MIGRATING APHP 5 APPTO
PHP 7

By Prosper Otemuyiwa V.:O AuthO

Migrating a PHP 5 App to PHP 7

Prosper Otemuyiwa, AuthO Inc.

Version 1.0.0, 2017

Abstract

Learn how to migrate a PHP 5 application to PHP 7. Setup, Tools, Development
Environment and Implementation.

Contents

Introduction
1.1 PHPS5and PHP 7

Upgrading Your Development Environment to PHP 7
21 MacOS X . . . o e

2.2 Windows
2.3 Ubuntu
2.4 Debian
2.5 CentOS / Red Hat Enterprise Linux
2.6 phpbrew
2.7 Vagrant
2.7.1 Laravel Homestead
2.7.2 phprdev
2.8 Valet
2.9 Docker
2.9.1 php7-dockerized oL
2.9.2 Laradock
2.9.3 phpdocker o
Elementary Language Changes
3.1 Spaceship Operator
3.2 Array Constants
3.3 Null Coalescing Operator
3.4 Imteger Division Lo
3.5 Regular Expressions
3.6 Filtered unserialize()
3.6.1 Cryptographically Secure Pseudorandom Number Gener-
ator (CSRPNG)
3.7 session_ start config enhancements
3.8 Unpack objects with list()
3.9 dirname() enhancement L
3.10 Reflection API Enhancements
3.11 Reserved Words

4 Scalar Typehinting & Return Type Declarations
4.1 Typehintingo
4.2 Return Typeso
4.3 Strong Type Check

5 Error Handling, Expectations and Assertions
5.1 Expectations and Assertions

6 Closures and Generators
6.1 Generator Return Expressions
6.2 Generator Delegation. 0L

7 Object-Oriented Programming Enhancement
7.1 Anonymous Classes
7.2 Group Use Declarations

8 Better Unicode Support
8.1 ImtlChar e

9 Deprecated & Removed Features
9.1 Removed Extensions and Server APIs
9.2 Backward Incompatible Changes

10 Uniform Variable Syntax and Static Values
10.1 Accessing Static Values

11 Migration Tools
11.1 PHP 7 MAR e
11.2 PHP 7 Compatibility Checker
11.3 Phano o
11.4 phpto7aid
11.5 PhpStorm PHP 7 Compatibility Inspection

12 Practical Migration of Two Apps
12.1 Buildinga PHP5 App
12.1.1 Create and Configure AuthO Client
12.1.2 Buildthe App
1213 Run The App
12.1.4 Migrate to PHP 7
12.2 APT . . .
12.2.1 Use PHP 7 Features

13 Introducing PHP 7.1 Features
13.1 Nullable Types oo
13.2 Void Type o . o o e
13.3 Symmetric Array Destructuring
13.4 Class Constant Visibility

26
26
27
28

29
30

32
33
33

35
35
36

37
38

39
40
41

43
43

45
45
46
46
46
46

48
48
48
53
62
64
64
66

13.5 Multi-Catch Exception Handling 73

13.6 Tterables 74
13.7 Keys Support in list() L. 74
13.8 Negative String Offsets Support 75
13.9 Conversion of Callables to Closures 75
13.10Asynchronous Signal Handling 76
13.11Support for HTTP/2 Server Push 76
13.12Better Error Retrieval 76
13.13Throw Error on Passing too few Function Arguments. 7
14 Performance Evaluation 78
15 Conclusion 85

Chapter 1

Introduction

Many PHP applications are still running on PHP 5.x, not ready to take full
advantage of the awesome features that PHP 7 offers. A lot of developers have
not made the switch because of certain fears of compatibility issues, migration
challenges and the strange awkward feeling that migrating their apps will take
away a big chunk of their time.

1.1 PHP 5 and PHP 7

PHP 5 has been around for a very long time, over 10 years now. In fact, many
production PHP apps are currently running on either PHP 5.2, 5.3 or 5.6. PHP
5 brought a lot of awesome features to PHP such as:

¢ Robust Support for Object oriented programming.
o Standard PHP Library (SPL)

o Closures.

o Namespaces.

¢ Magical methods for metaprogramming.

e« MySQLi - improved MySQL extension.

¢ Cleaner Error handling.

e Better support for XML extensions.

Unfortunately, every thing that has a beginning must have an end. PHP 5.6
active support ended January 19, 2017 and it will only receive security support
until December 31, 2018.

1Jan 2014 1)an 2015 1Jan 2016 1Jan 2017 1Jan 2018 1Jan 2019 1Jan 2020 1)Jan 2021
1
53

5.4
55
5.6
7.0

Al
Today: 20 Jan 2017

Key

Active

SUpEET A release that is being actively supported. Reported bugs and security issues are fixed and regular point releases are made.

Security fixes
only

End of life A release that is no longer supported. Users of this release should upgrade as soon as possible, as they may be exposed to

A release that is supported for critical security issues only. Releases are only made on an as-needed basis.

unpatched security vulnerabilities.
PHP 5 and 7 release and support duration

PHP 7.0 was officially released on December 3, 2015 with a lot of new features
and better performance benefits. It is twice as fast as PHP 5. A summary of
the new features are highlighted below:

e Return and Scalar type declarations
¢ Better Unicode support

¢ Null Coalescing Operator

o Fatal errors conversion to Exceptions
¢ Generator Enhancement

¢ Anonymous Classes

e Secure random number generator

¢ Removal of deprecated features

and much more! If you aren’t using any of the deprecated features in your PHP
5 app, then the transition to PHP 7 will be seamless.

Chapter 2

Upgrading Your
Development Environment
to PHP 7

The first step to upgrading your application to use PHP 7 features is to migrate
your development environment from PHP 5.x to PHP 7.x. We will cover how
to upgrade your development environment to run PHP 7.x on Ubuntu, CentOs,
Windows and Mac OS machines.

2.1 Mac OS X

If you are a fan of Homebrew', you can install PHP 7.0 via homebrew like so:

brew tap homebrew/dupes

brew tap homebrew/versions
brew tap homebrew/homebrew-php
brew unlink php56

brew install php70

Note: If you were using PHP 5.6, then you should unlink the old PHP by
running brew unlink php56 else unlink whatever version is present before you

go ahead to install PHP 7.0.

Another option is to install it via curl on your terminal like so:

Thttp://brew.sh

http://brew.sh

curl -s https://php-osx.liip.ch/install.sh | bash -s 7.0

2.2 Windows

If you are fan of WAMP? or XAMPP?, then you can just download the latest

versions of the software. It comes packaged with PHP 7.0.

Download

XAMPP is an easy to install Apache distribution containing MariaDB, PHP, and Perl. Just

download and start the installer. It's that easy.

am XAMPP for Windows 5.5.38, 5.6.28 & 7.0.13

Version Checksum

5538/PHP5538 L nats md5 shat
Included?

56.28/PHP 5628 | ats md5 shat
Included?

7.013/PHP7.043 /Nats md5 shat
Included?

Interested in XAMPP Docker Container?

Download and install the last/latest version

Download (32 bit)

Size

106 Mb

109 Mb

119 Mb

Another option is to download the PHP 7.0 distribution for windows from http:

//windows.php.net/download#php-7.0.

2.3 Ubuntu

If you are running Ubuntu on your machine, especially around v14 and 15, you

can install PHP 7.0 by running these commands:

2http://www.wampserver.com/en
3https://www.apachefriends.org/download.html

http://windows.php.net/download#php-7.0
http://windows.php.net/download#php-7.0
http://www.wampserver.com/en
https://www.apachefriends.org/download.html

sudo apt-get update
sudo add-apt-repository ppa:ondrej/php
sudo apt-get install -y php7.0-fpm php7.0-cli php7.0-curl php7.0-gd php7.0-intl php7.0-mysq:

Note: You can check out how to install PHP 7 and Nginx here' and manually
build memcached module for PHP 7.

2.4 Debian

If you are running Debian on your machine, especially around v6, v7 and v8,
you can install PHP 7.0 by doing the following:

e Open up your /etc/apt/sources.list file, and make sure you have these
commands below:

If you are using a Jessie distribution

deb http://packages.dotdeb.org jessie all
deb-src http://packages.dotdeb.org jessie all

If you are using a Wheezy distribution

deb http://packages.dotdeb.org wheezy all
deb-src http://packages.dotdeb.org wheezy all

e Fetch and Install the GnuPG key

wget https://www.dotdeb.org/dotdeb.gpg
sudo apt-key add dotdeb.gpg

o Install PHP 7.0

sudo apt-get update
sudo apt-get install php7.0

2.5 CentOS / Red Hat Enterprise Linux

If you are running CentOS or Red Hat Enterprise Linux operating system on
your machine, you can install PHP 7.0 by running the following commands on
your terminal like so:

4https://serversforhackers.com/video/installing- php-7-with-memcached

https://serversforhackers.com/video/installing-php-7-with-memcached

sudo yum update

rpm -Uvh https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm
rpm -Uvh https://mirror.webtatic.com/yum/el7/webtatic-release.rpm

sudo yum install php70w

sudo yum install php70w-mysql

When you are done, run this command php -v, you should see something like
this:

PHP 7.0.0 (cli) (built: Dec 2 2015 20:42:32) (NTS)
Copyright (c) 1997-2015 The PHP Group
Zend Engine v3.0.0, Copyright (c) 1998-2015 Zend Technologies

2.6 phpbrew

PHPBrew” is a tool that you can use to build and install multiple versions of
PHP on your machine. It can:

o Build PHP with different variants like PDO, MySQL, SQLite, debug etc
¢ Compile Apache PHP module and separate them by different versions.

o Switch versions very easily and is integrated with bash/zsh shell.

o Install & enable PHP extensions into current environment with ease.

o Install multiple PHP into system-wide environment.

e Detect path for Homebrew and MacPorts.

Shttps://github.com/phpbrew/phpbrew

https://github.com/phpbrew/phpbrew

[J o c9s@c9smba: ~/work/php/phpbrew/screenshots (zsh)
+ % phpbrew 118216

szl A —

/I \N"/S_\N\N//
Lrrrr rizz0r AV V/
NI /I I\ NS

Brew your latest php!
SYNOPSIS

phpbrew [options] <command>

--verbose
Print verbose message.

--debug
Print debug message.

--quiet
Be quiet.

-h, --help
Show help.

--version
Show version.

-p, --profile

phpbrew

You can install it on your machine like so:

curl -L -0 https://github.com/phpbrew/phpbrew/raw/master/phpbrew
chmod +x phpbrew

Then you can install it into your bin folder like so:

sudo mv phpbrew /usr/local/bin/phpbrew

Note: Make sure you have /usr/local/bin in your $PATH environment vari-
able.

You can install PHP 7 by running the following commands:

phpbrew self-update
phpbrew install next as php-7.1.0
phpbrew use php-7.1.0

You can use phpbrew to install PHP 7.0 from GitHub like so:

phpbrew install github:php/php-src@PHP-7.0 as php-7.0.0

10

Most times, we use PHP with other extensions such as MySQL, PDO, OpenSSL
etc. You can use phpbrew to build your PHP environment with various variants
like so:

phpbrew install 7.0.0 +mysql+mcrypt+openssl+debug+sqlite

This command above will build PHP with MySQL, mycrypt, OpenSSL, debug
and SQLite.

2.7 Vagrant

Vagrant provides a simple, elegant way to manage and provision Virtual Ma-
chines. The development environments that run on Vagrant are packaged via
Vagrant boxes. Vagrant boxes are completely disposable. If something goes
wrong, you can destroy and re-create the box in minutes! One of such boxes I
recommend is Laravel Homestead.

