU?
Rendering

Profile GPU Rendering tool:
- Enabled (16+, developer options)
- Displays:

- A graph for each visible app
- Vertical bars = frames
- Height of vertical bars = time in Ms
- Color of part = stage in pipeline
- Vertical line = 16Ms (for 60 FPS)

- Diagnosis graph > line = problem!

Stages and their meaning
Rederring

Stages and their meaning
Rendering

Input

Stages and their meaning
Rendering

Input - handles input events

Stages and their meaning
Rendering

Input - handles input events
If too long

- Check the input-handler event callbacks

Stages and their meaning
Rendering

Input - handles input events
If too long

- Check the input-handler event callbacks
- Might be too much/too complex work

Stages and their meaning
Rendering

Input - handles input events
If too long

- Check the input-handler event callbacks
- Might be too much/too complex work
- Remove tasks/offload to BG thread

Stages and their meaning
Rendering

Animation

Stages and their meaning
Rendering

Animation - time it takes for animations to run

Stages and their meaning
Rendering

Animation - time it takes for animations to run
If too long

Stages and their meaning
Rendering

Animation - time it takes for animations to run
If too long

- Check animation callbacks

Stages and their meaning
Rendering

Animation - time it takes for animations to run
If too long

- Check animation callbacks:
- ObjectAnimator

Stages and their meaning
Rendering

Animation - time it takes for animations to run
If too long

- Check animation callbacks:
- ObjectAnimator
- ViewPropertyAnimator

Stages and their meaning
Rendering

Animation - time it takes for animations to run
If too long

- Check animation callbacks:
- ObjectAnimator
- ViewPropertyAnimator
- Transitions

Stages and their meaning
Rendering

Animation - time it takes for animations to run
If too long

- Check animation callbacks
- Likely to be due to a prop. change in anim.

Stages and their meaning
Rendering

Animation - time it takes for animations to run
If too long

- Check animation callbacks
- Likely to be due to a prop. change in anim.

(Example: RecyclerView Fling animation)

Stages and their meaning
Rendering

Measure

Stages and their meaning
Rendering

Measure - calc. views + hierarchy up to root

Stages and their meaning
Rendering

Measure - calc. views + hierarchy up to root
If too long

Stages and their meaning
Rendering

Measure - calc. views + hierarchy up to root
If too long

- Check code added to OnMeasure/OnLayout

Stages and their meaning
Rendering

Measure - calc. views + hierarchy up to root
If too long

- Check code added to OnMeasure/OnLayout
- Debug your hierarchy!

Stages and their meaning
Rendering

Measure - calc. views + hierarchy up to root
If too long

- Check code added to OnMeasure/OnLayout
- Debug your hierarchy!
- Check for overdraw

Stages and their meaning
Rendering

Draw

Stages and their meaning
Rendering

Draw - handles the actual rendering operations

Stages and their meaning
Rendering

Draw - handles the actual rendering operations
If too long

Stages and their meaning
Rendering

Draw - handles the actual rendering operations
If too long

- Check code added to OnDraw/DispatchDraw

Stages and their meaning
Rendering

Draw - handles the actual rendering operations
If too long

- Check code added to OnDraw/DispatchDraw
- Debug hierarchy!

Stages and their meaning
Rendering

Draw - handles the actual rendering operations
If too long

- Check code added to OnDraw/DispatchDraw
- Debug hierarchy!
- Check for overdraw

Stages and their meaning
Rendering

Upload

Stages and their meaning
Rendering

Upload - time to load CPU bitmaps to GPU

Stages and their meaning
Rendering

Upload - time to load CPU bitmaps to GPU
(Impacted by RAM, GPU and CPU capacity)

Stages and their meaning
Rendering

Upload - time to load CPU bitmaps to GPU
If too long

Stages and their meaning
Rendering

Upload - time to load CPU bitmaps to GPU
If too long

- Make sure the sizes match (avoid scaling)

Stages and their meaning
Rendering

Upload - time to load CPU bitmaps to GPU
If too long

- Make sure the sizes match (avoid scaling)
- Take advantage of prepareToDraw()

