
Navigating the MV*
Mess

2



$ whoami

3



Agenda
System design and quality attributes
Architecture tradeoffs analysis method
How to perform intermediate design reviews
Android architecture patterns
Considerations when picking an architecture pattern
How to navigate architecture decisions in the enterprise

4



Disclaimer
The opinions expressed in this presentation and on the following slides are solely those of the

presenter and not the ones of any of the past and current employers of the presenter.

Every effort has been made to offer current and accurate information to our users, but errors

can occur.  The content has been curated to the best ability of the presenter to be inclusive

and gender-neutral.

The slides deck is intentionally minimal for readability, presentability, and accessibility. For an

annotated version of the slides reach out to the presenter on Twitter @giorgionatili.

5



Understanding
Quality Attributes

7



Quality Attributes 
A quality attribute of a system is the definition of a

characteristic that the system must have.

8



A Starting Point
The most common quality attributes are performance,

reliability, availability, security, modifiability, and
subsetability.

9



Which Quality Attributes
Matters for You?

10



Performance
The ability of a system to allocate computational resources

to satisfy timing requirements.

11



Reliability
The ability of a system to keep operating overtime.

12



Availability
The portion of time a system is up and running and its

fault recovery capability.

13



What About a Mobile App?

14



Local Cache Activity Diagram

15



Security
The measure of the system to resist unauthorized

attempts of usage and denial of service.

16



Modifiability
It is the ability to make changes to a system quickly and

cost-effectively. 

17



Subsetability
The ability to support the deployment to the production

environment of a subset of the system.

18



Attribute-Based Architecture
Quality attributes deeply influence architecture decisions

and patterns.

19



Ambiguous Attributes
Quality attributes are often ambiguous and not clear,
that's why you want to invest time in clarifying them.

20



Architecture
Tradeoff Analysis

Method

22



Definition
The architecture tradeoff analysis method (ATAM) is a
risk-mitigation process used in software development.

23



Architecture and Quality Attributes
ATAM assesses the consequences of the architectural

decisions in light of quality attributes and business goals.

24



Participants
ATAM brings together architects, managers, stakeholders,

and the evaluation team for a structured conversation.

25



ATAM Lifecycle
A cycle of ATAM includes time for presentation, analysis,

testing, and reporting.

26



Presenting Business Drivers
Stakeholders present the functions of the system, the

expected outcomes, and the success criteria.

27



PR FAQ Documents

28



Presenting the Architecture
Architects present the candidate architecture through

functional, code, development, concurrency, and physical views.

29



Analysis
It identifies architecture approaches, maps architecture

decisions with quality attributes, and generates a utility tree.

30



How To Reduce the ANR Rate?

31



Utility Tree
Starting from the most important quality attributes

generates a prioritized list of quality attributes requirements.

32



ANR Rate Attributes

33



Be Open Minded
The outcome of the utility tree exercise can be surprising and

bring to de-prioritize quality attributes.

34



Assessing the Architecture
The process of assessing the architecture consists in asking

questions based on the utility tree scenarios.

35



Testing the Architecture
The validation of the architecture consists of running it

through the scenarios identified by the utility tree.

36



Use Cases Scenarios
Are scenarios that describe a user's intended interaction

with the system (i.e., app + services).

37



Growth Scenarios
Are scenarios that validate how the system can handle more

users, increased throughput, reduced latency, etc.

38



Exploratory Scenarios
Are scenarios that expose the limitations of the system
architecture (extreme growth or requirement changes).

39



Risks and Non-Risks
Running an architecture through multiple scenarios
identifies the weaknesses and strengths of a system.

40



Additional Outcomes
Prioritized scenarios, architectural decisions and changes,

sensitivity points, and tradeoffs. 

41



Sensitivity Points
Architectural decisions that involve one or more

components that are critical to achieving a quality attribute.

42



Tradeoffs
An architectural decision that affects one or more quality

attributes of the system.

43



Results
Early discussions within stakeholders, clarifications of the
assumptions, decision records, and prioritized use cases.

44



  Intermediate
Architecture

Reviews

46



Architecture Readiness
It is hard to determine if the architecture is suitable

without building the system.

47



Architecture Lifecycle
The architecture design should be iterative and stop only

when the system gets decommissioned.

48



Evaluating Partial Architectures
Identify stakeholders and reviewers, clarify assumptions,

and verify use cases.

49



Benefits
Reviewing pre-release designs can uncover important

inconsistencies or oversights.

50



Architecture
Patterns in Android

52



MV * (C, P, VM, I, U)
There are many variations of the MV pattern that
influence the architecture of Android applications.

53



Historical Challenges
Implement an app that is easy to maintain, testable, and

easy to modify.

54



MVC
The model handles the domain logic, the view the UI

components, and the controller establishes the
relationship between view and model.

55



56



MVP
Similar to MVC, but with a more decoupled view that is

exposed through an interface.  

57



58



MVVM
It removes the tight coupling between each component,
the children only have a reference to the observables.

59



60



MVI
It leverages the strengths of MVP and MVVM while using

reactive streams for unidirectional data flows.

61



How to Pick a Pattern?

62



Lessons Learned
There is not a perfect choice and, if there is, it's valid until

a new layer is not introduced into your app.

63



Anectodes and Use
Cases

65



Centralized Teams
A team owns an entire app and its architecture. 

66



Federated Teams (Single Architecture)
App modules and screens are split between teams and

there is a single dominant architecture.

67



Federated Teams (Multiple Architecture)
App modules and screens are split between teams and
every team owns the architecture of a module/screen.

68



Conclusions

70



Thanks!
@giorgionatili

71