Note: You can check out these awesome free courses on learning
how to use Vagrant® on https://serversforhackers.com

2.7.1 Laravel Homestead

Laravel Homestead is an official, pre-packaged Vagrant box that provides you
a wonderful development environment without requiring you to install PHP, a
web server, and any other server software on your local machine. Homestead
runs on any Windows, Mac, or Linux system. It includes the following:

e Ubuntu 16.04

o Git

o PHP 7.1 (Latest version of PHP)
e Nginx

e MySQL

e MariaDB

e Sqlite3

e Postgres

o Composer

o Node (With Yarn, PM2, Bower, Grunt, and Gulp)
o Redis

¢ Memcached

o Beanstalkd

Here are the steps to get started with Laravel Homestead:

Shttps://serversforhackers.com/series/vagrant

11

https://serversforhackers.com
https://serversforhackers.com/series/vagrant

1. Install VirtualBox 5.17, or VMWare®, and Vagrant’.

2. Now that you have Vagrant and VirtualBox or VMware installed, go ahead
and download the Laravel Homestead box like so:

vagrant box add laravel/homestead

You can follow the instructions on the Laravel Homestead documentation'’ to
find out more about the installation process.

I recommend Windows users to take a stab at using Laragon''. It
provides an alternative but suitable and powerful environment like
Laravel Homestead.

2.7.2 phpT7dev

Another Vagrant image is php7dev'” by Rasmus Ledorf (Creator of PHP). It
is a Debian 8 Vagrant image which is preconfigured for testing PHP apps and
developing extensions across many versions of PHP. You can gloriously switch
between PHP versions by using the newphp command.

Follow the instructions on the README'? to find out how to install, configure
and use it.

2.8 Valet

Valet'? is a PHP development environment for Mac minimalists. It was built
by Taylor'® and Adam Wathan'® of the Laravel community. It is a fast blazing
development environment that uses roughly 7MB of RAM. It requires Home-
brew.

Laravel Valet configures Mac to use PHP’s built-in web server in the background
when your machine starts. With Valet, if you create a project folder called
authO-php, then you can just open authO-php.dev in your browser and it will
serve the contents of the folder automatically.

Thttps://www.virtualbox.org/wiki/Downloads
8https://www.vmware.com
9https://www.vagrantup.com/downloads.html
Ohttps://laravel.com/docs/5.3/homestead
Hhttps://laragon.org
2https://github.com/rlerdorf/php7dev
Bhttps://github.com/rlerdorf/php7dev
Mhttps://github.com/laravel /valet
https:/ /twitter.com/taylorotwell
L6https:/ /twitter.com/adamwathan

12

https://www.virtualbox.org/wiki/Downloads
https://www.vmware.com
https://www.vagrantup.com/downloads.html
https://laravel.com/docs/5.3/homestead
https://laragon.org
https://github.com/rlerdorf/php7dev
https://github.com/rlerdorf/php7dev
https://github.com/laravel/valet
https://twitter.com/taylorotwell
https://twitter.com/adamwathan

You can share whatever you are working on locally with someone in another
part of the world by just running this command:

valet share

Version 2.0.25/2.0.25

Region United States (us)

Web Interface http://127.0.0.1:4040

Forwarding http://af79e2d6.ngrok.io -> todoapp.dev:80@
Forwarding https://af79e2d6.ngrok.io -> todoapp.dev:80

Connections ttl opn rtl rt5 p50 p9Q

2) 0.02 0.01 0.23 0.46

HTTP Requests

GET /favicon.ico
GET /

Valet uses Ngrok under the hood to share

You can even serve a local site over encrypted TLS using HTTP/2 by invoking
a command like so:

valet secure blog

where blog is the name of the site or project folder. Valet generates a fresh
local TLS certificate everytime you run the command to secure the site.

Version 2.0.25/2.0.25

Region United States (us)

Web Interface http://127.0.0.1:4040

Forwarding http://af79e2d6.ngrok.io -> todoapp.dev:80@
Forwarding https://af79e2d6.ngrok.io -> todoapp.dev:80

Connections ttl opn rtl rt5 p50 P90
2 0 0.02 0.01 0.23 0.46

HTTP Requests

GET /favicon.ico
GET /

Invoke the secure command

13

° n prosper

@ Secure https://blog.dev Y| e

L aravel

DOCUMENTATION LARACASTS NEWS FORGE GITHUB

Site is served over https locally

Woot! Woot!, So awesome.

Out of the box, Valet supports Laravel'”, Lumen'®, Symfony'’, Zend*',

CakePHP 3!, Wordpress??, Bedrock?’, Craft**, Statamic’® and Jigsaw’’.
However, you can extend Valet with your own custom drivers”’.
Follow the instructions on the laravel valet documentation®® to find out how to

install and get started with it.

Thttps:/ /laravel.com
I8https://lumen.laravel.com
Yhttps://symfony.com
20https://framework.zend.com
2lhttps://cakephp.org
22https://wordpress.org
23https://roots.io/bedrock
24https://craftcms.com
25https://statamic.com
26http://jigsaw.tighten.co
2Thttps://laravel.com/docs/5.3 /valet#-custom-valet-drivers
28https://laravel.com/docs/5.3 /valet

14

https://laravel.com
https://lumen.laravel.com
https://symfony.com
https://framework.zend.com
https://cakephp.org
https://wordpress.org
https://roots.io/bedrock
https://craftcms.com
https://statamic.com
http://jigsaw.tighten.co
https://laravel.com/docs/5.3/valet#custom-valet-drivers
https://laravel.com/docs/5.3/valet

2.9 Docker

Docker is an open-source engine that automates the deployment of any appli-
cation as a lightweight, portable, self-sufficient container that will run virtually
anywhere.

Docker containers wrap a piece of software in a complete filesystem that contains
everything needed to run: code, runtime, system tools, system libraries and
anything that can be installed on a server. This guarantees that the software
will always run the same, regardless of its environment.

2.9.1 php7-dockerized
php7-dockerized?” is a simple PHP 7 Docker and Compose environment that is
bundled with Nginx and MySQL.

Follow the instructions on setting up a local PHP 7 development environment
with docker and compose!®’.

2.9.2 Laradock

Laradock®' is a docker PHP development environment that gives you a won-
derful development environment without requiring you to install PHP 7, Nginx,
MySQL, Redis, and any other software on your machines.

You can get started by doing the following:

e Clone Laradock inside your project like so:

git clone https://github.com/Laradock/laradock.git

« Enter the laradock folder and run this command:

docker-compose up -d nginx mysql redis beanstalkd

e Open your .env file and set the following:

DB_HOST=mysql
REDIS_HOST=redis
QUEUE_HOST=beanstalkd

2%https://github.com/hamptonpaulk/php7-dockerized

30https://medium.com/code-school /setting-up-a-local-php7-development-environment-with-docker-compose-e9531baed291#
.bezir0x7n

3lhttps://github.com/laradock/laradock

15

https://github.com/hamptonpaulk/php7-dockerized
https://medium.com/code-school/setting-up-a-local-php7-development-environment-with-docker-compose-e9531baed291#.bezir0x7n
https://medium.com/code-school/setting-up-a-local-php7-development-environment-with-docker-compose-e9531baed291#.bezir0x7n
https://github.com/laradock/laradock

You can follow the instructions on the laradock documentation®’ to find out
how to install and configure it.

2.9.3 phpdocker

phpdocker.io®* is a PHP and Docker generated environment. It supports PHP
7 up until 7.1 beta. Follow the instructions to set it up like so:

¢ Clone https://github.com/phpdocker-io/phpdocker.io

o Copy app/config/parameters.yml.dist into app/config/parameters.yml
e Run composer install

¢ Run bower install

e Run php bin/console assets:install --symlink --relative

e Run docker-compose up -d

Don’t hesitate to submit an issue on the phpdocker-io repo if you hit a road-
block.

Note: Chris Fidao®* has a fantastic course on Docker. With his course on
shippingdocker.com®’, you’ll learn how to use Docker in development, testing
and production.

There are different ways of setting up a PHP 7 development environment. The
few I have mentioned here should give you a lot of options in getting your
machine ready to effectively test PHP 7 features.

32https://github.com/laradock /laradock/blob/master/README.md
33https://github.com/phpdocker-io/phpdocker.io
34https://twitter.com /fideloper

35https://shippingdocker.com

16

https://github.com/phpdocker-io/phpdocker.io
https://github.com/laradock/laradock/blob/master/README.md
https://github.com/phpdocker-io/phpdocker.io
https://twitter.com/fideloper
https://shippingdocker.com

Chapter 3

Elementary Language
Changes

3.1 Spaceship Operator

PHP 7 ships with a new operator, <=>, for simplifying the evaluation of
arithmetic operations. With this operator, it is easier to evaluate less than,
equal to, or greater than. The results will either be -1, 0 or 1. Ruby and PERL
programmers are familiar with this operator.

This is how it works. If we have two operands $x and y, andwedo, ¥xx <=>
$y** then

o if $x is less than $y, the result will be -1
o if $x equals Sy, the result will be 0
o if $x is greater than $y, the result will be 1

function evaluate($x, $y) {
return $x <=> y;

}

evaluate (9, 8);

1

A Good real world case for this operator is in the simplification of comparison
methods and using it for switch operations like so:

17

$data = [

['name' => 'Ado', 'cars' => 2],
['name' => 'Tony', 'cars' => 4],
['name' => 'Ramirond', 'cars' => 3],
['name' => 'Woloski', 'cars' => 12]

1
function sortByCars($x, $y) {

return $x['cars'] <=> $y['cars'];
}

usort($data, 'sortByCars');

print_r($data);

// Result
Array
(
[0] => Array
(
[name] => Ado
[cars] => 2
)
[1] => Array
(
[name] => Ramirond
[cars] => 3
)
[2] => Array
(
[name] => Tony
[cars] => 4
)
[3] => Array
(
[name] => Woloski
[cars] => 12
)
)

It sorted the array easily with less code. Without the spaceship operator, I
would have to write the sortByCars method like so:

18

function sortByCars($x, $y)

{
if ($x['cars'] == $y['cars']) {
return 0;
}
return ($x['cars'] < $y['cars']) 7 -1 : 1;
¥

3.2 Array Constants

Before now, constants defined with the define () method can only accept scalar
values. In PHP 7, you can have constant arrays using the define() method
like so:

// PHP 7

define('CARS', [
'fine' => 'Mercedes',
'strong' => 'Volkswagen',
'ugly' => 'chevrolet'

1

echo CARS['fine'];

// Result
Mercedes

3.3 Null Coalescing Operator

The purpose of this new operator, 7?7, is to allow developers to set values from
user inputs without having to check if the value has been set. Before PHP 7,
this is how you evaluate input. Check this out:

$occupation = isset($_GET['occupation']) 7 $_GET['occupation'] : 'bricklayer';
If the value of $_GET['occupation'] exists, it returns the value else it assigns

bricklayer to the $occupation variable. In PHP 7, you can simply shorten
that line of code using the 7?7 operator like so:

// PHP 7

19

$occupation = $_GET['occupation'] 7?7 'bricklayer';

It automatically checks whether the value is set and assigns the value to
$occupation variable if it is, else it returns bricklayer.

The Null coalescing operator also allows you to chain expressions like so:

// PHP 7

$_ENV['occupation'] = 'software engineer';

$occupation = $_GET['occupation'] 7?7 $_ENV['occupation'] 7?7 'bricklayer';

// Result
software engineer

This will assign the first defined value to the $occupation variable.

3.4 Integer Division

PHP 7 introduced a new function intdiv() which returns the result of an
integer division operation as int.

// PHP 7
$result = intdiv(10, 4);

// Result:
2

3.5 Regular Expressions

Handling regular expressions just got easier in PHP 7. A new preg_replace_callback_array()
function has been added to perform a regular expression search and replace
using callbacks.