Stages and their meaning
Rendering

Upload - time to load CPU bitmaps to GPU
If too long

- Make sure the sizes match (avoid scaling)
- Take advantage of prepareToDraw()
- Check for overdraw

Stages and their meaning
Rendering

Issue - the time it takes to draw the display lists

Stages and their meaning
Rendering

Issue - the time it takes to draw the display lists
Swap - the time it takes to swap buffers

Stages and their meaning
Rendering

Issue - the time it takes to draw the display lists
Swap - the time it takes to swap buffers
If too long

Stages and their meaning
Rendering

Issue - the time it takes to draw the display lists
Swap - the time it takes to swap buffers
If too long

- Try aggregating commands

for (int i = 0; i < 1000; i++) {
 canvas.drawPoint()
}

//Vs

canvas.drawPoints(mThousandPointArray);

Stages and their meaning
Rendering

Misc. - on the main thread, not rendering

Stages and their meaning
Rendering

Misc. - on the main thread, not rendering
If too long

Stages and their meaning
Rendering

Misc. - on the main thread, not rendering
If too long

- There’s work that needs to be on a BG thread

Stages and their meaning
Rendering

Misc. - on the main thread, not rendering
If too long

- There’s work that needs to be on a BG thread
- Use Systrace and/or Tracer

How many times is too much?
Overdraw

How many times is too much
Overdraw

Debug GPU Overdraw

How many times is too much
Overdraw

Debug GPU Overdraw
- Enabled via the developer’s options menu

How many times is too much
Overdraw

Debug GPU Overdraw
- Enabled via the developer’s options menu
- Displays:

- Blue = Overdrawn 1 time

How many times is too much
Overdraw

Debug GPU Overdraw
- Enabled via the developer’s options menu
- Displays:

- Blue = Overdrawn 1 time
- Green = Overdraw 2 times

How many times is too much
Overdraw

Debug GPU Overdraw
- Enabled via the developer’s options menu
- Displays:

- Blue = Overdrawn 1 time
- Green = Overdraw 2 times
- Pink = Overdraw 3 times

How many times is too much
Overdraw

Debug GPU Overdraw
- Enabled via the developer’s options menu
- Displays:

- Blue = Overdrawn 1 time
- Green = Overdraw 2 times
- Pink = Overdraw 3 times
- Red = Overdraw 4 times

How many times is too much
Overdraw

Debug GPU Overdraw
Diagnosis

How many times is too much
Overdraw

Debug GPU Overdraw
Diagnosis

- W/ same pixel drawn > 1 in the frame

How many times is too much
Overdraw

Debug GPU Overdraw
Diagnosis

- W/ same pixel drawn > 1 in the frame
- Extra (redundant) GPU effort

How many times is too much
Overdraw

Debug GPU Overdraw
Diagnosis

- W/ same pixel drawn > 1 in the frame
- Extra (redundant) GPU effort
- Fix whenever possible

Work smarter, not harder
Overdraw fix

Work smarter, not harder
Overdraw fix

Remove unneeded backgrounds

Work smarter, not harder
Overdraw fix

Remove unneeded backgrounds
- RelativeLayout

Button

RelativeLayout

Work smarter, not harder
Overdraw fix

Remove unneeded backgrounds
- RelativeLayout > 2 ImageViews

Button

RelativeLayout

ImageView

ImageView

Work smarter, not harder
Overdraw fix

Remove unneeded backgrounds
- RelativeLayout > 2 ImageViews = overdraw!

Button

RelativeLayout

ImageView

ImageView

Work smarter, not harder
Overdraw fix

Remove unneeded backgrounds
- RelativeLayout > 2 ImageViews = overdraw!
- Remove background from RL = no overdraw
- Use Layout Inspector for less obvious issues

Button

RelativeLayout

ImageView

ImageView

Work smarter, not harder
Overdraw fix

Remove unneeded backgrounds
Flatten view hierarchy

Work smarter, not harder
Overdraw fix

Remove unneeded backgrounds
Flatten view hierarchy

- Debug hierarchy!