$message = 'Haaaalaaaaaa, Girls and people of Instagrant';

preg_replace_callback_array(

[
'~[a]+~i' => function ($match) {
echo strlen($match[0]), ' matches for "a" have been found';

1,

20

'~[b]+~i' => function ($match) {

echo strlen($match[0]), ' matches for "b" found';
},
"~[p]l+~i' => function ($match) {

echo strlen($match[0]), ' matches for "p" found';

¥

1,

$message
);
// Result
4 matches for "a" have been found
6 matches for "a" have been found
1 matches for "a" have been found
1 matches for "a" have been found
1 matches for "a" have been found
1 matches for "p" found
1 matches for "p" found

3.6 Filtered unserialize()

The unserialize() function has been existing since PHP 4. It allows you to
take a single serialized variable and convert back into a PHP value.

In PHP 7, the options parameter has been added. You can now whitelist classes
that can be unserialized like so:

// converts all objects into __PHP Incomplete_Class object
unserialize($obj, ["allowed_classes" => false]);

// converts all objects tnto __PHP Incomplete_Class object except those of FirstClass and S
unserialize($obj, ["allowed_classes" => ["FirstClass", "SecondClass"]]);

// default behaviour (same as omitting the second argument) that accepts all classes
unserialize($obj, ["allowed_classes" => truel);

It was introduced to enhance security when unserializing objects on untrusted
data.

Note: In PHP 7.1, the allowed_classes element of the options
parameter is now strictly typed. unserialize() returns false if
anything other than an array or boolean is given.

21

3.6.1 Cryptographically Secure Pseudorandom Number
Generator (CSRPNG)

random_bytes () and random_int () have been added to the CSRPNG functions
in PHP 7.

e random_bytes() returns a random string of a given length
e random_int () returns a random integer from a range

// return a random string of given length
echo random_bytes(12);

// Result:
3 .C54V

// return a random tinteger within this range
echo random_int (0, 5000);

// Result:
4497

Note: The results of random_bytes and random_int will be differ-
ent for you because they are randomly generated. The results in the
code above were gotten at the time I ran both functions.

3.7 session__start config enhancements

The session_start () method now accepts an array of values that can override
the session config in php.ini file.

session.lazy_write which is on by default can be turned off by explicitly
stating it in the session_start () method like so:

session_start ([
'lazy_write' => false,
'cache_limiter' => 'private'

1)

3.8 Unpack objects with list()

The 1list () language construct now allows you to unpack objects implementing
the ArrayAccess interface.

22

$fruits = new ArrayObject(['banana', 'mango', 'apple'l);
list($a, $b, $c) = $fruits;

echo $a. PHP_EOL;
echo $b. PHP_EOL;
echo $c. PHP_EOL;

// Result:

banana

mango

apple
Note: In PHP 7.0.0 1ist() expressions can no longer be com-
pletely empty. In PHP 5, 1ist () assigns the values starting with
the right-most parameter. In PHP 7, list() starts with the left-most
parameter. This is true when working with arrays with indices.

3.9 dirname() enhancement

The dirname () in PHP 5 returns a parent directory’s path. In PHP 7.0.0, an
optional levels parameter has been added to the function to allow you as a
developer determine how many levels up you want to go when getting a path.

$path = '/Unicodeveloper/source/php-workspace/laravel/vavoom';

// Go three levels up and return the path
dirname ($path, 3);

// Result:
/Unicodeveloper/source

3.10 Reflection API Enhancements

PHP 7 introduces two new reflection classes. One is the ReflectionGenerator
class that reports information about generators and the other is the
ReflectionType class that reports information about a function’s return

type.
ReflectionType API

e ReflectionType::allowsNull — Checks if null is allowed

23

e ReflectionType::isBuiltin — Checks if it is a built-in type
o ReflectionType::__toString - gets the parameter type name

ReflectionGenerator API

e ReflectionGenerator::__construct — Constructs a ReflectionGenera-
tor object

e ReflectionGenerator::getExecutingFile — Gets the file name of the
currently executing generator

e ReflectionGenerator::getExecutingGenerator — Gets the executing
Generator object

e ReflectionGenerator::getExecutingLine — Gets the currently execut-
ing line of the generator

e ReflectionGenerator::getFunction — Gets the function name of the
generator

e ReflectionGenerator::getThis — Gets the $this value of the generator

e ReflectionGenerator::getTrace — Gets the trace of the executing gen-
erator

Two new methods have also been added to the ReflectionParameter and
ReflectionFunctionAbstract classes.

RefiectionParameter API

e ReflectionParameter: :hasType - Checks if parameter has a type
e ReflectionParameter::getType - Gets a parameter’s type

ReflectionFunctionAbstract API

¢ ReflectionFunctionAbstract: :hasReturnType - Checks if the function
has a specified return type.

e ReflectionFunctionAbstract: :getReturnType — Gets the specified re-
turn type of a function

3.11 Reserved Words

PHP 7 now allows globally reserved words such as new, private, for as property,
constant, and method names within classes, interfaces, and traits.

class Car {
private $type, $who, $costs;
public function new($carType) {

$this->type = $carType;
return $this;

24

public function for($who) {
$this->who = $who;
return $this;

}

public function costs($price) {
$this—>price = $price;
return $this;

public function __toString() {
return $this->type . ' ' . $this->who . ' ' . $this->price. PHP_EOL;
}
}

$car = new Car();
echo $car->new('Mercedes Benz')->for('Wife')->costs(14000);

// Result:
Mercedes Benz Wife 14000

25

Chapter 4

Scalar Typehinting &
Return Type Declarations

4.1 Typehinting

With PHP 5, you could typehint a function parameter with Classes, Interfaces,
callable and array types only. For example, if you want a parameter of a certain
type string to be passed into a function, you would have to do a check within
the function like so:

// php 5
function getBookNo($number) {
if (! is_integer ($number)) {
throw new Exception("Please ensure the value is a number");

}

return $number;

}

getBookNo ('boooks ') ;

PHP 7 eliminates the need for the extra check. With PHP 7, you can now
typehint your function parameters with string, int, float, and bool.

// PHP 7
function getBookNo(int $number) {
return $number;

3

26

getBookNo ('boooks ') ;

// Error raised

PHP Fatal error: Uncaught TypeError: Argument 1 passed to getBookNo() must be..

// Continuation of the error message
..of the type integer, string given, called in

PHP 7 will throw a Fatal error as seen above once you typehint with scalar
values.

4.2 Return Types

PHP 7 supports return types for functions. This feature has been available in
several strongly typed languages for a long time. Now, you can easily enforce a
function to return a certain type of data like so:

function divideValues(int $firstNumber, int $secondNumber): int {
$value = $firstNumber / $secondNumber;
return $value;

}
echo divideValues(8, 9);

// Result:
0

In the function above, we want the return value to be an integer, regardless
of whatever the division turns out to be. Now the default weak(coercive) type
checking in PHP comes to play again here. The value returned should be a float
and it should throw a Fatal Type Error but it is automatically coerced into an
integer.

Enable strict mode by placing declare(strict_types=1); at the top of the
file and run it again. It should throw a PHP Fatal Type error like so:

// Error raised

PHP Fatal error: Uncaught TypeError: Return value of divideValues() must...

// Continuation of the error message
...be of the type integer, float returned in

27

4.3 Strong Type Check

By default, PHP 5 and 7 allow for coercion when dealing with operations such
as numeric strings. An example is this:

function getBookNo(int $number) {
return "This is it: " . $number;

}

echo getBookNo("8");
// Result:

This is it: 8

I passed in a string and it coerced it to an integer and allowed it to run suc-
cessfully. Now in PHP 7, you can be strict and ensure no form of automatic
conversion occurs by declaring a strict mode at the top of your PHP file like so:

declare(strict_types=1);
function getBookNo(int $number) {

return "This is it: " . $number;

}
echo getBookNo("8");

// Result:
PHP Fatal error: Uncaught TypeError: Argument 1 passed to getBookNo() must..

// Continuation of the error message
..be of the type integer, string given, called in

In PHP 5, if you pass in a float value, it automatically strips out the decimal
parts and leaves you with an integer. Now in PHP 7, If you pass in a float value
too, it will throw a Fatal error. This feature comes in handy when building
software for financial institutions.

Note: Remember something like this in JavaScript? Where you
have to write use "strict"; at the top of your JavaScript file.

28

Chapter 5

Error Handling,
Expectations and
Assertions

Many fatal and recoverable fatal errors have been converted to exceptions in
PHP 7. Most errors are now reported by throwing Error exceptions. The
Exception class now implements a Throwable Interface.

Take a look at the hierarchy below:

\Throwable
\Exception (implements \Throwable)
\LogicException
\BadFunctionCallException
\BadMethodCallException

\DomainException
\InvalidArgumentException
\LengthException
\Out0fRangeException

\RuntimeException
\OutOfBoundsException
\OverflowException
\RangeException
\UnderflowException
\UnexpectedValueException

\Error (implements \Throwable)

29

\AssertionError
\ArithmeticError
\DivisionByZeroError
\ParseError
\TypeError

So you can catch specific errors like so:

try {
// evaluate something
} catch (\ParseError $e) {
// do something
¥

When you typehint a function parameter, and a wrong type is passed in as an
argument, PHP 7 throws a TypeError.

Note: In PHP 7.1, you can catch multiple errors and exceptions in one catch
block like so:

try {
// Some code. ..

} catch (ExceptionTypeA | ExceptionTypeB | ExceptionTypeC $e) {
// Code to handle the exzception

} catch (\Exception $e) {
/)

}

This is particularly useful when one method throws different type of exceptions
that you can handle the same way.

Note: A new error_clear_last () method has been added to clear
the most recent error. Once used, calling error_get_last () will be
unable to retrieve the most recent errors.

Check out the Catching Multiple Exception Types' RFC.

5.1 Expectations and Assertions

Assertions are a debugging and development feature. The assert () function in
PHP 7 is now a language construct, where the first parameter can also be an
expression instead of just been a string or boolean. They have been optimized
to have zero cost in production. You can now enable or disable assertions from
the PHP_INI file like so:

Thttps://wiki.php.net /rfc/multiple-catch

30

https://wiki.php.net/rfc/multiple-catch

zend.assertions = 1 // Enable assertion
zend.assertions 0 // Disable assertion
zend.assertions = -1 // (production mode), don't generate or ezecute code

Assertions can now throw an Exception when it fails. You can enable that from
the INT file like so:

assert.exceptions = 1 // Throw exzceptions

// or

assert.exceptions = 0 // Issue warnings, which has always been the case.

The assert () can now take in two arguments where the second argument is a
custom error message. It can also be an instance of an Exception. An example
is shown below:

class ProjectException extends AssertionError {}
public function checkAuthenticityOfProject() {
VA V4

$projException = new ProjectException('$project was not a Project object');
assert('$project instanceof \Unicodeveloper\Project', $projException);

}

Note: With this new feature, you might not need to depend on assertion li-
braries anymore while developing and testing your code.

Check out the Expectations RFC? for more information.

2https:/ /wiki.php.net /rfc/expectations

31

https://wiki.php.net/rfc/expectations

Chapter 6

Closures and Generators

There is now a better and more performant way of binding an object scope to
a closure and calling it. Before PHP 7, you would bind an object to a closure
like so:

class NameRegister {
private $name = "Prosper";

}

// Closure
$getName = function() {
return $this->name;

};
$getTheName = $getName->bindTo(new NameRegister, 'NameRegister');
echo $getTheName();

With PHP 7, you now have a call method on the Closure class. So you can
bind an object to a closure easily like so:

class NameRegister {
private $name = "Prosper";

}

$getName = function() {
echo $this->name;

};

$getName->call (new NameRegister());

32

Check out the PHP Manual: Closure::call' for more information.

6.1 Generator Return Expressions

Generators were introduced in PHP 5.5. Prior to PHP 7, if you tried to return
anything, an error would be thrown. Now, you can use a return statement
within a generator.

You can get the returned value by calling the Generator: : getReturn() method.
Look at the code below:

$square = function (array $number) {
foreach($number as $num)
{
yield $num * $num;

}

return "Done calculating the square. What next?";

};
$result = $square([1,2,3,4,5]);

foreach($result as $value)
{

echo $value . PHP_EOL;
}

echo $result->getReturn(); // grab the return wvalue

// Result:

1

4

9

16

25

Done calculating the square. What next?

6.2 Generator Delegation

Generators can now delegate to another generator by using yield from like so:

Thttps://secure.php.net /manual/en/closure.call.php

33

https://secure.php.net/manual/en/closure.call.php

function square(array $number) {
foreach($number as $num)
{
yield $num * $num;

}

yield from addition($number) ;

};

function addition(array $number) {
foreach($number as $num)
{
yield $num + $num;
}
}

foreach(square([1,2,3,4,5]) as $value)
{

echo $value . PHP_EOL;
}

// Result:
1
4
9
16
25
2
4
6
8
10

34

Chapter 7

Object-Oriented
Programming Enhancement

7.1 Anonymous Classes

An Anonymous class is essentially a local class without a name. Anonymous
classes offer the ability to spin up throwaway objects. These objects have closure-
like capabilities. An anonymous class is defined like so:

new class($constructor, $args) {

3

A real world case is a situation where you want to have objects that implement
some interfaces on the fly. Rather than having several files, where you have to
define the class and then instantiate it, you can leverage anonymous classes like
s0:

$meme = new class implements MemeInterface {
public function memeForm($form) {
return $form;
}
3

$app = new App($meme) ;

35

7.2 Group Use Declarations

Group use declaration helps make the code shorter and simpler. Before now, if
you are trying to use multiple classes, functions and constants from the same
namespace, you have to write it like so:

// PHP 5
namespace Unicodeveloper\Emoji;

use Unicodeveloper\Emoji\Exceptions\UnknownMethod;

use Unicodeveloper\Emoji\Exceptions\UnknownEmoji;

use function Unicodeveloper\Emoji\Exceptions\checkForInvalidEmoji;
use const Unicodeveloper\Emoji\Exceptions\INVALID_EMOJI;

class Emoji {
}

With PHP 7, you can group them like so:

// PHP 7
namespace Unicodeveloper\Emoji;

use Unicodeveloper\Emoji\Exceptions\{
UnknownMethod, UnknownEmoji, function checkForInvalidEmoji, const INVALID_EMOJI
};

class Emoji {

}

36

Chapter 8
Better Unicode Support

K3k

~

In PHP 7, all you need is the hexadecimal code appended to and you’ll have

your symbol/emoji as an output. An example is this:

function getMoney() {
echo "\u{1F4BO}";
}

getMoney () ;
getMoney () ;
getMoney () ;
getMoney () ;

Result:

88686

Figure 8.1: Unicode Result

The enhancements were made possible from the Unicode Codepoint Escape
Syntax RFC'.

Lhttps://wiki.php.net/rfc/unicode_ escape

37

https://wiki.php.net/rfc/unicode_escape

8.1 IntlChar

You can as well get the name equivalent of a unicode character, say “1F4B0”
via the new IntlChar class like so:

echo IntlChar::charName ("\u{1F4B0}");

You can get the character from the name like so:

var_dump (IntlChar: :charFromName ("LATIN CAPITAL LETTER A"));
var_dump (IntlChar: : charFromName ("SNOWMAN")) ;
var_dump (IntlChar: : charFromName ("TURTLE")) ;

Note: The IntlChar class contains about 600 constants and 59 static methods.

This was made possible from the IntlChar RFC?. The PHP manual has extensive
documentation on the IntIChar® class.

2https:/ /wiki.php.net /rfc/intl.char
3http://php.net/manual/en/class.intlchar.php

38

https://wiki.php.net/rfc/intl.char
http://php.net/manual/en/class.intlchar.php

Chapter 9

Deprecated & Removed
Features

Using deprecated features in PHP will trigger an E_DEPRECATED error.

1. PHP 4 Style constructors are deprecated, and will be removed in the
future. An example of a PHP 4 style of writing constructors(having the
same name with the class) is this:

class Economy {
function economy() {
V& I V4
}

2. Static calls to methods that are actually not static are deprecated.

class Economy {
function affordPrimaryEducation() {
echo 'I think I might not be able to afford it with this economy';

3
X

Economy: :affordPrimaryEducation() ;

// Result:
Deprecated: Non-static method Economy::affordPrimaryEducation() should not be called..

// Continuation of error message
..statically in

39

3. The salt option for the password_hash() function has been deprecated
to prevent developers from generating their own salts which are mostly
insecure.

4. The capture_session_meta SSL context option has been deprecated.
stream_get_meta_data() can now be used to get SSL metadata.

5. The 1dap_sort () function has been deprecated.
6. The alternative PHP tags shown below have been removed:
PHP Script tags

<script language='"php">
</script>

PHP ASP tags

<% %>

7. The date.timezone warning that was always emitted in PHP 5 when a
time or date-based function was used and a default timezone had not been
set has been finally removed. Check out the RFC".

8. Before PHP 7, it was allowed to have multiple parameters with the same
name like so:

function getUp($why, $why) {
/x x/
}

In PHP 7, this results in an error like:

// Fatal error: Redefinition of parameter $why in....

9.1 Removed Extensions and Server APIs

The ext/mysql, ext/mssql, ereg and sybase_ct extensions have been re-
moved. All the mysql_ functions have been removed! You should either use
the ext/mysqli extension or use the ext/pdo extension which is has an object-
oriented API.

The aolserver, apache, apache_hooks, apache2filter, caudium, continuity,
isapi, milter, nsapi, phttpd, pi3web, roxen, thttpd, tux and webjames
SAPIs have also been removed.

Thttps://wiki.php.net /rfc/date.timezone_warning_ removal

40

https://wiki.php.net/rfc/date.timezone_warning_removal

9.2 Backward Incompatible Changes

Here are some backward incompatible changes that you should be aware of.
These are changes that have been introduced to PHP 7 but will break in lesser
versions of PHP.

o set_exception_handler() is no longer guaranteed to receive Exception ob-
jects.

o Internal constructors always throw exceptions on failure: Prior to PHP
7, some internal classes would return NULL when the constructor failed.
Now, they will throw an Ezception.

e Error handling for eval() should now include a catch block that can
handle the ParseError® object.

o The almighty E_STRICT notices now have new behaviors. It’s no longer
too strict.

E_STRICT notices severity changes

Situation New level/behaviour

Indexing by a resource E_NOTICE

Abstract static methods Notice removed, triggers no error
"Redefining" a constructor Notice removed, triggers no error
Signature mismatch during inheritance E_WARNING

Same (compatible) property in two used traits Notice removed, triggers no error
Accessing static property non-statically E_NOTICE

Only variables should be assigned by reference E_NOTICE

Only variables should be passed by reference E_NOTICE

Calling non-static methods statically E_DEPRECATED

Source: PHP Manual

e list() can no longer unpack string variables. str_split() should be
used when performing this form of operation.

e global can no longer accept variable variables unless you fake it by using
the curly brace like so global ${$foo->bar}.

e An E_WARNING will be emitted and NULL will be returned when internal
functions try to perform float to integer automatic conversions.

e Prefixing comments with # in php.ini file is no longer allowed. Only
semi-colons(;) should be used.

e Dividing by 0 will emit an E_WARNING and also one of either +INF, -INF,
or NAN.

2https://php.net/manual/en/class.parseerror.php

41

https://php.net/manual/en/class.parseerror.php

e $HTTP_RAW_POST_DATA was deprecated in PHP 5.6.0 and finally removed
in PHP 7.0.0. Use php://input’ as a replacement.

e Switch statements can no longer have multiple default blocks. An
E_COMPILE__ERROR will be triggered if you try to define more
than one default block.

e Functions can not have multiple parameters with the same name.
function slap($hand, $hand, $strength). An E_ COMPILE_ERROR
will be triggered as a result of this function.

e Static calls made to a non-static method with an incompatible context
will now result in the called method having an undefined $this variable
and a deprecation warning being issued.

You can check out the few other PHP core functions® that have changed.

3https://php.net/manual/en/wrappers.php.php#wrappers.php.input
4https://secure.php.net/manual/en/migration70.changed-functions.php

42

https://php.net/manual/en/wrappers.php.php#wrappers.php.input
https://secure.php.net/manual/en/migration70.changed-functions.php

Chapter 10

Uniform Variable Syntax
and Static Values

Uniform Variable Syntax brings a much needed change to the way variable-
variable expressions are constructed. It allows for a number of new combinations
of operators that were previously disallowed, and so introduces new ways to
achieve old operations in a more polished code.

// nesting ::
$foo::$bar: :$baz // access the property $baz of the $foo::$bar property

// nesting ()
fooO) // invoke the return of foo()

// operators on expressions enclosed in ()
(function OO {M) O // IIFE syntaz from JS

// old meaning // nmew meaning
$$foo['bar'] ['baz'] ${$foo['bar']['baz']} ($$foo) ['bar'] ['baz']
$foo->$bar['baz'] $foo—>{$bar['baz']l} ($foo->$bar) ['baz']
$foo—>$bar['baz'] () $foo—>{$bar['baz']1}() ($foo—>$bar) ['baz'] ()
Foo::$bar['baz'] () Foo::{$bar['baz']1}() (Foo::$bar) ['baz'] ()

10.1 Accessing Static Values

In PHP 5.x, if you try to access a static value like so, an error will be triggered:

43

class AuthO {

static $lock = 'vi0';
}
echo 'AuthO'::$lock;

// Result
Parse error: syntax error, unexpected '::' (T_PAAMAYIM_NEKUDOTAYIM), expecting ',' or ';'

Now, In PHP 7.x, it throws no error, it simply works!
// PHP 7
class AuthO {
static $lock = 'vi0';
}

echo 'foo'::$lock;

// Result
v10

44

Chapter 11

Migration Tools

One of the most frustating part of our jobs as software developers is having to
work on large old codebases. In a situation where you are tasked with migrating
a large PHP 5.x application that has probably been in existence for about 10
years, how would you go about it?

Professionally, production codebases should be backed up with test suites. But
let’s face reality, there are lots of old codebases that exists without tests.

If your codebase is backed with a comprehensive test suite, then it is easy for
you to make changes to incorporate PHP 7 features without messing up the
software.

The easiest and most obvious way of migrating old codebases without test suites
is to clone the app on your local machine, install PHP 7 and run the app. You
can walk through the errors and deprecation warnings shown in the terminal,
and manually fix them step-by-step by incorporating PHP 7 features. But this
can be very challenging and time consuming. Why can’t we automate this
process?

Currently there is no tool out there that performs a 100% automatic conversion
of your PHP 5.x codebase to PHP 7, but the tools I'll mention in the next
section will help in making your migration painless.

11.1 PHP 7 MAR

php7mar' is a command-line tool that generates reports on PHP 5.x codebase
based on PHP 7 compatibility. The reports contain line numbers, issues noted,
and suggested fixes along with documentation links.

Lhttps://github.com/Alexia/php7mar

45

https://github.com/Alexia/php7mar

Note: This tool does not fix code. It only gives you reports about all the PHP
files in your codebase. Happy fixing!

11.2 PHP 7 Compatibility Checker

php7cc? is a command-line tool designed to make migration from PHP 5.3 - 5.6
to PHP 7 really easy. php7cc reports:

e Errors: Fatal, Syntax, Notice. These are highlighted in red.
e Warnings: These are highlighted in yellow.