Work smarter, not harder
Overdraw fix

Remove unneeded backgrounds
Flatten view hierarchy
Reduce transparency

Work smarter, not harder
Overdraw fix

Remove unneeded backgrounds
Flatten view hierarchy
Reduce transparency

- Like a background you don’t see

Work smarter, not harder
Overdraw fix

Remove unneeded backgrounds
Flatten view hierarchy
Reduce transparency

- Like a background you don’t see
- + 2X measure

The time is now
Debug hierarchy!

Root issue explained
Debug hierarchy!

Hierarchy is represented by a logical tree

Root issue explained
Debug hierarchy!

Hierarchy is represented by a logical tree
Tree iteration during the layout & measure steps

Root issue explained
Debug hierarchy!

Hierarchy is represented by a logical tree
Tree iteration during the layout & measure steps

- Impacted by tree depth (height)

Root issue explained
Debug hierarchy!

Hierarchy is represented by a logical tree
Tree iteration during the layout & measure steps

- Impacted
- By tree depth (height)
- By # of iterations needed

Root issue explained
Debug hierarchy!

Hierarchy is represented by a logical tree
Iteration impacted by tree depth + # iterations
Tree depth = amount of nested views

Root issue explained
Debug hierarchy!

Hierarchy is represented by a logical tree
Iteration impacted by tree depth + # iterations
Tree depth = amount of nested views
iterations = increases for relative positioning

Root issue explained
Debug hierarchy!

Hierarchy is represented by a logical tree
Iteration impacted by tree depth + # iterations
Tree depth = amount of nested views
iterations = increases for relative positioning

(=Double taxation)

What to do?
Troubleshoot hierarchy!

What to do?
Troubleshoot Hierarchy!

Remove redundant nested layouts

What to do?
Troubleshoot Hierarchy!

Remove redundant nested layouts (Lint can help)

Troubleshoot Hierarchy! (Lint)

What to do?
Troubleshoot Hierarchy!

Remove redundant nested layouts (Lint can help)
Adopt merge/include

What to do?
Troubleshoot Hierarchy!

Remove redundant nested layouts (Lint can help)
Adopt merge/include:

- <Include/> to layout = additional layer

What to do?
Troubleshoot Hierarchy!

Remove redundant nested layouts (Lint can help)
Adopt merge/include:

- <Include/> to layout = additional layer
- <Merge/> + <Include> = direct placement

What to do?
Troubleshoot Hierarchy!

Remove redundant nested layouts (Lint can help)
Adopt merge/include
Adopt a “cheaper” layout

What to do?
Troubleshoot Hierarchy!

Remove redundant nested layouts (Lint can help)
Adopt merge/include
Adopt a “cheaper” layout:

- Flatten hierarchy

What to do?
Troubleshoot Hierarchy!

Remove redundant nested layouts (Lint can help)
Adopt merge/include
Adopt a “cheaper” layout:

- Flatten hierarchy
- Use non-relative layouts (reduce iterations)

What to do?
Troubleshoot Hierarchy!

Remove redundant nested layouts (Lint can help)
Adopt merge/include
Adopt a “cheaper” layout:

- Flatten hierarchy
- Use non-relative layouts (reduce iterations)

(ConstraintLayout is king)

What to do?
Troubleshoot Hierarchy!

Remove redundant nested layouts (Lint can help)
Adopt merge/include
Adopt a “cheaper” layout:

- Flatten hierarchy
- Use non-relative layouts (reduce iterations)

(ConstraintLayout is king - API 24+)

What to do?
Troubleshoot Hierarchy!

Remove redundant nested layouts (Lint can help)
Adopt merge/include
Adopt a “cheaper” layout:

- Flatten hierarchy
- Use non-relative layouts (reduce iterations)

(ConstraintLayout is king - API 24+)
(GridLayout/TableLayout/LinearLayout)

How would you know it’s the GPU?
General debugging

How would you know it’s the GPU?
General debugging

How would you know it’s the GPU?