11.3 Phan

phan? is a static analyzer for PHP that attempts to prove incorrectness rather
than correctness. Phan looks for common issues and verifies type compatibility
on various operations when type information is available or can be deduced.
Phan checks for lots of things including PHP7/PHP5 backward compatibility.

11.4 phpto7aid

phpto7aid® is a tool that is used to identify PHP 5 code that will not work in
PHP 7. It tries to aid you as much as possible in resolving this issues, by either
providing the exact solution or giving hints on how to solve the issue.

11.5 PhpStorm PHP 7 Compatibility Inspection

PhpStorm” is a very smart PHP IDE, developed by Jetbrains®.

2https://github.com /sstalle/php7cc
3https://github.com/etsy/phan
4https://github.com/gisostallenberg/php-to- 7-aid
Shttps://www.jetbrains.com /phpstorm
Shttps://www.jetbrains.com

46

https://github.com/sstalle/php7cc
https://github.com/etsy/phan
https://github.com/gisostallenberg/php-to-7-aid
https://www.jetbrains.com/phpstorm
https://www.jetbrains.com

[WebProcessor.php [src/..../WebProcessor.php i ConsoleHandlerTest.php

\Monolog\Processor\WebProcessor addExtraField

v [E3Symfony
v [JBridge
v [Doctrine
» [CacheWarmer 9 =
v B3 DataCollector (
B DoctrineDataCollec
[DataFixtures
[J Dependencyinjection & $name =
L1 ExpressionLanguage
<
I Form
» [ChoicelList
3 DataTransformer
3 Eventlistener
I Type
i DoctrineOrmExten:
[DoctrineOrmTypeC
» [JHttpFoundation
-—

Debugging\JetBrains\Person

Person(

->getName() .

B
Debugger [Console

5 Frames /ci Watches
groups =
| 05 - Debug Tool Window.php:23 name =

S $_ENV =
_SERVER =

2124 LF: UTF-8: %

Source: Jetbrains.com

PhpStorm 10 ships with a PHP 7 Compatibility Inspection tool that can show
you exactly what code is going to cause errors if you are running PHP7.

2
3 Class Int
(HE

A

Classes with names int, string, float, and bool are forbidden in PHP 7. more... (38F1)
6 {
7 return (int)$string;
8 }
9 H
10

Source: Jetbrains.com

The image below shows a typical example of an application that has classes
with names that are reserved in PHP 7. Selecting Run Inspection By Name
option from the Code menu, and then selecting the PHP 7 Compatibility
section will give you results like this one below:

Inspecton Resuls fo Inspection Profie PHP 7 Readiness' # L

») 7 bad-puppy Name

o Probable bugs Int.php

- # PHP 7 Readiness Location

N 4 3 public file 1 = Ibad-puppy]

ta Cvendor N .

¥ W st e forbidden i Problen synopsis

+ o O Classes with names Int, string, float, and bool are forbidden In PHP 7. Classes with nases int, string, float, and bool are forbidden in PHP 7. (at ine 22)
L O Classes with names in, tring, float, and bool are forbidden in PHP 7.

4 ® Classes with names int, string, float, and bool are forbidden in PHP 7.

Lt © Classes with names in, sring, floa, and bool are forbidden in PHP 7. Suppress

oe Suppress for statement

?

Source: Jetbrains.com

47

Chapter 12

Practical Migration of Two
Apps

Let’s do a practical migration of two apps, a basic web app and an API.

12.1 Building a PHP5 App

We will build this PHP 5 app very quickly. The scope of the app can be found
below:

e A user will be able to register on the app.

e A user will be able to log into the app.

e A user will be assigned a random Star Wars Code Name.
e A user will be able to log out of the app.

Building this app will require us to set up a database to store the users, write
our registration and login code and manage the users session. Now, we won’t
employ the use of any framework because we don’t want any form of overhead.
Ordinarily, building this app will take a lot of time and setup but there is a
service we can use to eliminate the hassle. Oh, yeah, let’s use AuthO' to save
us time and make our app secure.

12.1.1 Create and Configure AuthO Client

First thing we’ll need to do is sign up for a free AuthQ account” and configure
a new client.

Thttps://auth0.com
2https://auth0.com /signup

48

https://auth0.com
https://auth0.com/signup

Now head over to clients’ and create a new one choosing Regular web
Application as the client type. Let’s name it as something like Basic PHP
WebApp.

°) prosper
@ Secure https://manage.authO.com/#/clients 7 %
ﬂ AuthO Q_ Search for clients or features A Help&Support Documentation Talk to Sales g unicoder v

B Clients
Bn APls Setup a mobile, web or loT application to use AuthO for Authentication. Learn more »
O S50 Integrations

o Connections

.

@, Users = I e el e il

25 Rules

& Hooks

o

- —

B Multifactor Auth

Hosted Pages

™ Emails . e
Logs

@ Anomaly Detection
{} Extensions

(O Get Support

Click on the Create Client button

3https://manage.auth0.com/# /clients

49

https://manage.auth0.com/#/clients

@& Secure https://manage.auth0.com/#/clients

Name

Create Client

prosper

Basic PHP WebApp

You can change the client name later in the client settings.

Choose a client type

Native

Mobile or Desktop,
apps that run natively

in a device.

eg:i0S SDK

o

Single Page Web
Applications

AlJavaScript front-
end app that uses an
APL

eg: AngularJs +

NodeJs

Regular Web
Applications

Traditional web app
(with refresh).

eg: Java ASPNET

S

Non Interactive

Clients

CLI, Daemons or
Services running on

your backend

eg: Shell Script

——# CREATE

Create a reqular web application

Now that we have our client created, we need to take note of three properties:
Domain, Client ID and Client Secret. All of them can be found on the
Settings tab of the client that we’ve just created.

50

Xy : prosper

‘ & Secure autho i 4RIKVaKITeKgC7tARAJYMOfem4U 1 /settings LR

- .
'3 Auth0 Q_ Search for clients or features A Help&Support Documentation Talk to Sales @ unicoder v

@ Dashbosrd Basic PHP WebApp

B Clients

B APl
Quick Start Settings. Addons Connections Client ID: I1bLARTKVaKITeKgC7tAR4IYMOfemdUl

O 550 Integrations

o8 Connections

@ Users Name Basic PHP WebApp =]
25 Rules

Domain - a
43 Hooks

B Multifactor Auth

Client ID LSEEY] - LR] a
Hosted Pages
[Emalls Client Secret (] les
Logs Reveal client secret.
Anomaly Detection The Client Secret is not base64 encoded.
y

{*} Extensions

Description
(O Get Support P

Grab the Domain, Client ID and Client Secret

The last configuration that we need to do, before updating our code, is to add
http://localhost:3000 as an Allowed Callback URLs in our AuthO client.
Just scroll down on the Settings tab, you’ll see the field like so:

o1

‘ @& Secure authO. i 4RIKVaKITeKgC7tAR4JYMOfem4U1/settings T %

fj Auth0 Q_ Search for clients or features A Help&Support Documentation Talk to Sales @ unicoder v
Authentication Method
Defines the requested authentication method for the token
@ Dashboard endpoint. Possible values are 'None' (public client without a client
secret), 'Post’ (client uses HTTP POST parameters) or ‘Basic' (client
B Clients uses HTTP Basic).
APIs

S5O Integrations Allowed Callback URLs http://localhost:3000

B
o
8 Connections
2

@

Users 4

After the user authenticates we will only call back to any of these

53 Rules
URLs. You can specify multiple valid URLs by comma-separating
& Hooks them (typically to handle different environments like QA or testing).
8 Multifactor Auth You can use the star symbol as a wildcard for subdomains
(**.google.com'). Make sure to specify the protocol, http:// or ht
Hosted Pages
tps:// , otherwise the callback may fail in some cases.
[Emails
Logs Allowed Logout URLs

@ Anomaly Detection

£} Extensions 4
A set of URLs that are valid to redirect to after logout from Auth0.
(O Get Support

After a user logs out from Auth0 you can redirect them with the

“returnTo’ query parameter. The URL that you use in returnTo’ must
, |
Set Allowed Callback URL

Oh, just one more config, I promise. We need to add http://localhost:3000
as Allowed Origins(CORS). Scroll down a bit more, you’ll see the field like so:

prosper
& & @ Secure authO. i ARIKVaKITeKgC7tAR4JYMOfem4U1/settings 7 %
ﬂ AuthO Q_ Search for clients or features. A Help&Support Documentation Talk to Sales g unicoder v

“returnTo’ query parameter. The URL that you use in “returnTo" must

be listed here. You can specify multiple valid URLs by comma-
@ Dashooard separating them. You can use the star symbol as a wildcard for
B Clients subdomains ('*.google.com'). Notice that querystrings and hash
B APls information are not taking into account when validating these URLs.
Read more about this at https://auth0.com/docs/logout
@ S50 Integrations

o Connections Allowed Origins (CORS) http:/localhost:3000
@ Users
4
25 Rules Allowed Origins are URLS that will be allowed to make requests
A Hooks from JavaScript to Auth0 API (typically used with CORS). By default,

all your callback URLs will be allowed. This field allows you to enter

B Multifactor Auth o) .
other origins if you need to. You can specify multiple valid URLs by
Hosted Pages comma-separating them or one by line, and also use wildcards at
1 Emails the level (e.g.: https://*.cont m). Notice that
querystrings and hash information are not taking into account when
Logs

validating these URLS.

@ Anomaly Detection

£ Extensions JWT Expiration (seconds) 36000

O Get Support Control the expiration of the id token (in seconds).

92

Set Allowed Origins(CORS)

That’s all for now.

12.1.2 Build the App

Create a composer. json file in a new directory and add this to it like so:

{
"name": "basic php webapp",
"description": "Basic sample for securing a WebApp with AuthO",
"require": {
"vlucas/phpdotenv": "2.3.0",
"authO/authO-php": "~4.0"
3,
"license": "MIT"
3
composer.json

All we need is the phpdotenv package for reading environment variables and
the authO-php package that makes it easy to use the AuthO service.

Create a public folder inside the directory and add two files, app.css and
app.js in it.

body {
font-family: "proxima-nova", sans-serif;
text-align: center;
font-size: 300%;
font-weight: 100;
}
input [type=checkbox],
input [type=radio] {
position: absolute;
opacity: O;
}
input [type=checkbox] + label,
input [type=radio] + label {
display: inline-block;
}
input [type=checkbox] + label:before,
input [type=radio] + label:before {
content: "";
display: inline-block;
vertical-align: -0.2em;

93

width: lem;
height: lem;
border: 0.15em solid #0074d9;
border-radius: 0.2em;
margin-right: 0.3em;
background-color: white;
}
input [type=radio] + label:before {
border-radius: 50%;
}
input [type=radio] :checked + label:before,
input [type=checkbox] :checked + label:before {
background-color: #0074d9;
box-shadow: inset 0 O O 0.15em white;
}
input [type=radio] :focus + label:before,
input [type=checkbox] :focus + label:before {
outline: O;
}
.btn {
font-size: 140%;
text-transform: uppercase;
letter-spacing: 1px;
border: 0;
background-color: #16214D;
color: white;
}
.btn:hover {
background-color: #44C7F4;
}
.btn:focus {
outline: none !important;
}
.btn.btn-1g {
padding: 20px 30px;
}
.btn:disabled {
background-color: #333;

color: #666;
}
hi,
h2,
h3 {
font-weight: 100;
}
#logo img {

o4

width: 300px;
margin-bottom: 60px;
X
.home-description {
font-weight: 100;
margin: 100px O;

}

h2 {
margin-top: 30px;
margin-bottom: 40px;
font-size: 200%;

}

label {
font-size: 100%;
font-weight: 300;

}

.btn-next {
margin-top: 30px;

X

.answer {
width: 70%;
margin: auto;
text-align: left;
padding-left: 10%;
margin-bottom: 20px;

}

.login-page .login-box {
padding: 5px 0;
}

app.css

$ (document) .ready (function() {

var lock = new AuthOLock (AUTHO_CLIENT_ID, AUTHO_DOMAIN, { auth: {
redirectUrl: AUTHO_CALLBACK_URL
, responseType: 'code'
, params: {
scope: 'openid'
}
)

$(".btn-login').click(function(e) {
e.preventDefault();
lock.show();

b

99

DR

app.js

Go ahead and create a .htaccess file inside the directory like so:

RewriteEngine On

RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} '-d
RewriteRule . index.php [L]

.htaccess

Create a .env file. This file will contain our AuthO credentials.

AUTHO_DOMAIN='blahabababababa.authO.com'

AUTHO_CLIENT_ID='=xxxXXXxXxxXx'
AUTHO_CLIENT_SECRET='xxxxxxxxX'

AUTHO_CALLBACK_URL='http://localhost:3000'

-ENV

Note: Replace these values with the client_id, client_secret and domain

values from your AuthO dashboard.

Add the value of callback_url to the Allowed Callback URLs in your

Settings on the dashboard.

M

‘ @ Secure

o9 Auth0

@ Dashboard

B Clients

© S50 Integrations
o3 Connections

D Users

25 Rules

B Multifactor Auth
Hosted Pages
& Emails

Logs

@ Anomaly Detection
£} Extensions

O Get Support

autho.

prosper

Q_ Search for clients or features

Allowed Callback URLs

Allowed Logout URLs

IIbL4RIKVaKITeKgC7tAR4JYMOfem4U1/settings T % oo

A Help&Support Documentation Talk to Sales @ unicoder v

http://localhost:3000

After the user authenticates we will only call back to any of these
URLs. You can specify multiple valid URLs by comma-separating
them (typically to handle different environments like QA or testing).
You can use the star symbol as a wildcard for subdomains
(**.google.com’). Make sure to specify the protocol, http:// or ht

tps:// , otherwise the callback may fail in some cases.

P
Aset of URLs that are valid to redirect to after logout from Auth0.
After a ser logs out from Auth you can redirect them with the
“returnTo’ query parameter. The URL that you use in returnTo’ must
be listed here. You can specify multiple valid URLs by comma-

separating them. You can use the star symbol as a wildcard for

ins (*.google.com’). Notice that querystrings and hash

information are not taking into account when validating these URLs.

96

Auth0 dashboard: Allowed Callback Urls

Also, do not forget to add the same value to the Allowed Origins(CORS) in
your Settings on the dashboard.

°) prosper
‘ @& Secure authO. ients/IIbL4RIKVaKITeKgC7tAR4JYMOfem4U1/settings F Y e
ﬂ AuthO Q_ Search for clients or features a Help & Support Documentation Talk to Sales @ unicoder v

After a ser logs out from Auth you can redirect them with the

“returnTo’ query parameter. The URL that you use in ‘returnTo must

@ Dashboard

be listed here. You can specify multiple valid URLs by comma-
B Clients separating them. You can use the star symbol as a wildcard for
O S50 Integrations ins (**.google.com’). Notice that querystrings and hash

o information are not taking into account when validating these URLs.
Connections
Read more about this at https://auth0.com/docs/logout

&, Users
23 Rules Allowed Origins (CORS) http:/localhost:3000
B Multifactor Auth e
4

Hosted Pages Allowed Origins are URLs that will be allowed to make requests
o1 Email from JavaScript to AuthO API (typically used with CORS). By default,

mails

all your callback URLs will be allowed. This field allows you to enter

Logs other origins if you need to. You can specify multiple valid URLs by

@ Anomaly Detection comma-separating them or one by line, and also use wildcards at

the level (e.g.: hitps://*.contoso.com). Notice that

{} Extensions N
qQuerystrings and hash information are not taking into account when

O Get Support validating these URLs.

JWT Expiration (seconds) 36000

Control the expiration of the id token (in seconds).

Auth0 dashboard: Allowed Origin CORS

We need a file to invoke the dotenv library and load the values that we have
deposited in the .env file. Create a new file, dotenv-loader.php like so:

<7php

// Read .env

try {
$dotenv = new Dotenv\Dotenv(__DIR__);
$dotenv->load () ;

} catch(InvalidArgumentException $ex) {
// Ignore if no dotenv

¥
dotenv-loader.php

Finally, let’s create the index.php file where all our app logic will reside. Like
I mentioned earlier, it’s just a basic app so don’t be worried about separation
of concerns.

This is how the file should look like:

o7

<7php

// Require composer autoloader
require __DIR__ . '/vendor/autoload.php';

require __DIR__ . '/dotenv-loader.php';

use AuthO\SDK\API\Authentication;

$domain getenv ('AUTHO_DOMAIN');
$client_id getenv ('AUTHO_CLIENT_ID');
$client_secret = getenv('AUTHO_CLIENT_SECRET');

$redirect_uri = getenv('AUTHO_CALLBACK_URL');

$auth0 = new Authentication($domain, $client_id);

$authOOauth = $authO->get_oauth_client($client_secret, $redirect_uri, [
'persist_id_token' => true,
'persist_refresh_token' => true,

1;
$starWarsNames = ['Darth Vader', 'Ahsoka Tano', 'Kylo Ren', 'Obi-Wan Kenobi', 'R2-D2', 'Snol
$userInfo = $authOOauth->getUser();
if (isset($_REQUEST['logout'])) {
$authOOauth->logout () ;

session_destroy();
header("Location: /");

7>
<html>
<head>
<script src="http://code.jquery.com/jquery-3.0.0.min.js" type="text/javascript"></s«
<script src="https://cdn.authO.com/js/lock/10.0/lock.min.js"></script>

<script type="text/javascript" src="//use.typekit.net/iws6ohy.js"></script>
<script type="text/javascript">try{Typekit.load() ;}catch(e){}</script>

<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="icon" type="image/png" href="/favicon-32x32.png" sizes="32x32">

<!-- font awesome from BootstrapCDN -->
<link href="//maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css" rel="s

98

<link href="//maxcdn.bootstrapcdn.com/font-awesome/4.5.0/css/font-awesome.min.css" :

<script>

var AUTHO_CLIENT_ID = '<7php echo getenv("AUTHO_CLIENT_ID") 7>';

var AUTHO_DOMAIN = '<7php echo getenv("AUTHO_DOMAIN") 7>';

var AUTHO_CALLBACK_URL = '<?7php echo getenv("AUTHO_CALLBACK_URL") 7>';
</script>

<script src="public/app.js"> </script>
<link href="public/app.css" rel="stylesheet'>

</head>
<body class="home">
<div class="container">
<div class="login-page clearfix">
<?php if (!$userInfo): 7>
<div class="login-box authO-box before">

<p>Heard you don't want to migrate to PHP 77 Dare us!</p>
SignIn
</div>
<7?php else: 7>
<div class="logged-in-box authO-box logged-in">
<h1l id="logo">Star Wars Welcomes You to the Family!</h1>
<img class="avatar" width="200" src="<7php echo $userInfo['picture']l 7>"/>

<h2>Welcome <7php echo $userInfo['nickname'] ?7></spar
<h2> Assigned Codename : <?php echo $starWarsNames[rand(0, 6)]; 7> <,
Logout

</div>

<7php endif 7>

</div>
</div>
</body>
</html>

I know it seems overwhelming to just hit you with that block of code at once.
Just relax, let’s analyze the code together.

// Require composer autoloader
require __DIR__ . '/vendor/autoload.php';

require __DIR__ . '/dotenv-loader.php';

99

import the autoloader and environment loader

This is where we require the dotenv loader and composer autoloader. The
autoloader makes it possible for us to import any class from the PHP packages
installed in the app.

use AuthO\SDK\API\Authentication;

$domain = getenv('AUTHO_DOMAIN') ;
$client_id getenv (' AUTHO_CLIENT_ID');
$client_secret = getenv('AUTHO_CLIENT_SECRET');
$redirect_uri getenv ('AUTHO_CALLBACK_URL');

$auth0 = new Authentication($domain, $client_id);

$authOOauth = $authO->get_oauth_client($client_secret, $redirect_uri, [
'persist_id_token' => true,
'persist_refresh_token' => true,

D;
$starWarsNames = ['Darth Vader', 'Ahsoka Tano', 'Kylo Ren', 'Obi-Wan Kenobi', 'R2-D2', 'Snol

$userInfo = $authOOauth->getUser();
Grab Auth details and user information

AuthO\SDK\API\Authentication is the AuthO authentication class. It has the
methods to retrieve a user’s profile when logged in. $domain, $client_id,
$client_secret, $redirect_uri are variables that will house the values gotten
from the .env file with the aid of the getenv method.

Then, we moved on to instantiating the Authentication class.

The $auth0->get_oauth_client () method by default stores user information
in the PHP session, and we also instructed it to save the access_token and
id_token that AuthO server returns during the process of successfully authen-
ticating a user.

$starWarsNames array contains some characters from Star Wars*. Later in the
code, a user will be assigned a random code name from this array.

$authO0auth->getUser () retrieves the user information.

if (isset($_REQUEST['logout'])) {
$authOOauth->logout () ;
session_destroy();

4http://www.starwars.com

60

http://www.starwars.com

header("Location: /");

}
Log out a user, destroy all sessions and redirect to index page

This piece of code above checks if the user submitted a request to log out, clears
the session and redirects the user back to the homepage.

<script src="http://code.jquery.com/jquery-3.0.0.min.js" type="text/javascript"></script>
<script src="https://cdn.auth0.com/js/lock/10.0/lock.min.js"></script>

Include Auth0 lock widget and jQuery

We are making use of AuthO Lock widget. We are also using jQuery to call the
lock methods and handle the button click event.

<!-- font awesome from BootstrapCDN -->
<1link href="//maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css" rel="styleshee!
<link href="//maxcdn.bootstrapcdn.com/font-awesome/4.5.0/css/font-awesome.min.css" rel="sty:

Include bootstrap and font-awesome
We pulled in bootstrap and font-awesome for beautification.

<script>

var AUTHO_CLIENT_ID = '<7php echo getenv("AUTHO_CLIENT_ID") 7>';

var AUTHO_DOMAIN = '<7php echo getenv("AUTHO_DOMAIN") 7>';

var AUTHO_CALLBACK_URL = '<?7php echo getenv("AUTHO_CALLBACK_URL") 7>';
</script>

In the code above, we fed the AuthO credentials to some JavaScript variables.

<div class="container">
<div class="login-page clearfix">

<7php if (!$userInfo): 7>

<div class="login-box authO-box before">

<p>Heard you don't want to migrate to PHP 77 Dare us!</p>
SignIn

</div>

<7php else: 7>

<div class="logged-in-box authO-box logged-in">
<h1l id="logo">Star Wars Welcomes You to the Family!</h1>
<img class="avatar" width="200" src="<?7php echo $userInfol['picture'] 7>"/>

<h2>Welcome <7php echo $userInfo['nickname'] 7></h2>
<h2> Assigned Codename : <?php echo $starWarsNames[rand(0, 6)]; 7> </h2>
Logout
</div>
<?php endif 7>
</div>

61

In the code above, if the $userInfo is not set, then it means the user has not
logged in yet, so we display the signin button. If the user has signed in, then
we grab the user’s info and display it along with the logout button.

12.1.3 Run The App

Go to your terminal and run composer install to install the dependencies.
Next, run your PHP 5.x server. If your PHP server is accessible from the
terminal, then you can run it via php -S localhost:3000.

Open your browser and test the app. The index page should look like this:

(] - prosper

‘ ® localhost:3000 Yo =a

Heard you don't want to migrate to PHP 77 Dare us!

Index Page

Now, signup & signin.