How would you know it’s the GPU?
General debugging

How would you know it’s the GPU?
- Issue reproducible on specific:

- Devices (regardless of API level)

How would you know it’s the GPU?
General debugging

How would you know it’s the GPU?
- Issue reproducible on specific:

- Devices (regardless of API level)
- API levels (specifically)

How would you know it’s the GPU?
General debugging

How would you know it’s the GPU?
- Issue reproducible on specific:

- Devices (regardless of API level)
- API levels (specifically)
- GPU “families”

Scope
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope:

- Application, Activity, Window and layer

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope:

- Application, Activity, Window and layer
- Decrease granularity until you find the culprit

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope:

- Application, Activity, Window and layer
- Decrease granularity until you find the culprit
- Debug and/or settle on the right scope

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up:

- Buffer cache since API 1

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up:

- Buffer cache since API 1
- LAYER_TYPE_NONE

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up:

- Buffer cache since API 1
- LAYER_TYPE_NONE

- No buffer

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up:

- Buffer cache since API 1
- LAYER_TYPE_NONE

- No buffer
- Rendered by software

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up:

- Buffer cache since API 1
- LAYER_TYPE_NONE (None/SW)
- LAYER_TYPE_HARDWARE

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up:

- Buffer cache since API 1
- LAYER_TYPE_NONE (None/SW)
- LAYER_TYPE_HARDWARE:

- Backed by hardware texture buffer

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up:

- Buffer cache since API 1
- LAYER_TYPE_NONE (None/SW)
- LAYER_TYPE_HARDWARE:

- Backed by hardware texture buffer
- Rendered in the hardware model

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up:

- Buffer cache since API 1
- LAYER_TYPE_NONE (None/SW)
- LAYER_TYPE_HARDWARE:

- Backed by hardware texture buffer
- Rendered in the hardware model
- Best for performance

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up:

- Buffer cache since API 1
- LAYER_TYPE_NONE (None/SW)
- LAYER_TYPE_HARDWARE:

- Backed by hardware texture buffer
- Rendered in the hardware model
- Best for performance
- Anim. added to texture w/o redrawing

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up:

- Buffer cache since API 1
- LAYER_TYPE_NONE (None/SW)
- LAYER_TYPE_HARDWARE (HW/HW)
- LAYER_TYPE_SOFTWARE

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up:

- Buffer cache since API 1
- LAYER_TYPE_NONE (None/SW)
- LAYER_TYPE_HARDWARE (HW/HW)
- LAYER_TYPE_SOFTWARE

- Backed by a Bitmap

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up:

- Buffer cache since API 1
- LAYER_TYPE_NONE (None/SW)
- LAYER_TYPE_HARDWARE (HW/HW)
- LAYER_TYPE_SOFTWARE

- Backed by a Bitmap
- Rendered in the software model

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up:

- Buffer cache since API 1
- LAYER_TYPE_NONE (None/SW)
- LAYER_TYPE_HARDWARE (HW/HW)
- LAYER_TYPE_SOFTWARE

- Backed by a Bitmap
- Rendered in the software model
- Best for compatibility

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up:

- Buffer cache since API 1
- LAYER_TYPE_NONE (None/SW)
- LAYER_TYPE_HARDWARE (HW/HW)
- LAYER_TYPE_SOFTWARE
- Canvas.isHardwareAccelerated()

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up:

- Buffer cache since API 1
- LAYER_TYPE_NONE (None/SW)
- LAYER_TYPE_HARDWARE (HW/HW)
- LAYER_TYPE_SOFTWARE
- Canvas.isHardwareAccelerated()

(window can still be drawn in the SW model!)

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up (choose the right one)
Layers and animations

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up (choose the right one)
Layers and animations

- 60 FPS animations of a complex view is hard

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up (choose the right one)
Layers and animations

- 60 FPS animations of a complex view is hard
- Rendering the view to a HW texture is easier

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up (choose the right one)
Layers and animations

- 60 FPS animations of a complex view is hard
- Rendering the view to a HW texture is easier

(rendering just a texture and not the view)

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up (choose the right one)
Layers and animations

- 60 FPS animations of a complex view is hard
- Rendering the view to a HW texture is easier

- Prop changes that will not invalidate:
- alpha (transparency)

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up (choose the right one)
Layers and animations

- 60 FPS animations of a complex view is hard
- Rendering the view to a HW texture is easier

- Prop changes that will not invalidate:
- alpha (transparency)
- x,y,translationX,translationY(position)

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up (choose the right one)
Layers and animations

- 60 FPS animations of a complex view is hard
- Rendering the view to a HW texture is easier

- Prop changes that will not invalidate:
- alpha (transparency)
- x,y,translationX,translationY(position)
- scaleX, scaleY (size)

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up (choose the right one)
Layers and animations

- 60 FPS animations of a complex view is hard
- Rendering the view to a HW texture is easier

- Prop changes that will not invalidate:
- alpha (transparency)
- x,y,translationX,translationY(position)
- scaleX, scaleY (size)
- rotationX,rotationY (3D orientation)

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up (choose the right one)
Layers and animations

- 60 FPS animations of a complex view is hard
- Rendering the view to a HW texture is easier

- Prop changes that will not invalidate:
- alpha (transparency)
- x,y,translationX,translationY(position)
- scaleX, scaleY (size)
- rotationX,rotationY (3D orientation)
- pivotX,pivotY

view.setLayerType(View.LAYER_TYPE_HARDWARE, null);
ObjectAnimator.ofFloat(view, "rotationY", 180).start();

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up (choose the right one)
Layers and animations

- 60 FPS animations of a complex view is hard
- Rendering the view to a HW texture is easier
- But only enable them while animation!

view.setLayerType(View.LAYER_TYPE_HARDWARE, null);
ObjectAnimator animator = ObjectAnimator.ofFloat(view,
"rotationY", 180);
animator.addListener(new AnimatorListenerAdapter() {
 @Override
 public void onAnimationEnd(Animator animation) {
 view.setLayerType(View.LAYER_TYPE_NONE, null);
 }
});
animator.start();

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up (choose the right one)
Layers and animations
Custom view top tip

private class PieView extends View {
public PieView(Context context) {
 super(context);

if (!isInEditMode()) {
setLayerType(View.LAYER_TYPE_HARDWARE,

null);
}

 }
}

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up (choose the right one)
Layers and animations
Custom view top tip
Don't create render objects in draw methods

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up (choose the right one)
Layers and animations
Custom view top tip
Don't create render objects in draw methods
 (=Path, Paint - Garbage collection!)

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up (choose the right one)
Layers and animations
Custom view top tip
Don't create render objects in draw methods
Don't modify shapes too often

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up (choose the right one)
Layers and animations
Custom view top tip
Don't create render objects in draw methods
Don't modify shapes too often (new texture maps)

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up (choose the right one)
Layers and animations
Custom view top tip
Don't create render objects in draw methods
Don't modify shapes too often (new texture maps)
Don't modify bitmaps too often

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up (choose the right one)
Layers and animations
Custom view top tip
Don't create render objects in draw methods
Don't modify shapes too often (new texture maps)
Don't modify bitmaps too often (new GPU upload)

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up (choose the right one)
Layers and animations
Custom view top tip
Don't create render objects in draw methods
Don't modify shapes too often (new texture maps)
Don't modify bitmaps too often (new GPU upload)
Use alpha with care

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up (choose the right one)
Layers and animations
Custom view top tip
Don't create render objects in draw methods
Don't modify shapes too often (new texture maps)
Don't modify bitmaps too often (new GPU upload)
Use alpha with care (off-screen = 2X fill-rate)

Scope and layers
General tips & tricks

How to know it’s the GPU? (specific by HW/FW)
Set the scope (either for debug or as a solution)
Layer up (choose the right one)
Layers and animations
Custom view top tip
Don't create render objects in draw methods
Don't modify shapes too often (new texture maps)
Don't modify bitmaps too often (new GPU upload)
Use alpha with care (off-screen = 2X fill-rate)

(Use LAYER_TYPE_HARDWARE)

Questions?

“We should be building
great things. Things that
Don’t yet exist”

Hope you liked it
Thanks for listening!

 Royi Benyossef
(royi@samsungnext.com)