62

® localhost:3000

Auth0

LOGIN SIGN UP

Sign In

When you are logged in, you should be assigned a Star Wars codename like so:

Star Wars Welcomes You to the Family!
Welcome prosperotemuyiwa
Assigned Codename : R2-D2
Logged In

63

Our app is now running successfully on a PHP 5.x server. You can grab the
source code from Github® to ensure that everything works as expected.

12.1.4 Migrate to PHP 7

We are currently running a PHP 5.x app. Let’s migrate it to PHP 7. The good
thing like I mentioned earlier is that most times you might not have to change
anything in the codebase. Let’s see if that holds true for this app.

Upgrade your server to at least PHP 7.0.0 and run this app again.

prosperotemuyiwa@PROSPERs-MacBook-Pro php -S localhost:3000

PHP 7.1.0 Development Server started at Thu Jan 26 09:58:12 2017

Listening on http://localhost:3000

Document root is /Users/prosperotemuyiwa/source/php-workspace/basic-webapp

Press Ctrl1-C to quit.
) 17

[Thu Jan 26 © 2017]

[Thu Jan 2017]
[Thu Jan 2017]

[Thu Jan
[Thu Jan 2
[Thu Jan
[Thu Jan 26
[Thu Jan
[Thu Jan 26
[Thu Jan

PHP 7 Server running

Signup, Login and try to logout. There are no errors.

Awesome, now our first app is running on PHP 7 successfully!

12.2 API

We will clone an API. It is a simple Chuck Norris API. It has been built already
with PHP 5 in mind.

Go ahead and clone the project from Github® and run composer install to
install all the dependencies. Then run the app on a PHP 5.x server.

Open up Postman” and test the API like so:

Run http://localhost:3000/jokes/categories like so:

Shttps://github.com /auth0-blog/starwars-phpapp
Shttps://github.com/auth0-blog/basic-api
Thttps://www.getpostman.com

64

https://github.com/auth0-blog/starwars-phpapp
https://github.com/auth0-blog/basic-api
https://www.getpostman.com

*

Runner
http://localhost:3000/ NoEnvirenment ®
GET http://localhost:3000/jokes/categories Params Save
Authorization Headers Pre-request Script Tests Code
e BulkEdit Presets
Body Cookies Headers (5) Tests Status: 2000K Time: 28 ms
Pretty Raw Preview HTML

nimal”,"music”, "history”, "travel, "career”

“celebrity", "science"

olitical®, "sport”,"religio

1 ["explicit”,"dev", "movie", "foo

¢ ,"money", "fashion"]

API showing categories
Run http://localhost:3000/jokes/randonm like so:

A

Runner

No Environment o)
http://localhost:3000/

GET http://localhost:3000/jokes/random Params Save

Authorization Headers Pre-requestScript Tests Code

Bulk Edit Presets.

Body Cookies Headers (5) Tests Status: 200K Time: 15ms

Pretty ~ Raw Preview HTML

i1 "When Jon pushes a value onto a stack, it stays pushed."

65

API showing random jokes

The app is working fine, no errors!

12.2.1 Use PHP 7 Features

Let’s refactor this app and inject some PHP 7 features.

This is the directory structure of our API app at the moment:

--—-basic-api

| ----Main.php

-——-vendor

[

-—---.gitignore

[

---—.htaccess

I
—-——-composer. json
[
—--—-—composer.lock
|

—----index.php

[
----README.md

This is how our Main.php file looks like right now:
<7php

namespace App;

use Exception;

class Main {

public function getCategories() {
return $this->getCategoryData() ;
}

private function getCategoryData() {

66

return [
"explicit",
"dev",
"movie",
"food",
"celebrity",
"science",
"political",
"sport",
"religion",
"animal",
"music",
"history",
"travel",
"career",
"money",
"fashion"

1

}

public function getRandomJokes($randomNumber) {

if (!is_integer ($randomNumber)) {
throw new Exception("The random number should be an integer. Please try again."

X
$jokes = [
"Jon Skeet’s code doesn’t follow a coding convention. It is the coding convention
"Jon Skeet can divide by Zero.",
"Jon Skeet points to null, null quakes in fear.",
"Jon Skeet is the traveling salesman. Only he knows the shortest route.",
"When Jon pushes a value onto a stack, it stays pushed.",
"Drivers think twice before they dare interrupt Jon’s code.",
"Jon Skeet does not sleep... He waits.",
"Jon Skeet can stop an infinite loop just by thinking about it.",
"Jon Skeet uses Visual Studio to burn CDs.",
"Jon Skeet has the key to Open Source. He just doesn’t want to close it."
1

return $jokes[$randomNumber];

}

Let’s start by adding PHP 7 return type declarations to the methods in
this class like so:

67

<7php
namespace App;
class Main {

public function getCategories(): array {
return $this->getCategoryData();
}

private function getCategoryData(): array {
return [
"explicit",
"dev",
"movie",
"food",
"celebrity",
"science",
"political",
"sport",
"religion",
"animal",
"music",
"history",
"travel",
"career",
"money",
"fashion"
1;
}

public function getRandomJokes($randomNumber): string {

if (!is_integer ($randomNumber)) {
throw new Exception("The random number should be an integer. Please try again."

3

$jokes = [
"Jon Skeet’s code doesn’t follow a coding convention. It is the coding convention
"Jon Skeet can divide by Zero.",
"Jon Skeet points to null, null quakes in fear.",
"Jon Skeet is the traveling salesman. Only he knows the shortest route.",
"When Jon pushes a value onto a stack, it stays pushed.",
"Drivers think twice before they dare interrupt Jon’s code.",
"Jon Skeet does not sleep... He waits.",
"Jon Skeet can stop an infinite loop just by thinking about it.",

68

"Jon Skeet uses Visual Studio to burn CDs.",
"Jon Skeet has the key to Open Source. He just doesn’t want to close it."

1;
return $jokes[$randomNumber] ;

}
PHP 7 Return Type Declarations added in Main.php

Another PHP 7 feature we can add is function parameter typehinting. We have
a method, getRandomJokes ($randomNumber) that accepts a $randomNumber
which is an integer.

Let’s refactor that method, getRandomJokes (). We'll eliminate the if condi-
tion and just typehint the $randomNumber parameter like so:

public function getRandomJokes(int $randomNumber): string {

$jokes = [
"Jon Skeet’s code doesn’t follow a coding convention. It is the coding convention
"Jon Skeet can divide by Zero.",
"Jon Skeet points to null, null quakes in fear.",
"Jon Skeet is the traveling salesman. Only he knows the shortest route.",
"When Jon pushes a value onto a stack, it stays pushed.",
"Drivers think twice before they dare interrupt Jon’s code.",
"Jon Skeet does not sleep... He waits.",
"Jon Skeet can stop an infinite loop just by thinking about it.",
"Jon Skeet uses Visual Studio to burn CDs.",
"Jon Skeet has the key to Open Source. He just doesn’t want to close it."

1;

return $jokes[$randomNumber] ;

}

Now if you try to pass in a value asides an integer like so:

$router->get ('/jokes/random', function() use ($app){
echo json_encode ($app->getRandomJokes ("dsdsds"));

b

index.php

PHP 7 will throw a Type Error like so:

69

[Thu Jan 26 15:48:37 2017] PHP Fatal error: Uncaught TypeError: Argument 1 passed to App\Main::getRandomJokes() mu
st be of the type integer, string given, called in /Users/prosperotemuyiwa/source/php-workspace/basic-api/index.php
on line 19 and defined in /Users/prosperotemuyiwa/source/php-workspace/basic-api/src/Main.php:34

/Users/prosperotemuyiwa/source/php-workspace/basic-api/index.php(19): App\Main->getRandomJokes('dsdsds')
[internal function]: {closure}()
/prosperotemuyiwa/source/php-workspace/basic-api/vendor/bramus/router/src/Bramus/Router /Router.php(329):
- _func_array(Object(Closure), Array)
#3 /Users/prosperotemuyiwa/source/php-workspace/basic-api/vendor/bramus/router/src/Bramus/Router/Router.php(253): B
ramus \Router \Router->handle(Array, true)
#4 /Users/prosperotemuyiwa/source/php-workspace/basic-api/index.php(32): Bramus\Router\Router->run()
#5 {main}
i rs/prosperotemuyiwa/source/php-workspace/basic-api/src/Main.php on line 34
3

7

[Thu Jan 26 1

PHP 7 TypeError

We have been able to add some PHP 7 features. The app also runs on a PHP
7 server and everything just works fine!

The source code of the PHP 7 version of the API can be found on the php7
branch on GitHub®.

8https://github.com/auth0-blog/basic-api/tree/php7

70

https://github.com/auth0-blog/basic-api/tree/php7

Chapter 13

Introducing PHP 7.1
Features

PHP 7.1 was released in December 3, 2016 and it came bundled with some new
features. Let’s take a good look at these features.

13.1 Nullable Types

Return types were introduced in PHP 7.0. The PHP team took it a step further
by allowing nullable types for parameters and return types in PHP 7.1. This
simply means null can be returned or allowed as parameters if you define them
like so:

function whatIsYourName(): ?string {
return null;

3

$result = whatIsYourName() 7 "Great" : "Nah";
echo is_null (whatIsYourName());

Nah
1

The question mark, ? behind the string return type ensures that method is
allowed to return null.

From the code above, you can see it returns 1 which means true. And the value
of whatIsYourName () returns null.

71

13.2 Void Type

Another return type, void has been added in PHP 7.1. Functions that have a
void return type can decide not to have a return statement or use an empty
return statement.

Note: Null is not a valid return value for a void function.

function getGeniusBrain(): void {
echo "There is no genius brain around";

}

getGeniusBrain();
// Result:
There is no genius brain around

If you change the void return type to say, string. PHP 7 will throw a Fatal
Type Error.

13.3 Symmetric Array Destructuring

In PHP 7.1, you can now use the short array syntax , [] , to destructure arrays
for assignments. The normal way is to use 1ist (). You can use, [] , like so:

$fruits = ['mango', 'banana', 'apple'];
[$mango, $banana, $apple] = $fruits;

echo $mango.PHP_EOL;
echo $banana.PHP_EOL;
echo $apple.PHP_EOL;

// Result
mango
banana
apple

You can also use, [] , with foreach like this:

foreach ($fruits as [$a, $b, $c]) {
SRk xk/
}

72

13.4 Class Constant Visibility

In PHP 7.1, you can now specify the visibility of class constants. I really love
this feature. Let’s take a look.

<7php

class Baba {

const children = 7;

public const CONCUBINES = 2;
protected const BUSINESSES
private const WIVES = 4;

10;

echo Baba::children;
echo Baba: :CONCUBINES;

// Result:
72

echo Baba::BUSINESSES;
// Result:
Fatal error: Uncaught Error: Cannot access protected const Baba::BUSINESSES in ...

echo Baba::WIVES;
// Result:
Fatal error: Uncaught Error: Cannot access private const Baba::WIVES in ...

So, we can now restrict constants with protected and private access modifiers
so that they are not accessible outside a class. Sweet!

13.5 Multi-Catch Exception Handling

I mentioned this feature in Chapter 5. PHP 7.1 allows us to catch and respond
to multiple exception types with the exact same logic like so:

try {
} catch(InvalidPaymentException | NullPaymentException | NotEnoughPayException $e) {

// use just ome logic for all three ezxceptions

}

73

Woot! Woot! Really cool. You don’t have to handle them with multiple catch
blocks again.

13.6 Iterables

A new pseudo-type, iterable, has been introduced in PHP 7.1.0. It is similar
to callable. It will be used for type checking parameter or return values that
will be used either in a foreach loop or yield from statement like so:

function performSomeOperation(iterable $iter) {
foreach($iter as $i) {
// Do something
}
}

So, you can use iterable when you want to accept arrays and objects that
implements the Traversable Interface. For example, any class that implements
IteratorAggregate is an iterable.

A new function, is_iterable has also been added to determine if a value is
iterable . Checkout the RFC here'.

13.7 Keys Support in list()

The 1ist () language construct can now have keys. So it can now handle asso-
ciative arrays. Check this out:

$fruits = ['yellow' => 'mango', 'white' => 'banana' , 'orange' = 'orange'];
list('yellow' => $mango, 'white' => $banana, 'orange' => $orange) = $fruits;

echo $mango.PHP_EOL;
echo $banana.PHP_EOQL;
echo $orange.PHP_EQOL;

// Result:
mango
banana
orange

Thttps://wiki.php.net/rfc/iterable

74

https://wiki.php.net/rfc/iterable

13.8 Negative String Offsets Support

Support for negative string offsets has been added to the string functions ac-
cepting offsets. So, a negative offset is interpreted as being an offset from the
end of the string like so:

$name = 'prosper';
echo $name[-2];

// Result:
e

13.9 Conversion of Callables to Closures

In PHP 7.1.04, you can now convert callables into Closure objects with a new
static method, fromCallable like so:

class Car
{
public function exposeLicense()
{
return Closure::fromCallable([$this, 'drive'l);
}
private function drive($duration)
{
var_dump ($duration) ;
}
}
$car = (new Car)->exposelLicense();
$car (25000) ;
// Result:
int (25000)

7

13.10 Asynchronous Signal Handling

PHP 7.1.0 has introduced a new function, pcntl_async_signals() to enable
asynchronous signal handling without using ticks”.

pentl_async_signals(true); // turn on async signals

pcentl_signal (SIGHUP, function($sig) {
echo "SIGHUP\n";
19N

posix_kill(posix_getpid(), SIGHUP);

13.11 Support for HTTP /2 Server Push

Support for server push has been added to the CURL extension which requires
version 7.46 and above.

This can be leveraged through the curl_multi_setopt function with the
new CURLMOPT_PUSHFUNCTION constant. The constants CURL_PUST_OK and
CURL_PUSH_DENY have also been added so that the execution of the server push
callback can either be approved or denied.

13.12 Better Error Retrieval

Three new functions have been introduced in PHP 7.1.0 to enable errors related
to multi and share handles to be retrieved.

int curl_multi_errno(resource $mh) ;
int curl_share_errno(resource $rh);
string curl_share_strerror(int $errno);

2http://php.net/manual/en/control-structures.declare.php#tcontrol-structures.declare.
ticks

76

http://php.net/manual/en/control-structures.declare.php#control-structures.declare.ticks
http://php.net/manual/en/control-structures.declare.php#control-structures.declare.ticks

13.13 Throw Error on Passing too few Function
Arguments

In PHP 7.14, when a function is passed too few arguments, an Error Exception
will be thrown like so:

function work($price) {}

}
work();

// Result
Fatal error: Uncaught ArgumentCountError: Too few arguments to function work()

Note: The ext/mcrypt extension has been deprecated in favour of OpenSSL.
You can check out for the deprecated features® and other changes® in 7.1.

3http://php.net/manual /en/migration71.deprecated.php
4http://php.net/manual/en/migration71.changed-functions.php

7

http://php.net/manual/en/migration71.deprecated.php
http://php.net/manual/en/migration71.changed-functions.php

Chapter 14

Performance Evaluation

PHP 7 runs on the new Zend engine 3.0, thus making your apps see up to 2x
faster performance and 50% better memory consumption than PHP 5.6. It also
allows you to serve more concurrent users without adding any hardware.

Rasmus Ledorf', Creator of PHP and inventor of the SQL LIMIT clause did
some benchmarking with a few popular PHP projects with the various versions
of PHP from PHP 5.4 up until PHP 7.0 and also benchmarked against HHVM

3.6.1.

Let’s take a good look at the benchmarks. The test box specs Rasmus used are:

Gigabyte Z87X-UD3H i7-4771 4 cores @ 3.50GHz w/ 16G of Ram @
1600MHz

Hyperthreading enabled for a total of 8 virtual cores

Toshiba THNSNHH256GBST SSD

Linux debian 3.16.0-4-amd64 #1 SMP Debian 3.16.7-ckt9-2 (2015-04-13)
x86_ 64 GNU/Linux

MySQL 5.6.24

Nginx-1.6.2 4+ php-fpm for all tests unless indicated otherwise

Quiet local 100Mbps network

Siege benchmark tool run from a separate machine

Lhttps://twitter.com/rasmus

8

https://twitter.com/rasmus

ZenCart 1.5.4

front page with demo data

150
3
125
100 8 g 8
o)
%]
o
o 75
(]
4
50
25
0
PHP 5.3 PHP 5.4 PHP 5.5 PHP 5.6 PHP 7
Concurrent clients
MWr/s@20

ZenCart 1.5.4

Moodle-2.9-dev

Hitting the default front page

450
400
3
350
300
O
@ 250
~
O <
@ 200 N
o
150
100
50
0
PHP 5.4 PHP 5.5 PHP 5.6 PHP 7
Concurrent clients
MWr/s@20

Moodle 2.9-dev

79

Cachet

frontpage with 1 incident

5
S]
N

PHP 5.4 PHP 5.5 PHP 5.6 PHP 7 HHVM 3.6.1

450

400

350

300

Concurrent clients
M /s @20

Cachet

Traq 3.5.2

http://trag/test/tickets/1
1400

1200

1000
800

(=3

o

~
600
400
200
0

PHP 5.3 PHP 5.4 PHP 5.5 PHP 5.6 PHP 7 HHVM 3.6.1

1145

Req/sec

Concurrent clients
Mr/s@20

Traq 3.5.2

80

Geeklog 2.1.0

default frontpage

600

500 8

400
(9]
7}
: o ©
o 300 = & =
7}]
[~

200

100

0
PHP 5.3 PHP 5.4 PHP 5.5 PHP 5.6 PHP 7 HHVM 3.6.1
Concurrent clients
/s @20

Geeklog 2.1.0

WardrobeCMS 1.2.0

front page with one short post

~
o ~ n
|||||||i|||||||| ||||||||i|||||||| |||||||I||||||||

PHP 5.4 PHP 5.5 PHP 5.6 PHP 7 HHVM 3.6.1

1200

1000

800

600

Req/sec

400

0

Concurrent clients

Mr/s@20

Wardrobe CMS 1.2.0

81

Opencart 2.0.2.0

Hitting frontpage of default install

o
3
©®

-

P}

®

PHP 5.3 PHP 5.4 PHP 5.5 PHP 5.6 PHP 7 HHVM 3.6.1

400

350

300

o

100

Concurrent clients

M /s @20

Opencart 2.0.2.0

MediaWiki 1.24.1

default frontpage

350
300 2
@
250
a)) 200
v
~
o
& 150
3 3
o -
100 wJ
50
0
PHP 5.3 PHP 5.4 PHP 5.5 PHP 5.6 PHP 7 HHVM 3.6.1
Concurrent clients
MWr/s@20

MediaWiki 1.24.1

82

phpBB 3.1.3

http://phpbb/viewforum.php?f=2

800

700 E

600

500
9]
[}
<
o 400 -
& 8 8

300

200

100

0
PHP 5.3 PHP 5.4 PHP 5.5 PHP 5.6 PHP 7 HHVM 3.6.1
Concurrent clients
/s @20
phpBB 3.1.3
Wordpress-4.1.1
http://wordpress/?p=1

700

600

500
8 400
v
~
o
& 300

o
R &
200]
o~
100
0
PHP 5.3 PHP 5.4 PHP 5.5 PHP 5.6 PHP 7 HHVM 3.6.1
Concurrent clients
M r/s@20

Wordpress 4.1.1

83

Drupal 8-git
node w/ 5 comments
3000

2500
2000

1500

Req/sec

1000

500

PHP 5.4 PHP 5.5 PHP 5.6 PHP 7 HHVM 3.6.1

Concurrent clients
/s @20

Drupal 8

From the results above, you can see that we can make double the amount of
requests in lesser time in PHP 7 than PHP 5.

These specs can be found in the Speeding Up The Web With PHP 7 talk he
gave at Fluent Conf, 2015.

Check out the following benchmarks:

o php7-benchmarks”
o php7 final version vs hhvm benchmark®
o hhvm vs php7 performance show down - Wordpress, Nginx*

2https://github.com/martin-helmich /php7-benchmarks
3https://kinsta.com/blog/the-definitive- php- 7-final-version-hhvm-benchmark
4http://blog.wpoven.com/2016/04/14 /hhvm-vs-php-7- performance-showdown- wordpress-nginx

84

https://github.com/martin-helmich/php7-benchmarks
https://kinsta.com/blog/the-definitive-php-7-final-version-hhvm-benchmark
http://blog.wpoven.com/2016/04/14/hhvm-vs-php-7-performance-showdown-wordpress-nginx

Chapter 15

Conclusion

We have successfully covered how to upgrade your development and server en-
vironments from PHP 5 to PHP 7, gone through the features PHP 7 offers and
also migrated two apps from PHP 5 to PHP 7.

Woot! Woot! It’s been quite a journey highlighting everything PHP 7 has to
offer. PHP has grown tremendously over the years from a toy language to a
full-blown fast and enterprise language.

The PHP Manual' and RFC? documents remain the most complete go-to refer-
ence for any of the new PHP 7 features. You can always leverage them for more
information.

Thanks for being patient learning all there is to PHP 7. I'm confident that you
are now ready to migrate your PHP 5.x apps to PHP 7!

Lhttp://php.net/manual/en/index.php
2https://wiki.php.net/RFC

85

http://php.net/manual/en/index.php
https://wiki.php.net/RFC

	Introduction
	PHP 5 and PHP 7

	Upgrading Your Development Environment to PHP 7
	Mac OS X
	Windows
	Ubuntu
	Debian
	CentOS / Red Hat Enterprise Linux
	phpbrew
	Vagrant
	Laravel Homestead
	php7dev

	Valet
	Docker
	php7-dockerized
	Laradock
	phpdocker

	Elementary Language Changes
	Spaceship Operator
	Array Constants
	Null Coalescing Operator
	Integer Division
	Regular Expressions
	Filtered unserialize()
	Cryptographically Secure Pseudorandom Number Generator (CSRPNG)

	session_start config enhancements
	Unpack objects with list()
	dirname() enhancement
	Reflection API Enhancements
	Reserved Words

	Scalar Typehinting & Return Type Declarations
	Typehinting
	Return Types
	Strong Type Check

	Error Handling, Expectations and Assertions
	Expectations and Assertions

	Closures and Generators
	Generator Return Expressions
	Generator Delegation

	Object-Oriented Programming Enhancement
	Anonymous Classes
	Group Use Declarations

	Better Unicode Support
	IntlChar

	Deprecated & Removed Features
	Removed Extensions and Server APIs
	Backward Incompatible Changes

	Uniform Variable Syntax and Static Values
	Accessing Static Values

	Migration Tools
	PHP 7 MAR
	PHP 7 Compatibility Checker
	Phan
	phpto7aid
	PhpStorm PHP 7 Compatibility Inspection

	Practical Migration of Two Apps
	Building a PHP5 App
	Create and Configure Auth0 Client
	Build the App
	Run The App
	Migrate to PHP 7

	API
	Use PHP 7 Features

	Introducing PHP 7.1 Features
	Nullable Types
	Void Type
	Symmetric Array Destructuring
	Class Constant Visibility
	Multi-Catch Exception Handling
	Iterables
	Keys Support in list()
	Negative String Offsets Support
	Conversion of Callables to Closures
	Asynchronous Signal Handling
	Support for HTTP/2 Server Push
	Better Error Retrieval
	Throw Error on Passing too few Function Arguments

	Performance Evaluation
	Conclusion

